
Full Lambek Calculus with contraction
is undecidable

Karel Chvalovský
joint work with Rostislav Horčík

Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague

Introduction

I a rather technical proof; all details are in our paper
I several small things which fit together nicely
I it is not so common among substructural logics that a logic

has an undecidable set of theorems, cf. some known examples
I in relevance logics (Urquhart [1984]),
I in linear logic (Lincoln et al. [1992]),
I the equational theory of modular lattices (Freese [1980])

1 / 15

Gentzen sequent calculus for FLc

Assume we have a sequent

Γ ⇒ 𝜒

where Γ is a sequence of formulae separated by commas.

We need structural rules

Γ, 𝜙, 𝜓,Δ ⇒ 𝜒(e) Γ, 𝜓, 𝜙,Δ ⇒ 𝜒

exchange

Γ, 𝜙, 𝜙,Δ ⇒ 𝜒(c) Γ, 𝜙,Δ ⇒ 𝜒

contraction

Γ,Δ ⇒ 𝜒(i) Γ, 𝜙,Δ ⇒ 𝜒

left-weakening

(+right-weakening) = LJ

2 / 15

Gentzen sequent calculus for FLc

Assume we have a sequent

Γ ⇒ 𝜒

where Γ is a sequence of formulae separated by commas.

Roughly speaking, if we have only

Γ, 𝜙, 𝜓,Δ ⇒ 𝜒(e) Γ, 𝜓, 𝜙,Δ ⇒ 𝜒

exchange

Γ, 𝜙, 𝜙,Δ ⇒ 𝜒(c) Γ, 𝜙,Δ ⇒ 𝜒

contraction

Γ,Δ ⇒ 𝜒(i) Γ, 𝜙,Δ ⇒ 𝜒

left-weakening

= the Full Lambek Calculus with contraction (·, ∖, /,∧,∨, 1).
In fact, this is the positive fragment of FLc denoted FL+

c since we
do not allow the empty succedent (0).

2 / 15

Algebraic counterpart

ℛℒ𝑐-algebras
A square-increasing residuated lattice A = ⟨𝐴,∧,∨, ·, ∖, /, 1⟩ is an
algebraic structure such that
I ⟨𝐴, ·, 1⟩ is a monoid,
I ⟨𝐴,∧,∨⟩ is a lattice,
I the law of residuation holds—for all 𝑎, 𝑏, 𝑐 ∈ 𝐴 hold

𝑎 · 𝑏 ≤ 𝑐 iff 𝑏 ≤ 𝑎 ∖ 𝑐 iff 𝑎 ≤ 𝑐 / 𝑏,

I 𝑥 ≤ 𝑥 · 𝑥.
(≤ is induced by the lattice structure)

Fact
𝜙⇒ 𝜓 is provable in FL+

c iff 𝜙 ≤ 𝜓 holds in ℛℒ𝑐.

3 / 15

Our result

Theorem
The set of theorems provable in FL+

c (and hence FLc) is
undecidable.

Theorem
The equational theory of ℛℒ𝑐 (and hence FLc-algebras) is
undecidable.

4 / 15

Decidability using cut-elimination

The elimination of (Cut) usually immediately gives decidability, but
here it is not the case since we have

Γ, 𝜙, 𝜙,Δ ⇒ 𝜓(c) Γ, 𝜙,Δ ⇒ 𝜓

Still we have decidability for LJ, FLec, and Lc (Bimbó [2014]).
Usually based on a combinatorial idea of Kripke.

5 / 15

Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem
I e.g. counter machines

2. We express such a problem in terms of rewriting systems
I states=strings,
I QUESTION: is the accepting state 𝐴 reachable from a

state 𝑆, i.e. 𝑆 →* 𝐴?

(given rewriting rules describing the behaviour of machine)

3. We express such a reachability as a provability problem
I 𝑆 →* 𝐴 is equivalent to proving 𝑆 ⇒𝐴 (· is concatenation)
I QUESTION: is 𝑆 ⇒𝐴 provable?

(given a theory based on rewriting rules)

6 / 15

Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem
I e.g. counter machines

2. We express such a problem in terms of rewriting systems
I states=strings,
I QUESTION: is the accepting state 𝐴 reachable from a

state 𝑆, i.e. 𝑆 →* 𝐴?

(given rewriting rules describing the behaviour of machine)

3. We express such a reachability as a provability problem
I 𝑆 →* 𝐴 is equivalent to proving 𝑆 ⇒𝐴 (· is concatenation)
I QUESTION: is 𝑆 ⇒𝐴 provable?

(given a theory based on rewriting rules)

6 / 15

Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem
I e.g. counter machines

2. We express such a problem in terms of rewriting systems
I states=strings,
I QUESTION: is the accepting state 𝐴 reachable from a

state 𝑆, i.e. 𝑆 →* 𝐴?

(given rewriting rules describing the behaviour of machine)

3. We express such a reachability as a provability problem
I 𝑆 →* 𝐴 is equivalent to proving 𝑆 ⇒𝐴 (· is concatenation)
I QUESTION: is 𝑆 ⇒𝐴 provable?

(given a theory based on rewriting rules)

6 / 15

String rewriting systems, contraction, and counters
What is the problem with contraction?

· · · a a a · · · · · · a a a a · · ·

since 𝑎⇒ 𝑎𝑎 is provable.

Square-free words (strings)
If we have a morphism over the alphabet {𝑎, 𝑏, 𝑐} defined by

ℎ(𝑎) = 𝑎𝑏𝑐 ℎ(𝑏) = 𝑎𝑐 ℎ(𝑐) = 𝑏

then ℎ𝑚(𝑎) is square free for any 𝑚. Hence we can represent

𝑎𝑚 by ℎ𝑚(𝑎).

This way we obtain a suitable string rewriting system, i.e. no
squares occur in accepting derivations, see (Horčík [2015]).

7 / 15

String rewriting systems, contraction, and counters
What is the problem with contraction?

· · · a a a · · · · · · a a a a · · ·

since 𝑎⇒ 𝑎𝑎 is provable.

Square-free words (strings)
If we have a morphism over the alphabet {𝑎, 𝑏, 𝑐} defined by

ℎ(𝑎) = 𝑎𝑏𝑐 ℎ(𝑏) = 𝑎𝑐 ℎ(𝑐) = 𝑏

then ℎ𝑚(𝑎) is square free for any 𝑚. Hence we can represent

𝑎𝑚 by ℎ𝑚(𝑎).

This way we obtain a suitable string rewriting system, i.e. no
squares occur in accepting derivations, see (Horčík [2015]).

7 / 15

String rewriting systems inside FLc

The main problem is how to express a string rewriting system
inside FLc using (Id) as the only initial sequents.

We can simulate a rewriting rule
Assume we have a rule 𝑠⇒ 𝑡. We can simulate it by 𝑠 ∖ 𝑡 since
𝑠(𝑠 ∖ 𝑡) ⇒ 𝑡 is provable.

· · · s s∖t · · · · · · t · · ·
𝜙 ⇒ 𝜓

meaning 𝜙⇒ 𝜓 is provable in FLc.

8 / 15

String rewriting systems inside FLc

The main problem is how to express a string rewriting system
inside FLc using (Id) as the only initial sequents.

We can simulate a rewriting rule
Assume we have a rule 𝑠⇒ 𝑡. We can simulate it by 𝑠 ∖ 𝑡 since
𝑠(𝑠 ∖ 𝑡) ⇒ 𝑡 is provable.

· · · s s∖t · · · · · · t · · ·
𝜙 ⇒ 𝜓

meaning 𝜙⇒ 𝜓 is provable in FLc.

8 / 15

String rewriting systems inside FLc

We can simulate finitely many rules using meet

· · · s

...
s∖t
𝜀

t∖u
...

· · · · · · s s∖t · · · · · · t · · ·

since · · · ∧ (𝑠 ∖ 𝑡) ∧ . . .⇒ 𝑠 ∖ 𝑡 is provable.

9 / 15

String rewriting systems inside FLc

We can reuse rules thanks to contraction

· · · s

...
s∖t
𝜀

t∖u
...

· · · · · · s

...
s∖t
𝜀

t∖u
...

...
s∖t
𝜀

t∖u
...

· · ·

· · · s s∖t

...
s∖t
𝜀

t∖u
...

· · · · · · t

...
s∖t
𝜀

t∖u
...

· · ·

Hence we can simulate rewriting by placing those rules next to
every atomic symbol (letter).

10 / 15

String rewriting systems inside FLc

We can reuse rules thanks to contraction

· · · s

...
s∖t
𝜀

t∖u
...

· · · · · · s

...
s∖t
𝜀

t∖u
...

...
s∖t
𝜀

t∖u
...

· · ·

· · · s s∖t

...
s∖t
𝜀

t∖u
...

· · · · · · t

...
s∖t
𝜀

t∖u
...

· · ·

Hence we can simulate rewriting by placing those rules next to
every atomic symbol (letter).

10 / 15

String rewriting systems inside FLc

It is a bit more complicated. . .

· · · a

...
a∖bc
𝜀

b∖d
...

· · · · · · a

...
a∖bc
𝜀

b∖d
...

...
a∖bc
𝜀

b∖d
...

· · ·

· · · a a∖bc

...
a∖bc
𝜀

b∖d
...

· · · · · · b c

...
a∖bc
𝜀

b∖d
...

· · ·

It would work if the right sides were only atomic (=atomic rules).

11 / 15

Simulation of a non-atomic rule by atomic rules

We produce a modification of the string rewriting system we
started with to fulfill the previous atomicity condition.

Rule 𝑎 ⇒ 𝑏𝑐 is simulated by atomic rules used in a right order

· · · a · · · · · · a c′′ · · · · · · b′ c′′ · · ·

· · · b′ c · · · · · · b c · · ·

𝜀⇒ 𝑐′′

if . . .
𝑎⇒ 𝑏′

if . . .

𝑐′′ ⇒ 𝑐

if . . .

𝑏′ ⇒ 𝑏
if . . .

How do we represent the conditional part?

12 / 15

Simulation of a non-atomic rule by atomic rules

We produce a modification of the string rewriting system we
started with to fulfill the previous atomicity condition.

Rule 𝑎 ⇒ 𝑏𝑐 is simulated by atomic rules used in a right order

· · · a · · · · · · a c′′ · · · · · · b′ c′′ · · ·

· · · b′ c · · · · · · b c · · ·

𝜀⇒ 𝑐′′

if . . .
𝑎⇒ 𝑏′

if . . .

𝑐′′ ⇒ 𝑐

if . . .

𝑏′ ⇒ 𝑏
if . . .

How do we represent the conditional part?

12 / 15

Conditional rewriting system in FLc

Rule 𝑎 ⇒ 𝑏′ simulated correctly

· · · a c′′ · · · · · · b′ c′′ · · ·

· · · ? c′′ · · · X

𝑎⇒ 𝑏′ ∨ ?

cf. (Lincoln et al. [1992],. . . ,Chvalovský [2015]).

Tests require another level of rewriting

· · · ? c′′ · · · · · · ? c′′ · · · X

where Pac-Man is a string rewriting system with only atomic rules.
In fact, it is a finite automaton (=recognizes a regular language).

13 / 15

Conditional rewriting system in FLc

Rule 𝑎 ⇒ 𝑏′ simulated correctly

· · · a c′′ · · · · · · b′ c′′ · · ·

· · · ? c′′ · · · X

𝑎⇒ 𝑏′ ∨ ?

cf. (Lincoln et al. [1992],. . . ,Chvalovský [2015]).

Tests require another level of rewriting

· · · ? c′′ · · · · · · ? c′′ · · · X

where Pac-Man is a string rewriting system with only atomic rules.
In fact, it is a finite automaton (=recognizes a regular language).

13 / 15

Conditional rewriting system in FLc

Join is idempotent

· · · a c′′ · · · · · · b′ c′′ · · · · · · b′ c · · ·

X

X
X

If we put all those little things together we obtain the whole
construction:

a string rewriting system
 an atomic conditional variant of it
 an encoding of atomic conditional systems in FLc.

14 / 15

Final remarks

I the completeness of construction is proved algebraically
I it is enough to have an implication, join, and meet
I an “algorithmic” deduction theorem follows from our result

15 / 15

Thank you!

Bibliography

Katalin Bimbó. Proof Theory: Sequent Calculi and Related Formalisms.
Discrete Mathematics and Its Applications. CRC Press, London, 2014.

Karel Chvalovský. Undecidability of consequence relation in full non-associative
Lambek calculus. Journal of Symbolic Logic, 80(2):567–586, 2015. doi:
10.1017/jsl.2014.39.

Ralph Freese. Free modular lattices. Transactions of the AMS, 261(1):81–91,
1980. doi: 10.1090/S0002-9947-1980-0576864-X.

Rostislav Horčík. Word problem for knotted residuated lattices. Journal of Pure
and Applied Algebra, 219(5):1548–1563, May 2015. doi:
10.1016/j.jpaa.2014.06.015.

Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar.
Decision problems for propositional linear logic. Annals of Pure and Applied
Logic, 56(1–3):239–311, 1992. doi: 10.1016/0168-0072(92)90075-B.

Alasdair Urquhart. The undecidability of entailment and relevant implication.
Journal of Symbolic Logic, 49(4):1059–1073, 1984. doi: 10.2307/2274261.

