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Introduction

I a rather technical proof; all details are in our paper
I several small things which fit together nicely
I it is not so common among substructural logics that a logic

has an undecidable set of theorems, cf. some known examples
I in relevance logics (Urquhart [1984]),
I in linear logic (Lincoln et al. [1992]),
I the equational theory of modular lattices (Freese [1980])
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Gentzen sequent calculus for FLc

Assume we have a sequent

Γ ⇒ 𝜒

where Γ is a sequence of formulae separated by commas.

We need structural rules

Γ, 𝜙, 𝜓,Δ ⇒ 𝜒(e) Γ, 𝜓, 𝜙,Δ ⇒ 𝜒

exchange

Γ, 𝜙, 𝜙,Δ ⇒ 𝜒(c) Γ, 𝜙,Δ ⇒ 𝜒

contraction

Γ,Δ ⇒ 𝜒(i) Γ, 𝜙,Δ ⇒ 𝜒

left-weakening

(+right-weakening) = LJ
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Gentzen sequent calculus for FLc

Assume we have a sequent

Γ ⇒ 𝜒

where Γ is a sequence of formulae separated by commas.

Roughly speaking, if we have only

Γ, 𝜙, 𝜓,Δ ⇒ 𝜒(e) Γ, 𝜓, 𝜙,Δ ⇒ 𝜒

exchange

Γ, 𝜙, 𝜙,Δ ⇒ 𝜒(c) Γ, 𝜙,Δ ⇒ 𝜒

contraction

Γ,Δ ⇒ 𝜒(i) Γ, 𝜙,Δ ⇒ 𝜒

left-weakening

= the Full Lambek Calculus with contraction (·, ∖, /,∧,∨, 1).
In fact, this is the positive fragment of FLc denoted FL+

c since we
do not allow the empty succedent (0).
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Algebraic counterpart

ℛℒ𝑐-algebras
A square-increasing residuated lattice A = ⟨𝐴,∧,∨, ·, ∖, /, 1⟩ is an
algebraic structure such that
I ⟨𝐴, ·, 1⟩ is a monoid,
I ⟨𝐴,∧,∨⟩ is a lattice,
I the law of residuation holds—for all 𝑎, 𝑏, 𝑐 ∈ 𝐴 hold

𝑎 · 𝑏 ≤ 𝑐 iff 𝑏 ≤ 𝑎 ∖ 𝑐 iff 𝑎 ≤ 𝑐 / 𝑏,

I 𝑥 ≤ 𝑥 · 𝑥.
(≤ is induced by the lattice structure)

Fact
𝜙⇒ 𝜓 is provable in FL+

c iff 𝜙 ≤ 𝜓 holds in ℛℒ𝑐.
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Our result

Theorem
The set of theorems provable in FL+

c (and hence FLc) is
undecidable.

Theorem
The equational theory of ℛℒ𝑐 (and hence FLc-algebras) is
undecidable.
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Decidability using cut-elimination

The elimination of (Cut) usually immediately gives decidability, but
here it is not the case since we have

Γ, 𝜙, 𝜙,Δ ⇒ 𝜓(c) Γ, 𝜙,Δ ⇒ 𝜓

Still we have decidability for LJ, FLec, and Lc (Bimbó [2014]).
Usually based on a combinatorial idea of Kripke.
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Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem
I e.g. counter machines

2. We express such a problem in terms of rewriting systems
I states=strings,
I QUESTION: is the accepting state 𝐴 reachable from a

state 𝑆, i.e. 𝑆 →* 𝐴?

(given rewriting rules describing the behaviour of machine)

3. We express such a reachability as a provability problem
I 𝑆 →* 𝐴 is equivalent to proving 𝑆 ⇒𝐴 (· is concatenation)
I QUESTION: is 𝑆 ⇒𝐴 provable?

(given a theory based on rewriting rules)
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String rewriting systems, contraction, and counters
What is the problem with contraction?

· · · a a a · · · · · · a a a a · · ·

since 𝑎⇒ 𝑎𝑎 is provable.

Square-free words (strings)
If we have a morphism over the alphabet {𝑎, 𝑏, 𝑐} defined by

ℎ(𝑎) = 𝑎𝑏𝑐 ℎ(𝑏) = 𝑎𝑐 ℎ(𝑐) = 𝑏

then ℎ𝑚(𝑎) is square free for any 𝑚. Hence we can represent

𝑎𝑚 by ℎ𝑚(𝑎).

This way we obtain a suitable string rewriting system, i.e. no
squares occur in accepting derivations, see (Horčík [2015]).
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String rewriting systems inside FLc

The main problem is how to express a string rewriting system
inside FLc using (Id) as the only initial sequents.

We can simulate a rewriting rule
Assume we have a rule 𝑠⇒ 𝑡. We can simulate it by 𝑠 ∖ 𝑡 since
𝑠(𝑠 ∖ 𝑡) ⇒ 𝑡 is provable.

· · · s s∖t · · · · · · t · · ·
𝜙 ⇒ 𝜓

meaning 𝜙⇒ 𝜓 is provable in FLc.
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String rewriting systems inside FLc

We can simulate finitely many rules using meet

· · · s

...
s∖t
𝜀

t∖u
...

· · · · · · s s∖t · · · · · · t · · ·

since · · · ∧ (𝑠 ∖ 𝑡) ∧ . . .⇒ 𝑠 ∖ 𝑡 is provable.
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String rewriting systems inside FLc

We can reuse rules thanks to contraction

· · · s

...
s∖t
𝜀

t∖u
...

· · · · · · s

...
s∖t
𝜀

t∖u
...

...
s∖t
𝜀

t∖u
...

· · ·

· · · s s∖t

...
s∖t
𝜀

t∖u
...

· · · · · · t

...
s∖t
𝜀

t∖u
...

· · ·

Hence we can simulate rewriting by placing those rules next to
every atomic symbol (letter).
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String rewriting systems inside FLc

It is a bit more complicated. . .

· · · a

...
a∖bc
𝜀

b∖d
...

· · · · · · a

...
a∖bc
𝜀

b∖d
...

...
a∖bc
𝜀

b∖d
...

· · ·

· · · a a∖bc

...
a∖bc
𝜀

b∖d
...

· · · · · · b c

...
a∖bc
𝜀

b∖d
...

· · ·

It would work if the right sides were only atomic (=atomic rules).
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Simulation of a non-atomic rule by atomic rules

We produce a modification of the string rewriting system we
started with to fulfill the previous atomicity condition.

Rule 𝑎 ⇒ 𝑏𝑐 is simulated by atomic rules used in a right order

· · · a · · · · · · a c′′ · · · · · · b′ c′′ · · ·

· · · b′ c · · · · · · b c · · ·

𝜀⇒ 𝑐′′

if . . .
𝑎⇒ 𝑏′

if . . .

𝑐′′ ⇒ 𝑐

if . . .

𝑏′ ⇒ 𝑏
if . . .

How do we represent the conditional part?
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Conditional rewriting system in FLc

Rule 𝑎 ⇒ 𝑏′ simulated correctly

· · · a c′′ · · · · · · b′ c′′ · · ·

· · · ? c′′ · · · X

𝑎⇒ 𝑏′ ∨ ?

cf. (Lincoln et al. [1992],. . . ,Chvalovský [2015]).

Tests require another level of rewriting

· · · ? c′′ · · · · · · ? c′′ · · · X

where Pac-Man is a string rewriting system with only atomic rules.
In fact, it is a finite automaton (=recognizes a regular language).
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Conditional rewriting system in FLc

Join is idempotent

· · · a c′′ · · · · · · b′ c′′ · · · · · · b′ c · · ·

X

X
X

If we put all those little things together we obtain the whole
construction:

a string rewriting system  
 an atomic conditional variant of it  
 an encoding of atomic conditional systems in FLc.
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Final remarks

I the completeness of construction is proved algebraically
I it is enough to have an implication, join, and meet
I an “algorithmic” deduction theorem follows from our result
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Thank you!
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