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Introduction

> a rather technical proof; all details are in our paper

» several small things which fit together nicely
> it is not so common among substructural logics that a logic

has
>
|

>

an undecidable set of theorems, cf. some known examples
in relevance logics (Urquhart [1984]),

in linear logic (Lincoln et al. [1992]),

the equational theory of modular lattices (Freese [1980])
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Gentzen sequent calculus for FL,

Assume we have a sequent
I'=x

where I" is a sequence of formulae separated by commas.

We need structural rules

(e) F7%w7A:>X (C) Fa@aSDuA:X (I) F,A:>X
F7/¢7<P7A:>X FaﬁpaA:X F,W,A:>X
exchange contraction left-weakening

(+right-weakening) = LJ
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Gentzen sequent calculus for FL,

Assume we have a sequent
I'=x

where I" is a sequence of formulae separated by commas.

Roughly speaking, if we have only

Lo, A= x
Iy, A=x

(c)

contraction

= the Full Lambek Calculus with contraction (-,\,/, A, V,1).

In fact, this is the positive fragment of FL, denoted FL since we
do not allow the empty succedent (0).

IN)
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Algebraic counterpart

R L -algebras
A square-increasing residuated lattice A = (A, A\, V,+,\,/,1) is an
algebraic structure such that

» (A, 1) is a monoid,
» (A, A, V) is a lattice,

» the law of residuation holds—for all a,b,c € A hold

a-b<c iff b<a\c iff a<c/b,

(< is induced by the lattice structure)

Fact
@ =1 is provable in FLY iff o < holds in RL..
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Our result

Theorem

The set of theorems provable in FLS (and hence FL.) is
undecidable.

Theorem

The equational theory of RL. (and hence ¥ L.-algebras) is
undecidable.
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Decidability using cut-elimination

The elimination of (Cut) usually immediately gives decidability, but
here it is not the case since we have

Lo,0, A=)

(c) Lo, A=

Still we have decidability for LJ, FLec, and L. (Bimbé [2014]).
Usually based on a combinatorial idea of Kripke.
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Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem

> e.g. counter machines
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Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem

> e.g. counter machines

2. We express such a problem in terms of rewriting systems

> states=strings,

» QUESTION: is the accepting state A reachable from a
state S, i.e. S —* A?

(given rewriting rules describing the behaviour of machine)
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Undecidability proofs (for consequence relations)
1. We pick a machine with an undecidable halting problem

> e.g. counter machines

2. We express such a problem in terms of rewriting systems

> states=strings,

» QUESTION: is the accepting state A reachable from a
state S, i.e. S —* A?

(given rewriting rules describing the behaviour of machine)
3. We express such a reachability as a provability problem

» S —* Ais equivalent to proving S = A (- is concatenation)
» QUESTION: is S = A provable?

(given a theory based on rewriting rules)
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String rewriting systems, contraction, and counters

What is the problem with contraction?

colalafa] == [afafa]a]

since a = aa is provable.
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String rewriting systems, contraction, and counters

What is the problem with contraction?

lalafa] ——— [afafafa]

since a = aa is provable.

Square-free words (strings)
If we have a morphism over the alphabet {a, b, c} defined by

h(a) = abe h(b) = ac h(c) =b
then h™(a) is square free for any m. Hence we can represent
a™ by h"(a).

This way we obtain a suitable string rewriting system, i.e. no
squares occur in accepting derivations, see (Horcik [2015]).
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String rewriting systems inside FL,

The main problem is how to express a string rewriting system
inside FL, using (Id) as the only initial sequents.
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String rewriting systems inside FL,

The main problem is how to express a string rewriting system
inside FL, using (Id) as the only initial sequents.

We can simulate a rewriting rule

Assume we have a rule s = t. We can simulate it by s\ ¢ since
s(s\ t) =t is provable.

s [ s\t [ o= [t ]
=

~

2

~

(8

meaning ¢ = 1) is provable in FL.
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String rewriting systems inside FL,

We can simulate finitely many rules using meet

s\t

s -

t\u

since -+ A (s\t)A...= s\ tis provable.



String rewriting systems inside FL,

We can reuse rules thanks to contraction

s&t S&t S&t
S O S S e e
t\u t\u | t\u

Hence we can simulate rewriting by placing those rules next to
every atomic symbol (letter).
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String rewriting systems inside FL,

We can reuse rules thanks to contraction

s\t
s € —>
t\u

s\t | s\t
s - [ -
t\u | t\u

s\t

[ s s\t

e

t\u

s\t

|t

9

t\u

Hence we can simulate rewriting by placing those rules next to

every atomic symbol (letter).
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String rewriting systems inside FL,

It is a bit more complicated. ..

a\.bc a\.bc a\.bc
S Y BN EEE S P e I B
b\d b\d | b\d

a\.bc
label e | s Blel £ ]

b\d b\d

It would work if the right sides were only atomic (=atomic rules).
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Simulation of a non-atomic rule by atomic rules

We produce a modification of the string rewriting system we
started with to fulfill the previous atomicity condition.

How do we represent the conditional part?
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Simulation of a non-atomic rule by atomic rules

We produce a modification of the string rewriting system we
started with to fulfill the previous atomicity condition.

Rule a = bc is simulated by atomic rules used in a right order

/!

[a] 2 =0,

L=y o]

How do we represent the conditional part?
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Conditional rewriting system in FL,

Rule a = b’ simulated correctly

‘ a=b\Vv? ‘ )

EREY AR Erarans

_>‘| ? | <" |

cf. (Lincoln et al. [1992],...,Chvalovsky [2015]).
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Conditional rewriting system in FL,

Rule a = b’ simulated correctly

H o a—:>b’\/_?) "

cf. (Lincoln et al. [1992],...,Chvalovsky [2015]).

Tests require another level of rewriting

L] @ L @i

where Pac-Man is a string rewriting system with only atomic rules.
In fact, it is a finite automaton (=recognizes a regular language).
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Conditional rewriting system in FL,

Join is idempotent

If we put all those little things together we obtain the whole
construction:

a string rewriting system ~~
~» an atomic conditional variant of it ~~
~» an encoding of atomic conditional systems in FL..
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Final remarks

> the completeness of construction is proved algebraically
> it is enough to have an implication, join, and meet

» an “algorithmic” deduction theorem follows from our result
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Thank you!
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