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Substructural logics

logics weaker than classical logic

* include
° Intuitionistic logic,
° relevance logics,
° linear logic without exponential,
° fuzzy logics,

O

* defined as extensions of Full Lambek calculus FL

* useful for reasoning, e.g., about natural language,
vagueness, resources, dynamic data structures, algebraic
varieties ...
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This talk

Structural rules

Rules admissibility

Display Logic Sequent Calculi

Residuated Lattices

Dedekind Mac Neille Completions

Hypersequent Calculi

Hilbert axioms

Algebraic Equations Residuation property

Cut -elimination

Standard Completeness
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This talk

PART | : (towards a) systematic proof theory for substructural logics
PART Il : an application of the introduced calculi
PART Ill : open problems and work in progress
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Why proof theory?

Non-classical logics are often introduced using Hilbert calculi

* The applicability/usefulness of these logics strongly
depends on the availability of analytic calculi.

(praedicatum inest subjecto)

Analytic calculi are
© useful for establishing various properties of logics
° key for developing automated reasoning methods.
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Why proof theory?

Non-classical logics are often introduced using Hilbert calculi

* The applicability/usefulness of these logics strongly
depends on the availability of analytic calculi.

(praedicatum inest subjecto)

Analytic calculi are
© useful for establishing various properties of logics
° key for developing automated reasoning methods.

* Favourite framework: Gentzen sequent calculus
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Sequent Calculus

Sequents
Ai,..., A, = By,...,Bn

Intuitively a sequent is understood as “the conjunction of
Aq,..., A, implies the disjunction of By ,...,B;,”
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Sequent Calculus

Sequents
Ai,..., A, = By

Intuitively a sequent is understood as the multiset {A4,..., A,}
Implies B,
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Sequent Calculus

Sequents
Ai,..., A, = By
Intuitively a sequent is understood as the multiset {A4,..., A,}
Implies B;
Axioms
Eg., A=A
Rules

* Logical (left and right)

* Structural
E.g. (contraction, exchange and weakening)

['A, A =11 , I''B,A=1I
a0 ©) T Apom

(e) e (w,0)

e Cut
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Sequent Calculus: the rule Cut

I'=A A A=1I
T A1 4

(+) corresponds to transitivity in algebras: if x < y and
y<z=—x <z

(+) key to prove completeness w.r.t. Hilbert system

A A— B

modus ponens B

(-) bad for proof search

Cut-elimination theorem

Each proof using Cut can be transformed into a proof without Cut.
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The system FLe

* FLe ~ commutative Lambek calculus
* FLe = intuitionistic logic without weakening and contraction
* FLe =~ intuitionistic Linear Logic without exponentials
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The system FLe

* FLe ~ commutative Lambek calculus
* FLe = intuitionistic logic without weakening and contraction
* FLe =~ intuitionistic Linear Logic without exponentials

Algebraic semantics:
A (bounded pointed) commutative residuated lattice (FLe algebra) is

P=(PAV,® —, 1,01, 1)

(P, A\, V) is a lattice with T greatest and | least
(P,®,1) is a commutative monoid.

Forany z,y,z e P,z Qy<z<—=y<x — 2
0c P.

> W e

Notation: We write a < binstead of a =a A b (a V b = a). |
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The system FLe

* FLe ~ commutative Lambek calculus
* FLe = intuitionistic logic without weakening and contraction
* FLe =~ intuitionistic Linear Logic without exponentials

Algebraic semantics:
A (bounded pointed) commutative residuated lattice (FLe algebra) is

P=(PAV,® —, 1,01, 1)

(P, A\, V) is a lattice with T greatest and | least
(P,®,1) is a commutative monoid.

Forany z,y,z e P,z Qy<z<—=y<x — 2
0c P.

> W e

FLe-algebras are varieties. |
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The systent'Le

A B,I' =11 o L[=A4 A=B .
A® B, T =11 A= AR B
I'=A B A=II ATl'= B -
TASBA=SI ! T=o4AS5B
ATl'=1 B, I'=1I , [I' = A; y
ivBr=u Y T=4va " 030
A, I' =11 I'=A I'=1HB
A TN T=4AB " T=T 7
' = I'= 11
r-o0% =1l Tront 1r=snl
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On the sequent calculid.e

* For any set AU {A} of formulas,
A I_FLe A Iff E[A] ‘:FLe €(A)

where ¢(—) is the equation corresponding to —.

* Theorem

Any sequent provable in FLe is provable without using
(Cut).
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.

Example:
GOdel logic is obtained by adding

* the Hilbert axiom (a — 3) V (8 — «) to intuitionistic logic
(FL + exchange, weakening and contraction), or

* prelinearity 1 < (x — y) V (y — x) to Heyting algebras
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.

Cut-elimination is not preserved when axioms are added

A sequent calculus without cut-elimination is like a car without an

engine (J-Y.Girard)
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Axioms vs Rules

Example

e Contraction: o — a ® «
* Weakening l: o — 1

* Weakeningr: 0 — «
They are equivalent, i.e.

l_FLe—I—(azciom)

AA T =11

AT 9

I'=11 ]
T A= 1 (W)

r
r :>:>A (w, 7)

|_FLe—|—(7“ule)
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Axioms vs Rules

Example
AA T =11 (0
* Contraction: o - a ® « AT =11 ¢
* Weakening l: o — 1 INA=1I *
I' =

* Weakeningr: 0 — « I'= A @)

They are equivalent, i.e.
l_FLe—i—(azm'om) — |_FLe—|—(Tule)

For which axioms can we do it?
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Order Theoretic Completions

* A completion of an algebra A is a complete algebra B (i.e.
it has arbitrary \/ and /\) such that A C B.

* Completions are not unique: filter/ideal extensions,
canonical extensions, Dedekind-MacNeille completions, ...
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Order Theoretic Completions

Dedekind Completion of Rationals

* Forany X C Q,

X" = {yeQ:Vee X<y}
XY = {yeQ:Vre Xy <uz}

° X isclosedif X = X"*
* (Q,+,) can be embedded into (C(Q), +, -) with

C(Q)={X CQ: Xisclosed}
Dedekind completion extends to various ordered algebras

(MacNeille).
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Closure under DM completion

Although the DM completion applies to all individual FLe

algebras, it may produce an FLe algebra that is not in a given
variety, containing the original one.

Hence a natural question Is:

* Given a variety of FLe-algebras, is it closed under DM
completion?

or equivalently

* Given an equation over commutative residuated lattices, Is
It preserved by DM completion?
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The two questions

* Given an equation over commutative residuated lattices, is
It preserved by DM completion?

* Given an Hilbert axiom over FLe, can it be transformed into
a rule that preserve cut-elimination?

Are they related?

... algebraic proof theory (AC, Galatos and Terui)
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From axioms/equations to rules: the ingredients

* Use of the invertible rules of the base calculus (FLe)

* Use of the Ackermann Lemma
An algebraic equation ¢t < u IS equivalent to a
guasiequation u < x —t < x, and also to
r <t=— x < u, where x Is a fresh variable not occurring

N ¢, u.
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From axioms/equations to rules: the ingredients

* Use of the invertible rules of the base calculus (FLe)

* Use of the Ackermann Lemma
An algebraic equation ¢t < u IS equivalent to a
guasiequation u < x —t < x, and also to
r <t=— x < u, where x Is a fresh variable not occurring

N ¢, u.

Example: = (z — y) — 2
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From axioms/equations to rules: the ingredients

* Use of the invertible rules of the base calculus (FLe)

* Use of the Ackermann Lemma
An algebraic equation ¢t < u IS equivalent to a
guasiequation u < x —t < x, and also to
r <t=— x < u, where x Is a fresh variable not occurring

N ¢, u.
Example: = (x — y) — 2z is equivalent to ((—, r) is invertible)

T — Y=z
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From axioms/equations to rules: the ingredients

* Use of the invertible rules of the base calculus (FLe)

* Use of the Ackermann Lemma
An algebraic equation ¢t < u IS equivalent to a
guasiequation u < x —t < x, and also to
r <t=— x < u, where x Is a fresh variable not occurring

N ¢, u.
Example: = (x — y) — 2 is equivalent to ((—, r) is invertible)
r—Y==z
By Ackermann Lemma (A new metavariable)

A=z — vy
A=z
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Classification
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Classification

The sets P,,, NV,, of formulas (equations) defined by:
Po, Ny := Atomic formulas
7Dn—l—l = Nn ‘ Pn—i—l X Pn—i—l ’ Pn—i—l V Pn—i—l ’ 1 | L

Nn—i—l L= Pn ‘ Pn_|_1 — Nn_|_1 ‘Nn—H /\Nn+1 ‘ 0 ’ T

P and N/

* Positive connectives 1, 1, ®, VV have invertible
left rules:

* Negative connectives T,0,A,— have invert-
Ible right rules:
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Classification

The sets P,,, NV,, of formulas (equations) defined by:

Po, No := Atomic formulas

T >< T Pri1 = No | Pri1 @ Prgr | Pyt V Py | 1] L
P> No Nn—l—l =P ’ PTH—l %NnﬂLl ’NTH—l /\Nn+1 ’ 0 | T

T >< T P and A/

Py N * Positive connectives 1, L, ®, V have invertible
T >< T left rules:

* Negative connectives T, 0, A, — have invertible
Po — Ny

right rules:
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Examples of axioms/equations

Class Axiom Name
N a—1,0— «a weakening
a—a® o contraction
a®a— expansion
®Ra"™” — Qa™ knotted axioms (n, m > 0)
—(a A\ ) weak contraction
Po aV q excluded middle
(a— B)V (8 — «a) prelinearity
Ps -V o weak excluded middle
—“(a®pP)V(aAB = a® f) (wnm)
Ny | (a—=8)—=8)—((8—a) —a) Lukasiewicz axiom
canonical formulas Bezhanishvili, Galatos, Spada
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Our preliminary results

Algorithm to transform:

A A * axioms up to the class N, into "good"
' ' structural rules in sequent calculus

73:3 /\:/3 * equations up to N5 into "good" quasiequations
712 ></\L t1 < up and..and tp, < Um = tmi1 < Umti
| X
P1 M
| X1
Py — Mo

(AC, N. Galatos and K. Terui). LICS 2008 and APAL
2012 |
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Our preliminary results

Algorithm to transform:
* axioms up to the class N, into "good"

Py structural rules in sequent calculus

N

x >< T * equations up to N5 into "good" quasiequations

P, Ny Moreover
M

T ><  analytic calculi iff DM completion

P1

| X

Po

°* In presence of weakening/integrality all ax-
ioms/equations up to N5 are tamed

(AC, N. Galatos and K. Terui). LICS 2008 and APAL
No 2012
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Expressive power of structural sequent rules

Consider e.qg.
(= B)V (B —= a) € P,y

Godel logic :=IL + (o — B) V (8 — «)
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Expressive power of structural sequent rules

Consider e.qg.
(= B)V (B —= a) € P,y

* Can we find equivalent good structural sequent rules?
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Expressive power of structural sequent rules

Consider e.qg.
(a—= B)V (8 —a) e P

* Can we find equivalent good structural sequent rules?

Theorem

Each good (i.e. analytic) structural sequent rule is equivalent to
an equation which is preserved by Dedekind MacNeille
completions in presence of integrality.

(AC, N. Galatos and K. Terui. APAL 2012)
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Expressive power of structural sequent rules

Consider e.qg.
(a—= B)V (8 —a) e P

* Can we find equivalent good structural sequent rules?

Theorem (Proof Theory)
Any structural rule is either derivable in Gentzen’s LJ or derives
every formula in LJ.

... it reminds

Theorem (Algebra) (Bezhanishvili & Harding 04)
BA is the only nontrivial proper subvariety of H.A closed under
DM completions.
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Beyond sequent calculus

* Many useful and interesting equations have no equivalent
structural sequent rules
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Beyond sequent calculus

* Many useful and interesting equations have no equivalent
structural sequent rules

* Many useful and interesting logics seem do not fit
comfortably into the sequent framework.

A large range of variants and extensions have been indeed
Introduced. E.q.

Hypersequent Calculi,
Display calculi,

Labelled Deductive Systems,
Nested Calculi,

Bunched Calculi,
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Hypersequent calculus

It is obtained embedding sequents into hypersequents

=104 ... T, =11,

where forall: =1,...n, I'; = II, Is a sequent.
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Hypersequent calculus

P=A AA=T
I'A =11 Cut A= A

Identity

I'=A B,A=1I AT =B

TASBASTH P T=45B

|
(Algebraic) Proof Theory for Substructural Logics and Applications — p.22/59



Hypersequent calculus

GI'=A G|A/A=11

o

GIT,A = 10 Cut a4 Tdentity
GI'=A G|B,A=1I : G|A,T = B -
Gr,LA-B,A=1 ' GIr=A—B

and adding suitable rules to manipulate the additional layer of
structure.

GII'=A|Il'= A

G
G|II'=A (ec)

G|II'=A

(ew)
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Structural rules: an example

GII,Y=A GII'YX=A
GITY=AT"Y = A

(Avron, Annals of Math and art. Intell. 1991)
Godel logic=IL + (a — B) V (6 — «)

(com)
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Structural rules: an example

GII,Y=A GII'YX=A

GITY=AT"Y = A (com)
(Avron, Annals of Math and art. Intell. 1991)
Godel logic=IL + (a = B) V(6 — «)
=0 o=«
a= [ =« o
a= [ :>ﬁ%oz(_>’r)
(—r)

=a— [ = 06—«

=a—0| =(a—=>p0)V((—a)

= (= f)V(E=a)| = (a—=[)V(E—a)
= (a = B) V(6= a)

(\/iar)

(\/i’r)

(EC)
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Climbing up the hierarchy

Algorithm to transform:

* axioms up to the class P} into "good"

A A structural rules in hypersequent calculus

: : ° equations up to P/ into "good" analytic clauses
Ps N3

T >< T t1 < wup and..and t,, < Uy, = ta1 < U1 OF..0T By < Uy,
Po No
P1 M
Po — Mo
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Climbing up the hierarchy

Algorithm to transform:

* axioms up to the class P} into "good"
structural rules in hypersequent calculus

753 NS ° equations up to P/ into "good" analytic clauses

I >< I Moreover

P, N, ° equations up to P; preserved by DM
T >< I completions when applied to s.i. algebras

* analytic calculi iff HyperDM completion

P1 M
T >< T * axioms/equations up to P3 are tamed in pres-

ence of integrality

Po —— No (AC, N. Galatos and K. Terui). Algebra Universalis,

2011, and Submitted 2014. |

|
(Algebraic) Proof Theory for Substructural Logics and Applications — p.24/59



From axioms to rules: an example

(@ = B)V(B—a)
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From axioms to rules: an example

(@ = B)V(B—a)

IS equivalent to

Gl=a—>08|=0—a
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From axioms to rules: an example

(@ = B)V(B—a)

IS equivalent to

Gl=a—>08|=0—a

and to

Gla=p|f=a
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From axioms to rules: an example

(@ = B)V(B—a)

Gla= 8=«

by Ackermann Lemma: Any sequent o' = (' is equivalent to

FiO/ B,7F:>A
I'=p3 andalsoto o' .I'= A

(for I', A fresh meta-variables)
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From axioms to rules: an example

(@ = B)V(B—a)

Gla= 8=«

by the Lemma: Any sequent o = 3’ is equivalent to

FiO/ B,7F:>A
I'=p3 andalsoto o' .I'= A

(for I', A fresh meta-variables) is equivalent to

G|T'=«a
G|l I'=08|8=a
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From axioms to rules: an example

(@ = B)V(B—a)

Gla= 8=«

IS equivalent to

GlIl'=sa GII'=p8 GIE=>A G|Y a= A
GII,Y=A|T"Y = A

|
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From axioms to rules: an example

(@ = B)V(B—a)

Gla= 8=«

Gll'==a GII'=p8 G|E,=A GIY a=A4A
G|, 2= AT"Y = A

IS equivalent to

GIILY=A" GII"X=A
GII'Y=A|T",Y = A

(com)

(Avron, Annals of Math and Art. Intell. 1991)
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To sum up

* systematic generation of good (hyper)sequent rules
equivalent to axioms up to P’ (Ps in presence of
weakening)

* |dentification/introduction of appropriate completions that
work for equations up to the level P; (Ps in presence of
weakening)

http://www.logic.at/staff/lara/tinc/webaxiomcalc/

AxiomCalc Web Interface

Use AxiomCalc

Axiom:
[ta->b)v(b->a)
 Check for Standard Completeness | Submit |

|
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This talk

PART | : (towards a) systematic proof theory for substructural logics
PART Il : an application of the introduced calculi
PART Ill : open problems and work in progress
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Standard Completeness

Completeness of axiomatic systems with respect to algebras
whose lattice reduct is the real unit interval [0, 1].
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Standard Completeness

Completeness of axiomatic systems with respect to algebras
whose lattice reduct is the real unit interval [0, 1].

(Hajek 1998) Formalizations of Fuzzy Logic

|||||| Lol
36 37 38 3940 41

Temperature
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Uninorms and t-norms

* A uninorm is a function * : [0, 1]*> — [0, 1] satisfying,
Va,y,z € [0,1]:
° zx*xy =y *z (Commutativity),
°© (zxy)*2z=uxx*(yx*z) (Associativity),
° x <yimplies z x z < y * z (Monotonicity),
° ee€[0,1] exx =z (Identity).
The residuum is a function =,: [0, 1]* — [0, 1] where
r=,y=max{z|x*x2z <y}
* At-normis a uninorm in which e = 1.

|
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Uninorm and t-norm based logics

We fix a propositional language with connectives A, V, ®, — and
constants L, T,e, f.
Evaluation v: Var — |0,1] extend inductively over all formulas:

v(A— B) =v(A) =, v(B) v(AANB)=v(A)*xv(B)
v(l)=0 o(T)=1 v(f),v(e) € ]0,1]

|
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Uninorm and t-norm based logics

We fix a propositional language with connectives A, V, ®, — and
constants L, T,e, f.
Evaluation v: Var — [0, 1]
* GOdel logic
V(AN B) = min{v(A),v(B)}
v(AV B) = max{v(A),v(B)}
v(A— B) =1Iifv(A) <wv(B),and v(B) otherwise
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Uninorm and t-norm based logics

We fix a propositional language with connectives A, VvV, ®, — and
constants L, T,e, f.
Evaluation v: Var — |0, 1]
* GOdel logic
V(AN B) = min{v(A),v(B)}
v(AV B) = max{v(A),v(B)}
v(A— B) =1Iifv(A) <wv(B),and v(B) otherwise
* UL Uninorm logic (Metcalfe, Montagna 2007)
v(A® B) =v(A) xv(B), x* leftcontinuous uninorm
v(A — B)=v(A) —,v(B) —, residuum of x
* MTL Monoidal T-norm logic (Godo, Esteva 2001)
v(A® B) =v(A) *v(B), = leftcontinuous t-norm
v(A— B) =v(A) —».v(B) —, residuum of x

|
(Algebraic) Proof Theory for Substructural Logics and Applications — p.30/59



Uninorm or t-norm -based logics ||

Often described by adding or removing axioms to already known
logics.
Example

UL = FLe with ((a« — 8) Ae) V ((B — «) A e) (prelinearity)

MTL = UL with o« — e and f — o (weakening/integrality)

G0odel logic = MTL with contraction o — a ® «

UML = UL with contraction a« — o ® o and mingle
xR o —

WNM = MTL with = (a® 8) V (e A B — a® )
BL = MTL with divisibility (o A 8) — (o ® (o — B))
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Standard Completeness?

Question

Given a logic £ (expressed Hilbert style) obtained by

extending MTL or UL with
* AV —A (excluded middle)?
e A"l — A" (n-contraction)?
°* 2(A®B)V(AANB — A® B) (weak nilpotent minimum)?

Is £ standard complete? (is it a formalization of Fuzzy Logic?)

usually case-by-case answer
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Algebraic Semantics

* A UL-algebrais an FLe algebra
P=(PAV,® —1)
satisfying
I<((z—=y) A1) V(((y—>z)Al) forallzx,yec P

* An MTL-algebra is an integral UL-algebra (= < 1, for all
x € P)

|
(Algebraic) Proof Theory for Substructural Logics and Applications — p.33/59



Algebraic Semantics

* A UL-algebrais an FLe algebra
P=(PAV,® —1)
satisfying
I<((z—=y) A1) V(((y—>z)Al) forallzx,yec P

* An MTL-algebra is an integral UL-algebra (= < 1, for all
x € P)
Useful properties:
* UL and MTL- algebras are complete w.r.t. chains
* Lemma: For every chain A in FLe

EAl<(tAD)V(uAl) iff Eal<torl<u

|
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Standard Completeness — algebraic approach

Given a logic £ extending UL with axiom «:
1. ldentify the algebraic semantics of £ (L£-algebras)
2. Show completeness of £ w.r.t. linear, countable £-algebras

3. Find an embedding of linear countable £-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])

|
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Standard Completeness — algebraic approach

Given a logic £ extending UL with axiom «:
1. ldentify the algebraic semantics of £ (L£-algebras)

2. Show completeness of £ w.r.t. linear, countable £-algebras
UL + « <= UL-chains satisfying 1 < «

3. Find an embedding of linear countable £-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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Standard Completeness — algebraic approach

Given a logic £ extending UL with axiom «:
1. ldentify the algebraic semantics of £ (L£-algebras)
2. Show completeness of £ w.r.t. linear, countable £-algebras

3. Find an embedding of linear countable £-algebras into

linear dense countable L-algebras
l.e. whenever x £ y, there exists z such that x £ z and

z Ly

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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Standard Completeness — algebraic approach

Given a logic £ extending UL with axiom «:
1. ldentify the algebraic semantics of £ (L£-algebras)
2. Show completeness of £ w.r.t. linear, countable £-algebras

3. Find an embedding of linear countable £-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
* DM completions of a dense U L-chain is still a dense
U L-chain (= it is preserved by DM-completions).
* Prove that additional equations are preserved
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Standard Completeness — algebraic approach

Given a logic £ extending UL with axiom «:
1. ldentify the algebraic semantics of £ (L£-algebras)
2. Show completeness of £ w.r.t. linear, countable £-algebras

3. Find an embedding of linear countable £-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])

* Step 3 (rational completeness): problematic (mainly ad hoc
solutions)
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Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) £ + (density) is rational
complete:

(P —=>p)Vp—>V)VE
(® — V) V=

(density)

where p & &, U, =
Consider £ + (density)

(Step 1) Show that density produces no new theorems (Rational
completeness)

(Step 2) Dedekind-MacNellle style completion
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Density vs Cut In hypersequent calculi

(P —=p)V(p—>V)VE
(& — W) V=

(density)

G|IIl=plp=A
G|II'=A

where p Is does not occur in the conclusion.

(density)

GII'=A G|A=A
G|II'=A

(cut)
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Density elimination

* Similar to cut-elimination
* Proof by induction on the length of derivations
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Density elimination

* Similar to cut-elimination
* Proof by induction on the length of derivations

(-, Metcalfe TCS 2008) Given a density-free derivation, ending In

- d’
G|II'=plp=A
G‘F N A (density)
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Density elimination

(-, Metcalfe TCS 2008) Given a density-free derivation, ending in

- d
G|lI'=plp=A
G|I'= A

(density)

- d
GII'=A|l'= A
G|I'= A
* Asymmetric substitution: p is replaced

° With A when occuring on the right
° With I when occuring on the left

(EC)

|
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Density elimination: problem witlicom)

pD=DP H:.>\IJ

(com)
M=plp=V

- d
G\F:H;?\péA
G|II'=A

(D)

* p=-paxiom
e I'= A not an axiom

Fr=A =1
I=AT=V

"

(com)

G\F:>A]F:>A
G|II'=A

(EC)
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Density elimination: problem witlicom)

D<A s o

M= A|[=U
. T
G\F$b|p:>A G]F:>A]F:>A
G|II'=A (D) G|II'= A o

* p=-paxiom
e I'= A not an axiom
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agata
Pencil

agata
Pencil

agata
Pencil


Solution (with weakening)

(AC, Metcalfe 2008)

M= U

=
P=r (com)
I=plp=V
- d

G\F:>}.9|p:>A
G|T'= A

(D)

T :
G|I'=y|pr=A 1=V

(cut)
[MI=A|T=UV

"
G|F:>A\F:>A
G|II'=A

(EC)
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agata
Pencil


Step 2: general conditions for density elimination

* In presence of weakening/integrality
Theorem (AC, Baldi TCS to appear)
The hypersequent calculus for MT'L + a large class of
rules equivalent to axioms within the class P5; (convergent
rules) admits density elimination

l.e. rules equivalent to axioms within the class Ps; and whose
premises do not mix "too much" the conclusion
Example :

G‘FQ,Fl,Al = I G’Fl,rg,Al = I
G‘FbrlaAl :>H1 G’F27F37A1 :>H1

G’F27F3:> ‘Fl,Al #Hl

(wnm)
Axiom: ~(a® B) V(e A — a® B)

|
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Step 2: general conditions for density elimination

* In presence of weakening/integrality
Theorem (AC, Baldi TCS to appear)
The hypersequent calculus for MT'L + a large class of
rules equivalent to axioms within the class P5; (convergent
rules) admits density elimination

* Without weakening/integrality
Theorem (AC, Baldi ISMVL 2015)
The hypersequent calculus for UL + nonlinear rules
(and/or mingle) admits density elimination

Nonlinear N2
axioms
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Recall: Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) Given a logic L:

(Step 1) | Show that density produces no new theorems

(Step 2) Dedekind-MacNeille style completion
°© DM completions of a dense U L-chain is still a dense
U L-chain (=it is preserved by DM-completions).
° This holds for all P5 equations (Ps in presence of
weakening)
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Example

Known Logics
* MTL+—(a-B)V ((aAB)—= (a-B))
° MTL + —~aV «
°* MTL+ o™ ! = o
e UL+a™ ! = a”

New Fuzzy Logics
°* MTL+—(a-B)"V ((aApB)" ! — (a-pB)?),foralln >1
* UL+ ~aV -«

e UL+a™m™m —= o™
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This talk

PART | : (towards a) systematic proof theory for substructural logics
PART Il : an application of the introduced calculi
PART Ill : open problems
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Open problems |

A A

: : Uniform treatment of axioms in A3 and
Ps N3 behond

T >< T Remark on MNj3: it contains
Po No

(a) equations that are not preserved under

x >< T completions.

P1 N1 (b) all (axiomatizable) intermediate logics
T >< I (via canonical formulas).
73() - NO
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Negative results on (hyper)sequent rules

) . Sequent structural rules: only equations

: * closed under DM completion, with integrality
7>:3 j\:/g * that hold in Heyting algebras (IL)

T >< I Hypersequent structural rules: only equations

P, No * closed under HyperDM completions, with

T >< I integrality

P, N, that hold in Heyting algebras generated by the
3-element algebras or derive 1 < z VvV —z" In
T >< T FLew

Po —— No (AC, N. Galatos and K. Terui. Submitted 2014)

|
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Open problems |

A A Uniform treatment of axioms in N3 and
' § behond
Ps3 Na

T >< I Partial answers:

* generation of logical rules
Po No . .
o Lukasiewicz equation (C N3)

X - b aomicpy
731 Nl O naaa

T >< T * adopting formalisms more complex than
Py — Ny the (hyper)sequent calculus
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From axioms to rules: general idea

+ Hilbert axioms

Base Logic Semantic conditions

: ! ! Algorithm

Cut-free calculus
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Display Calculus

Gentzen Sequent: A4,...,A, = B1,...,B,
(AIAN...NA, = B1V...VB,,)
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Display Calculus

Gentzen Sequent: A4,...,A, = B1,...,B,
(AIAN...NA, = B1V...VB,,)

Belnap’s idea ('82) : look at = as a deducibility relation between
finite possible complex data (structures)
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Display Calculus

Gentzen Sequent: A4,...,A, = B1,...,B,
(AIAN...NA, = B1V...VB,,)

Belnap’s idea ('82) : look at = as a deducibility relation between
finite possible complex data (structures)

Display Sequent
X = Y, where X,Y are structures which are built from formulae
using structural connectives.
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Display Calculus

Gentzen Sequent: A4,...,A, = B1,...,B,
(AIAN...NA, = B1V...VB,,)

Belnap’s idea ('82) : look at = as a deducibility relation between
finite possible complex data (structures)

Display Sequent
X = Y, where X,Y are structures which are built from formulae
using structural connectives.

Display property: given a display sequent X = Y and any
occurrence of a substructure Z in the sequent, that
occurrence can be displayed as

Z=UoraslU =7/

using structural rules (display rules).
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Cut elimination in display calculus

Enjoyed by all calculi satisfying some syntactic conditions (C1 —
C8)
* Subformula property (C1)

* For structural rules: each structure variable letter (i) is
unique in conclusion (ii) has same polarity in each
occurrence and (iii) is closed under arbitrary substitution.

* For logical rules: a cut in which the cut formula is principal
In both premises, can be replaced by smaller cuts (C8)

Only C8 is non-trivial to verify (C8 not applicable to structural

rules)
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Axioms vs rules in display calculus

* Given any suitable display calculus C for a logic £

* Classify the formulas of £ according to the invertible rules
of C

* Apply the algorithm using the same ingredients

* the Iinvertible rules of C
e Ackermann’s lemma

S S AEM S S MEA
01 09

XFA? T xrFm P2 AF X MEX
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Axioms vs rules in display calculus

* Given any suitable display calculus C for a logic £

* Classify the formulas of £ according to the invertible rules
of C

* Apply the algorithm using the same ingredients

Our results

Theorem (AC, Ramanayake 2013)
Let C' be an amenable calculus for £ and A be an |12 acyclic
axiom. There is an analytic rule extension for £ + A.

Theorem (AC, Ramanayake Submitted 2014)

Let C be an amenable and well-behaved calculus for £ and
let £’ be an axiomatic extension of £. Then there is an
analytic rule extension of C for £’ iff £ is an extension of £
by 12 acyclic axioms.
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Suitable display calculi?

Amenable calculi satisfy the following conditions:

1. The structural connectives are interpretable as connective
of the logic

2. There are binary connectives Vv and A that are
commutative and associative and Moreover
(ay AFYand BFY implies AV BEFY
(b)y X F Aimplies X - AV B for any formula B.
(@, XFAand X+ Bimplies X - AAB
(b)), AFY implies AN BFY forany formula B.

3. There are logical constants ¢,, ¢, such that the following
sequents are derivable for arbitrary structures X and Y.

camY X F cg

|
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Algorithm for display calculi

The procedure to transform axioms into structural rules for
display calculi is language and logic independent. It works for

* all display calculi satisfying purely syntactic conditions

* for a large class of axioms depending only on the invertible
rules of the base calculus

An instantiation: back to substructural logics .....
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The logic BiFLe

|
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The logic BiFLe

Algebraic Semantics

A structure A = (A, V,\,®,—,1,®, —<,0) is a commutative
Bi-Lambek algebra BIFL. if:

1. (A,V,A)Is alattice
2. (a) (A,®,1) is a commutative monoid
(b) (A, &,0) is a commutative monoid

3. Residuation properties:
@ry<ziffr<y—ziffy<axz— z foreveryzr,y,ze€ A
D) z<xdyiff z<ax<yliff z—<y <z, foreveryz,y,z € A.

|
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Residuation property and display rules

From the residuation properties (for every x,y, z € A)

) > >
N A e
T Q y<z = <Y —z & y<ax—z
z<xT DY < z—<x <y & z—<y<x

N~ N~ N~
; < <

to residuation rules (display rules)

X.Y+FZ ZF XY
XFY >Z Z<XFY
YFX>Z Z<YFX
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Residuation property and display rules

to residuation rules (display rules)

X, Y+HZ /XY
XFY >Z7 /< XFEFY
YFEX >Z7 /<YFX

e Example: display the occurrence of rin (p < ¢;r), st z:

(p<q)<(s>z)Fr
p<qbFmr;(s>2)

pEagr;(s> 2)
p<(gr)kFs>z

(p<gr),st 2
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Display calculus rules

e Rewrite rules:

LoF M
ABEY XEAB —
AoBrY % XFAaB
L M
A<BFY X+-A>B LEM2
< > X
i—<Bry <! a8 LM
LF o M

|
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Display calculus rules

e Rewrite rules:

L@+ M
ABEY X+EAB ——
AQBrYy © XFAaB

O LF M

A<BFY X+A>B LEMo
< > X

i—<Brvy < Xrasg LEM

LF ®: M

e Structural rules:

X,Y+Z XtY,Z
YXFZ °© XFZY
X.(Y.2)FU XU VW
(X,Y),ZFU &  XFU, (VW)
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Display calculus rules

e Rewrite rules:

L.®+M
A BFY | X+ A B . =
AQBFY © XFASB

O, L+M
A<BFY XFA>B LMo
< > \
A<Bry ' Xr4doB LM
LF®: M

e Obtain missing decoding rules:

XtA YEB g AFX BRY
X,Y+-A®B AP BF XY
XFA BFY __, X-rA BrRY

X<YFHA—<B A—-BFX>Y
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From axioms to rules for substructural logics

.. Let us consider intermediate logics
* Seguent Calculus: class N5
* Hyperseqguent Calculus: class P3
W.r.1.

7Dn—|—1 = Nn ‘ 73n—|—1 A 73n—|—1 ‘ 73n—l—l V 7Dn—l—l | L

Nn—|—1 = an, ‘ 7Dfn—l—l %Nn—l—l ‘Nn—l—l /\Nn—l—l ‘ 1
With display calculus we capture N (D P3), where
Pd—l—l = Nd ‘ Pg—kl /\ —|—1 | Pg—l—l \% g—|—1 | 1

Nn—l—l - Pg ’ P’rczi—l—l n—l—l ‘Nfrfbl—l-l /\ n—l—l |N£l+1 \% g—l—l ‘ T
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Our algorithm: an example

F(a— B)V (68— «a)
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Our algorithm: an example

F(a— B)V (68— «a)

XFAB vr)
XFAVB ‘" IFa— 6,8 a
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Our algorithm: an example

F(a— B)V (68— «a)

I-Fa—(,8—«
by display rules I < (a—p)F 3 — «
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Our algorithm: an example

F(a— B)V (68— «a)

I-Fa—(,8—«
by display rules I < (a—p)F 3 — «

XFA>B , |
(= 7)

XFA— B I<(a—=B)FB>a
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Our algorithm: an example

F(a— B)V (68— «a)

I-Fa—(,8—«
by display rules I < (a—p)F 3 — «

I<(a—=B)FB>a

and I<(f>a)Fa>p
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Our algorithm: an example

a2 B)V(B—=a)

I-Fa—(,8—«
by display rules I < (a— )-8 — «

I<(a—=B)FB>a
and I<(f>a)Fa>p

b= M
I <(B>a),akFp I <(B>a),aFM
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Our algorithm: an example

F(a— B)V (68— «a)

I-Fa—(,8—«
by display rules I < (a— )-8 — «

I<(a—=B)FB>a

and I<(f>a)Fa>p

M
I <(B>a),akFp I <(B>a),aFM
Lo BFM ZFB oV LYV Z-M

I-(L>M),(Z>V) I-(L>M),(Z>V)
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Further open problems (a selection)

* First-order, modal logics, ...

* "Applications”:

E.gQ.

O

new semantic foundations (e.g. non-deterministic
matrices) (AC, O. Lahav, A. Zamansky)

automated deduction procedures (AC, E. Pimentel)
new algebraic completions

admissibility of other rules (e.g. standard
completeness)
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