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Substructural logics

logics weaker than classical logic
• include

◦ intuitionistic logic,
◦ relevance logics,
◦ linear logic without exponential,
◦ fuzzy logics,
◦ ...

• defined as extensions of Full Lambek calculus FL
• useful for reasoning, e.g., about natural language,

vagueness, resources, dynamic data structures, algebraic
varieties ...
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This talk

Residuated Lattices

Hypersequent Calculi

Standard Completeness

Sequent CalculiDisplay Logic

Algebraic Equations

Dedekind Mac Neille Completions

Rules admissibility

Residuation property

Hilbert axioms

Cut -elimination

Structural rules
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This talk

PART I : (towards a) systematic proof theory for substructural logics

PART II : an application of the introduced calculi

PART III : open problems and work in progress
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Why proof theory?

Non-classical logics are often introduced using Hilbert calculi
• The applicability/usefulness of these logics strongly

depends on the availability of analytic calculi.

(praedicatum inest subjecto)

Analytic calculi are
◦ useful for establishing various properties of logics
◦ key for developing automated reasoning methods.
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Why proof theory?

Non-classical logics are often introduced using Hilbert calculi
• The applicability/usefulness of these logics strongly

depends on the availability of analytic calculi.

(praedicatum inest subjecto)

Analytic calculi are
◦ useful for establishing various properties of logics
◦ key for developing automated reasoning methods.

• Favourite framework: Gentzen sequent calculus
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Sequent Calculus

Sequents
A1, . . . , An ⇒ B1, . . . , Bm

Intuitively a sequent is understood as “the conjunction of
A1, . . . , An implies the disjunction of B1 , . . . , Bm”
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Sequent Calculus

Sequents
A1, . . . , An ⇒ B1

Intuitively a sequent is understood as the multiset {A1, . . . , An}
implies B1
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Sequent Calculus

Sequents
A1, . . . , An ⇒ B1

Intuitively a sequent is understood as the multiset {A1, . . . , An}
implies B1

Axioms
E.g., A ⇒ A

Rules
• Logical (left and right)
• Structural

E.g. (contraction, exchange and weakening)

Γ, A,A ⇒ Π

Γ, A ⇒ Π
(c, l)

Γ, B,A ⇒ Π

Γ, A,B ⇒ Π
(e, l) Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

• Cut
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Sequent Calculus: the rule Cut

Γ ⇒ A A,∆ ⇒ Π

Γ,∆ ⇒ Π
Cut

(+) corresponds to transitivity in algebras: if x ≤ y and
y ≤ z =⇒ x ≤ z

(+) key to prove completeness w.r.t. Hilbert system

modus ponens
A A → B

B

(-) bad for proof search

Cut-elimination theorem

Each proof using Cut can be transformed into a proof without Cut.
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The system FLe

• FLe ≈ commutative Lambek calculus
• FLe ≈ intuitionistic logic without weakening and contraction
• FLe ≈ intuitionistic Linear Logic without exponentials
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The system FLe

• FLe ≈ commutative Lambek calculus
• FLe ≈ intuitionistic logic without weakening and contraction
• FLe ≈ intuitionistic Linear Logic without exponentials

Algebraic semantics:
A (bounded pointed) commutative residuated lattice (FLe algebra) is

P = 〈P,∧,∨,⊗,→,⊤,0,1,⊥〉

1. 〈P,∧,∨〉 is a lattice with ⊤ greatest and ⊥ least

2. 〈P,⊗,1〉 is a commutative monoid.

3. For any x, y, z ∈ P , x⊗ y ≤ z ⇐⇒ y ≤ x → z

4. 0 ∈ P .

Notation: We write a ≤ b instead of a = a ∧ b (a ∨ b = a).
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The system FLe

• FLe ≈ commutative Lambek calculus
• FLe ≈ intuitionistic logic without weakening and contraction
• FLe ≈ intuitionistic Linear Logic without exponentials

Algebraic semantics:
A (bounded pointed) commutative residuated lattice (FLe algebra) is

P = 〈P,∧,∨,⊗,→,⊤,0,1,⊥〉

1. 〈P,∧,∨〉 is a lattice with ⊤ greatest and ⊥ least

2. 〈P,⊗,1〉 is a commutative monoid.

3. For any x, y, z ∈ P , x⊗ y ≤ z ⇐⇒ y ≤ x → z

4. 0 ∈ P .

FLe-algebras are varieties.
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The systemFLe

A,B,Γ ⇒ Π
A⊗ B,Γ ⇒ Π

⊗l
Γ ⇒ A ∆ ⇒ B
Γ,∆ ⇒ A⊗ B

⊗r

Γ ⇒ A B,∆ ⇒ Π
Γ, A → B,∆ ⇒ Π

→ l
A,Γ ⇒ B

Γ ⇒ A → B
→ r

A,Γ ⇒ Π B,Γ ⇒ Π
A ∨ B,Γ ⇒ Π

∨l
Γ ⇒ Ai

Γ ⇒ A1 ∨ A2
∨r

0 ⇒ 0l

Ai,Γ ⇒ Π
A1 ∧ A2,Γ ⇒ Π

∧l
Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧ B
∧r

Γ ⇒ ⊤
⊤r

Γ ⇒
Γ ⇒ 0

0r
⇒ 1

1r ⊥,Γ ⇒ Π
⊥l

Γ ⇒ Π
1,Γ ⇒ Π

1l
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On the sequent calculusFLe

• For any set A ∪ {A} of formulas,

A ⊢FLe A iff ε[A] |=FLe ε(A)

where ε(−) is the equation corresponding to −.

• Theorem
Any sequent provable in FLe is provable without using
(Cut).
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.

Example:
Gödel logic is obtained by adding

• the Hilbert axiom (α → β) ∨ (β → α) to intuitionistic logic
(FL + exchange, weakening and contraction), or

• prelinearity 1 ≤ (x → y) ∨ (y → x) to Heyting algebras
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Commutative substructural logics

Are defined by adding equations to FLe-algebras or Hilbert
axioms to the sequent calculus FLe.

Cut-elimination is not preserved when axioms are added

A sequent calculus without cut-elimination is like a car without an

engine (J-Y.Girard)
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Axioms vs Rules

Example

• Contraction: α → α⊗ α

A,A,Γ ⇒ Π

A,Γ ⇒ Π
(c)

• Weakening l: α → 1
Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

• Weakening r: 0 → α
Γ ⇒

Γ ⇒ A
(w, r)

They are equivalent, i.e.

⊢FLe+(axiom) = ⊢FLe+(rule)
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Axioms vs Rules

Example

• Contraction: α → α⊗ α

A,A,Γ ⇒ Π

A,Γ ⇒ Π
(c)

• Weakening l: α → 1
Γ ⇒ Π

Γ, A ⇒ Π
(w, l)

• Weakening r: 0 → α
Γ ⇒

Γ ⇒ A
(w, r)

They are equivalent, i.e.

⊢FLe+(axiom) = ⊢FLe+(rule)

For which axioms can we do it?
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Order Theoretic Completions

• A completion of an algebra A is a complete algebra B (i.e.
it has arbitrary

∨
and

∧
) such that A ⊆ B.

• Completions are not unique: filter/ideal extensions,
canonical extensions, Dedekind-MacNeille completions, ...
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Order Theoretic Completions

Dedekind Completion of Rationals

• For any X ⊆ Q,

X⊲ = {y ∈ Q : ∀x ∈ X.x ≤ y}

X⊳ = {y ∈ Q : ∀x ∈ X.y ≤ x}

• X is closed if X = X⊲⊳

• (Q,+, ·) can be embedded into (C(Q),+, ·) with

C(Q) = {X ⊆ Q : X is closed}

Dedekind completion extends to various ordered algebras

(MacNeille).
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Closure under DM completion

Although the DM completion applies to all individual FLe
algebras, it may produce an FLe algebra that is not in a given
variety, containing the original one.

Hence a natural question is:
• Given a variety of FLe-algebras, is it closed under DM

completion?

or equivalently
• Given an equation over commutative residuated lattices, is

it preserved by DM completion?
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The two questions

• Given an equation over commutative residuated lattices, is
it preserved by DM completion?

• Given an Hilbert axiom over FLe, can it be transformed into
a rule that preserve cut-elimination?

Are they related?

... algebraic proof theory (AC, Galatos and Terui)
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From axioms/equations to rules: the ingredients

• Use of the invertible rules of the base calculus (FLe)
• Use of the Ackermann Lemma

An algebraic equation t ≤ u is equivalent to a
quasiequation u ≤ x =⇒ t ≤ x, and also to
x ≤ t =⇒ x ≤ u, where x is a fresh variable not occurring
in t, u.
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From axioms/equations to rules: the ingredients

• Use of the invertible rules of the base calculus (FLe)
• Use of the Ackermann Lemma

An algebraic equation t ≤ u is equivalent to a
quasiequation u ≤ x =⇒ t ≤ x, and also to
x ≤ t =⇒ x ≤ u, where x is a fresh variable not occurring
in t, u.

Example: ⇒ (x → y) → z
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From axioms/equations to rules: the ingredients

• Use of the invertible rules of the base calculus (FLe)
• Use of the Ackermann Lemma

An algebraic equation t ≤ u is equivalent to a
quasiequation u ≤ x =⇒ t ≤ x, and also to
x ≤ t =⇒ x ≤ u, where x is a fresh variable not occurring
in t, u.

Example: ⇒ (x → y) → z is equivalent to ((→, r) is invertible)

x → y ⇒ z
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From axioms/equations to rules: the ingredients

• Use of the invertible rules of the base calculus (FLe)
• Use of the Ackermann Lemma

An algebraic equation t ≤ u is equivalent to a
quasiequation u ≤ x =⇒ t ≤ x, and also to
x ≤ t =⇒ x ≤ u, where x is a fresh variable not occurring
in t, u.

Example: ⇒ (x → y) → z is equivalent to ((→, r) is invertible)

x → y ⇒ z

By Ackermann Lemma (A new metavariable)

A ⇒ x → y

A ⇒ z
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Classification
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Classification

The sets Pn,Nn of formulas (equations) defined by:

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊗ Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0 | ⊤

P and N

• Positive connectives 1,⊥,⊗,∨ have invertible
left rules:

• Negative connectives ⊤,0,∧,→ have invert-
ible right rules:
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Classification

P3 N3

P2 N2
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The sets Pn,Nn of formulas (equations) defined by:

P0, N0 := Atomic formulas

Pn+1 := Nn | Pn+1 ⊗ Pn+1 | Pn+1 ∨ Pn+1 | 1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧ Nn+1 | 0 | ⊤

P and N

• Positive connectives 1,⊥,⊗,∨ have invertible

left rules:

• Negative connectives ⊤,0,∧,→ have invertible

right rules:
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Examples of axioms/equations

Class Axiom Name

N2 α → 1, 0 → α weakening

α → α⊗ α contraction

α⊗ α → α expansion

⊗αn → ⊗αm knotted axioms (n,m ≥ 0)

¬(α ∧ ¬α) weak contraction

P2 α ∨ ¬α excluded middle

(α → β) ∨ (β → α) prelinearity

P3 ¬α ∨ ¬¬α weak excluded middle

¬(α⊗ β) ∨ (α ∧ β → α⊗ β) (wnm)

N3 ((α → β) → β) → ((β → α) → α) Lukasiewicz axiom

canonical formulas Bezhanishvili, Galatos, Spada
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Our preliminary results

P3 N3

P2 N2

P1 N1
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Algorithm to transform:

• axioms up to the class N2 into "good"

structural rules in sequent calculus

• equations up to N2 into "good" quasiequations

t1 ≤ u1 and..and tm ≤ um =⇒ tm+1 ≤ um+1

(AC, N. Galatos and K. Terui). LICS 2008 and APAL

2012
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Our preliminary results

P3 N3

P2 N2

P1 N1
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Algorithm to transform:

• axioms up to the class N2 into "good"

structural rules in sequent calculus

• equations up to N2 into "good" quasiequations

Moreover

• analytic calculi iff DM completion

• in presence of weakening/integrality all ax-

ioms/equations up to N2 are tamed

(AC, N. Galatos and K. Terui). LICS 2008 and APAL

2012
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Expressive power of structural sequent rules

Consider e.g.
(α → β) ∨ (β → α) ∈ P2

Gödel logic := IL + (α → β) ∨ (β → α)
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Expressive power of structural sequent rules

Consider e.g.
(α → β) ∨ (β → α) ∈ P2

• Can we find equivalent good structural sequent rules?
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Expressive power of structural sequent rules

Consider e.g.
(α → β) ∨ (β → α) ∈ P2

• Can we find equivalent good structural sequent rules?

Theorem
Each good (i.e. analytic) structural sequent rule is equivalent to
an equation which is preserved by Dedekind MacNeille
completions in presence of integrality.

(AC, N. Galatos and K. Terui. APAL 2012)
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Expressive power of structural sequent rules

Consider e.g.
(α → β) ∨ (β → α) ∈ P2

• Can we find equivalent good structural sequent rules?

Theorem (Proof Theory)
Any structural rule is either derivable in Gentzen’s LJ or derives
every formula in LJ.

... it reminds

Theorem (Algebra) (Bezhanishvili & Harding 04)
BA is the only nontrivial proper subvariety of HA closed under
DM completions.
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Beyond sequent calculus

• Many useful and interesting equations have no equivalent
structural sequent rules
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Beyond sequent calculus

• Many useful and interesting equations have no equivalent
structural sequent rules

• Many useful and interesting logics seem do not fit
comfortably into the sequent framework.

A large range of variants and extensions have been indeed
introduced. E.g.

Hypersequent Calculi,

Display calculi,

Labelled Deductive Systems,

Nested Calculi,

Bunched Calculi,

. . .
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Hypersequent calculus

It is obtained embedding sequents into hypersequents

Γ1 ⇒ Π1 | . . . |Γn ⇒ Πn

where for all i = 1, . . . n, Γi ⇒ Πi is a sequent.
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Hypersequent calculus

Γ ⇒ A A,∆ ⇒ Π

Γ,∆ ⇒ Π
Cut

A ⇒ A
Identity

Γ ⇒ A B,∆ ⇒ Π

Γ, A → B,∆ ⇒ Π
→ l

A,Γ ⇒ B

Γ ⇒ A → B
→ r
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Hypersequent calculus

G|Γ ⇒ A G|A,∆ ⇒ Π

G|Γ,∆ ⇒ Π
Cut

G|A ⇒ A
Identity

G|Γ ⇒ A G|B,∆ ⇒ Π

G|Γ, A → B,∆ ⇒ Π
→ l

G|A,Γ ⇒ B

G|Γ ⇒ A → B
→ r

and adding suitable rules to manipulate the additional layer of
structure.

G

G |Γ ⇒ A
(ew)

G |Γ ⇒ A |Γ ⇒ A

G |Γ ⇒ A
(ec)
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Structural rules: an example

G |Γ,Σ′ ⇒ ∆′ G |Γ′,Σ ⇒ ∆

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
(com)

(Avron, Annals of Math and art. Intell. 1991)
Gödel logic = IL + (α → β) ∨ (β → α)
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Structural rules: an example

G |Γ,Σ′ ⇒ ∆′ G |Γ′,Σ ⇒ ∆

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
(com)

(Avron, Annals of Math and art. Intell. 1991)
Gödel logic = IL + (α → β) ∨ (β → α)

β ⇒ β α ⇒ α
(com)

α ⇒ β | β ⇒ α
(→,r)

α ⇒ β | ⇒ β → α
(→,r)

⇒ α → β | ⇒ β → α
(∨i,r)

⇒ α → β | ⇒ (α → β) ∨ (β → α)
(∨i,r)

⇒ (α → β) ∨ (β → α) | ⇒ (α → β) ∨ (β → α)
(EC)

⇒ (α → β) ∨ (β → α)
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Climbing up the hierarchy

P3 N3

P2 N2

P1 N1

P0 N0
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Algorithm to transform:

• axioms up to the class P ′

3 into "good"

structural rules in hypersequent calculus

• equations up to P ′

3 into "good" analytic clauses

t1 ≤ u1 and..and tm ≤ um ⇒ tm+1 ≤ um+1 or..or tn ≤ un
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Climbing up the hierarchy

P3 N3

P2 N2

P1 N1

P0 N0
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Algorithm to transform:

• axioms up to the class P ′

3 into "good"

structural rules in hypersequent calculus

• equations up to P ′

3 into "good" analytic clauses

Moreover

• equations up to P ′

3 preserved by DM

completions when applied to s.i. algebras

• analytic calculi iff HyperDM completion

• axioms/equations up to P3 are tamed in pres-

ence of integrality

(AC, N. Galatos and K. Terui). Algebra Universalis,

2011, and Submitted 2014.
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From axioms to rules: an example

(α → β) ∨ (β → α)
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From axioms to rules: an example

(α → β) ∨ (β → α)

is equivalent to

G | ⇒ α → β | ⇒ β → α
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From axioms to rules: an example

(α → β) ∨ (β → α)

is equivalent to

G | ⇒ α → β | ⇒ β → α

and to

G |α ⇒ β |β ⇒ α
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From axioms to rules: an example

(α → β) ∨ (β → α)

G |α ⇒ β |β ⇒ α

by Ackermann Lemma: Any sequent α′ ⇒ β′ is equivalent to

Γ ⇒ α′

Γ ⇒ β′ and also to
β′,Γ ⇒ ∆

α′,Γ ⇒ ∆

(for Γ,∆ fresh meta-variables)
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From axioms to rules: an example

(α → β) ∨ (β → α)

G |α ⇒ β |β ⇒ α

by the Lemma: Any sequent α′ ⇒ β′ is equivalent to

Γ ⇒ α′

Γ ⇒ β′ and also to
β′,Γ ⇒ ∆

α′,Γ ⇒ ∆

(for Γ,∆ fresh meta-variables) is equivalent to

G |Γ ⇒ α

G |Γ ⇒ β |β ⇒ α
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From axioms to rules: an example

(α → β) ∨ (β → α)

G |α ⇒ β |β ⇒ α

is equivalent to

G |Γ ⇒ α G |Γ′ ⇒ β G |Σ, β ⇒ ∆ G |Σ′, α ⇒ ∆′

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
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From axioms to rules: an example

(α → β) ∨ (β → α)

G |α ⇒ β |β ⇒ α

G |Γ ⇒ α G |Γ′ ⇒ β G |Σ, β ⇒ ∆ G |Σ′, α ⇒ ∆′

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′

is equivalent to

G |Γ,Σ′ ⇒ ∆′ G |Γ′,Σ ⇒ ∆

G |Γ,Σ ⇒ ∆ |Γ′,Σ′ ⇒ ∆′
(com)

(Avron, Annals of Math and Art. Intell. 1991)
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To sum up

• systematic generation of good (hyper)sequent rules
equivalent to axioms up to P ′

3 (P3 in presence of
weakening)

• identification/introduction of appropriate completions that
work for equations up to the level P ′

3 (P3 in presence of
weakening)

http://www.logic.at/staff/lara/tinc/webaxiomcalc/
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This talk

PART I : (towards a) systematic proof theory for substructural logics

PART II : an application of the introduced calculi

PART III : open problems and work in progress
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Standard Completeness

Completeness of axiomatic systems with respect to algebras
whose lattice reduct is the real unit interval [0, 1].
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Standard Completeness

Completeness of axiomatic systems with respect to algebras
whose lattice reduct is the real unit interval [0, 1].

(Hajek 1998) Formalizations of Fuzzy Logic
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Uninorms and t-norms

• A uninorm is a function ∗ : [0, 1]2 → [0, 1] satisfying,
∀x, y, z ∈ [0, 1]:
◦ x ∗ y = y ∗ x (Commutativity),
◦ (x ∗ y) ∗ z = x ∗ (y ∗ z) (Associativity),
◦ x ≤ y implies x ∗ z ≤ y ∗ z (Monotonicity),
◦ e ∈ [0, 1] e ∗ x = x (Identity).

The residuum is a function ⇒∗: [0, 1]
2 → [0, 1] where

x ⇒∗ y = max{z | x ∗ z ≤ y}.
• A t-norm is a uninorm in which e = 1.
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Uninorm and t-norm based logics

We fix a propositional language with connectives ∧,∨,⊗,→ and
constants ⊥,⊤, e, f .
Evaluation v : V ar → [0, 1] extend inductively over all formulas:

v(A → B) = v(A) ⇒∗ v(B) v(A ∧B) = v(A) ∗ v(B)

v(⊥) = 0 v(⊤) = 1 v(f), v(e) ∈ [0, 1]
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Uninorm and t-norm based logics

We fix a propositional language with connectives ∧,∨,⊗,→ and
constants ⊥,⊤, e, f .
Evaluation v : V ar → [0, 1]

• Gödel logic
v(A ∧B) = min{v(A), v(B)}

v(A ∨B) = max{v(A), v(B)}

v(A → B) = 1 if v(A) ≤ v(B),and v(B) otherwise
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Uninorm and t-norm based logics

We fix a propositional language with connectives ∧,∨,⊗,→ and
constants ⊥,⊤, e, f .
Evaluation v : V ar → [0, 1]

• Gödel logic
v(A ∧B) = min{v(A), v(B)}

v(A ∨B) = max{v(A), v(B)}

v(A → B) = 1 if v(A) ≤ v(B),and v(B) otherwise

• UL Uninorm logic (Metcalfe, Montagna 2007)
v(A⊗B) = v(A) ∗ v(B), ∗ left continuous uninorm
v(A → B) = v(A) →∗ v(B) →∗ residuum of ∗

• MTL Monoidal T-norm logic (Godo, Esteva 2001)
v(A⊗B) = v(A) ∗ v(B), ∗ left continuous t-norm
v(A → B) = v(A) →∗ v(B) →∗ residuum of ∗
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Uninorm or t-norm -based logics II

Often described by adding or removing axioms to already known
logics.
Example

• UL = FLe with ((α → β) ∧ e) ∨ ((β → α) ∧ e) (prelinearity)

• MTL = UL with α → e and f → α (weakening/integrality)

• Gödel logic = MTL with contraction α → α⊗ α

• UML = UL with contraction α → α⊗ α and mingle
α⊗ α → α

• WNM = MTL with ¬(α⊗ β) ∨ (α ∧ β → α⊗ β)

• BL = MTL with divisibility (α ∧ β) → (α⊗ (α → β))

• . . .
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Standard Completeness?

Question Given a logic L (expressed Hilbert style) obtained by
extending MTL or UL with

• A ∨ ¬A (excluded middle)?

• An−1 → An (n-contraction)?
• ¬(A⊗B) ∨ (A ∧B → A⊗B) (weak nilpotent minimum)?
• ....

Is L standard complete? (is it a formalization of Fuzzy Logic?)

usually case-by-case answer
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Algebraic Semantics

• A UL-algebra is an FLe algebra

P = 〈P,∧,∨,⊗,→, 1〉

satisfying

1 ≤ ((x → y) ∧ 1) ∨ ((y → x) ∧ 1) for all x, y ∈ P

• An MTL-algebra is an integral UL-algebra (x ≤ 1, for all
x ∈ P )
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Algebraic Semantics

• A UL-algebra is an FLe algebra

P = 〈P,∧,∨,⊗,→, 1〉

satisfying

1 ≤ ((x → y) ∧ 1) ∨ ((y → x) ∧ 1) for all x, y ∈ P

• An MTL-algebra is an integral UL-algebra (x ≤ 1, for all
x ∈ P )

Useful properties:
• UL and MTL- algebras are complete w.r.t. chains
• Lemma: For every chain A in FLe

|=A 1 ≤ (t ∧ 1) ∨ (u ∧ 1) iff |=A 1 ≤ t or 1 ≤ u
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Standard Completeness – algebraic approach

Given a logic L extending UL with axiom α:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable L-algebras

3. Find an embedding of linear countable L-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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Standard Completeness – algebraic approach

Given a logic L extending UL with axiom α:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable L-algebras
UL + α ⇐⇒ UL-chains satisfying 1 ≤ α

3. Find an embedding of linear countable L-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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Standard Completeness – algebraic approach

Given a logic L extending UL with axiom α:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable L-algebras

3. Find an embedding of linear countable L-algebras into
linear dense countable L-algebras
i.e. whenever x 6≤ y, there exists z such that x 6≤ z and
z 6≤ y

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
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Standard Completeness – algebraic approach

Given a logic L extending UL with axiom α:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable L-algebras

3. Find an embedding of linear countable L-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])
• DM completions of a dense UL-chain is still a dense

UL-chain (= it is preserved by DM-completions).
• Prove that additional equations are preserved
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Standard Completeness – algebraic approach

Given a logic L extending UL with axiom α:

1. Identify the algebraic semantics of L (L-algebras)

2. Show completeness of L w.r.t. linear, countable L-algebras

3. Find an embedding of linear countable L-algebras into
linear dense countable L-algebras

4. Dedekind-MacNeille style completion (embedding into
L-algebras with lattice reduct [0, 1])

• Step 3 (rational completeness): problematic (mainly ad hoc
solutions)
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Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) L + (density) is rational
complete:

(Φ → p) ∨ (p → Ψ) ∨ Ξ

(Φ → Ψ) ∨ Ξ
(density)

where p 6∈ Φ,Ψ,Ξ

Consider L + (density)

(Step 1) Show that density produces no new theorems (Rational
completeness)

(Step 2) Dedekind-MacNeille style completion
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Density vs Cut in hypersequent calculi

(Φ → p) ∨ (p → Ψ) ∨ Ξ

(Φ → Ψ) ∨ Ξ
(density)

•

G |Γ ⇒ p | p ⇒ ∆

G |Γ ⇒ ∆
(density)

where p is does not occur in the conclusion.
•

G |Γ ⇒ A G |A ⇒ ∆

G |Γ ⇒ ∆
(cut)
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Density elimination

• Similar to cut-elimination
• Proof by induction on the length of derivations
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Density elimination

• Similar to cut-elimination
• Proof by induction on the length of derivations

(-, Metcalfe TCS 2008) Given a density-free derivation, ending in

·
·
· d

′

G |Γ ⇒ p | p ⇒ ∆
(density)

G |Γ ⇒ ∆
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Density elimination

(-, Metcalfe TCS 2008) Given a density-free derivation, ending in

·
·
· d

′

G |Γ ⇒ p | p ⇒ ∆
(density)

G |Γ ⇒ ∆

·
·
· d

′

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆

• Asymmetric substitution: p is replaced
◦ With ∆ when occuring on the right
◦ With Γ when occuring on the left
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Density elimination: problem with(com)

p ⇒ p

···
Π ⇒ Ψ

(com)
Π ⇒ p | p ⇒ Ψ

·
·
·
·
·
d

G |Γ ⇒ p | p ⇒ ∆
(D)

G |Γ ⇒ ∆

Γ ⇒ ∆

···
Π ⇒ Ψ

(com)
Π ⇒ ∆ |Γ ⇒ Ψ

·
·
·
·
·
d∗

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆

• p ⇒ p axiom
• Γ ⇒ ∆ not an axiom
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Density elimination: problem with(com)

p ⇒ p

···
Π ⇒ Ψ

(com)
Π ⇒ p | p ⇒ Ψ

·
·
·
·
·
d

G |Γ ⇒ p | p ⇒ ∆
(D)

G |Γ ⇒ ∆

Γ ⇒ ∆

···
Π ⇒ Ψ

(com)
Π ⇒ ∆ |Γ ⇒ Ψ

·
·
·
·
·
d∗

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆

• p ⇒ p axiom
• Γ ⇒ ∆ not an axiom
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Solution (with weakening)

(AC, Metcalfe 2008)

p ⇒ p

···
Π ⇒ Ψ

(com)
Π ⇒ p | p ⇒ Ψ

·
·
·
·
·
d

G |Γ ⇒ p | p ⇒ ∆
(D)

G |Γ ⇒ ∆

···
G |Γ ⇒ p | p ⇒ ∆

···
Π ⇒ Ψ

(cut)
Π ⇒ ∆ |Γ ⇒ Ψ

·
·
·
·
·
d∗

G |Γ ⇒ ∆ |Γ ⇒ ∆
(EC)

G |Γ ⇒ ∆
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Step 2: general conditions for density elimination

• In presence of weakening/integrality
Theorem (AC, Baldi TCS to appear)
The hypersequent calculus for MTL + a large class of
rules equivalent to axioms within the class P3 (convergent
rules) admits density elimination

i.e. rules equivalent to axioms within the class P3 and whose
premises do not mix "too much" the conclusion

Example :

G |Γ2,Γ1,∆1 ⇒ Π1

G |Γ1,Γ1,∆1 ⇒ Π1

G |Γ1,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3,∆1 ⇒ Π1

G |Γ2,Γ3 ⇒ |Γ1,∆1 ⇒ Π1
(wnm)

Axiom: ¬(α⊗ β) ∨ (α ∧ β → α⊗ β)
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Step 2: general conditions for density elimination

• In presence of weakening/integrality
Theorem (AC, Baldi TCS to appear)
The hypersequent calculus for MTL + a large class of
rules equivalent to axioms within the class P3 (convergent
rules) admits density elimination

• Without weakening/integrality
Theorem (AC, Baldi ISMVL 2015)
The hypersequent calculus for UL + nonlinear rules
(and/or mingle) admits density elimination

Nonl i near  N2 

axioms

N2 axioms
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Recall: Standard Completeness via proof theory

(Metcalfe, Montagna JSL 2007) Given a logic L:

(Step 1) Show that density produces no new theorems

(Step 2) Dedekind-MacNeille style completion
◦ DM completions of a dense UL-chain is still a dense

UL-chain (= it is preserved by DM-completions).
◦ This holds for all P ′

3 equations (P3 in presence of
weakening)
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Example

Known Logics
• MTL + ¬(α · β) ∨ ((α ∧ β) → (α · β))

• MTL + ¬α ∨ ¬¬α

• MTL + αn−1 → αn

• UL + αn−1 → αn

• ...

New Fuzzy Logics

• MTL + ¬(α · β)n ∨ ((α ∧ β)n−1 → (α · β)n), for all n > 1

• UL + ¬α ∨ ¬¬α

• UL + αm → αn

• ...
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This talk

PART I : (towards a) systematic proof theory for substructural logics

PART II : an application of the introduced calculi

PART III : open problems

and intermediary results
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Open problems I

P3 N3

P2 N2

P1 N1

P0 N0
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Uniform treatment of axioms in N3 and

behond

Remark on N3: it contains

(a) equations that are not preserved under

completions.

(b) all (axiomatizable) intermediate logics

(via canonical formulas).
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Negative results on (hyper)sequent rules

P3 N3

P2 N2

P1 N1

P0 N0
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Sequent structural rules: only equations

• closed under DM completion, with integrality

• that hold in Heyting algebras (IL)

Hypersequent structural rules: only equations

• closed under HyperDM completions, with

integrality

• that hold in Heyting algebras generated by the

3-element algebras or derive 1 ≤ x ∨ ¬xn in

FLew

(AC, N. Galatos and K. Terui. Submitted 2014)
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Open problems I

P3 N3

P2 N2

P1 N1

P0 N0

p

p

p

p

p

p

p

p

p

6

p

p

p

p

p

p

p

p

p

6

6

�
��� 6

@
@@I

6

�
��� 6

@
@@I

6

�
��� 6

@
@@I

Uniform treatment of axioms in N3 and

behond

Partial answers:

• generation of logical rules

◦ Lukasiewicz equation (⊆ N3)

◦ Bd2 axiom (⊆ P4)

◦ ....

• adopting formalisms more complex than

the (hyper)sequent calculus
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From axioms to rules: general idea
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Display Calculus

Gentzen Sequent: A1, . . . ,An ⇒ B1, . . . ,Bm

(A1∧ . . .∧An ⇒ B1∨ . . .∨Bm)
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Display Calculus

Gentzen Sequent: A1, . . . ,An ⇒ B1, . . . ,Bm

(A1∧ . . .∧An ⇒ B1∨ . . .∨Bm)

Belnap’s idea (’82) : look at ⇒ as a deducibility relation between
finite possible complex data (structures)
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Display Calculus

Gentzen Sequent: A1, . . . ,An ⇒ B1, . . . ,Bm

(A1∧ . . .∧An ⇒ B1∨ . . .∨Bm)

Belnap’s idea (’82) : look at ⇒ as a deducibility relation between
finite possible complex data (structures)

Display Sequent
X ⇒ Y , where X,Y are structures which are built from formulae
using structural connectives.

(Algebraic) Proof Theory for Substructural Logics and Applications – p.49/59



Display Calculus

Gentzen Sequent: A1, . . . ,An ⇒ B1, . . . ,Bm

(A1∧ . . .∧An ⇒ B1∨ . . .∨Bm)

Belnap’s idea (’82) : look at ⇒ as a deducibility relation between
finite possible complex data (structures)

Display Sequent
X ⇒ Y , where X,Y are structures which are built from formulae
using structural connectives.

Display property: given a display sequent X ⇒ Y and any
occurrence of a substructure Z in the sequent, that
occurrence can be displayed as

Z ⇒ U or as U ⇒ Z

using structural rules (display rules).
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Cut elimination in display calculus

Enjoyed by all calculi satisfying some syntactic conditions (C1 –
C8)

• Subformula property (C1)
• For structural rules: each structure variable letter (i) is

unique in conclusion (ii) has same polarity in each
occurrence and (iii) is closed under arbitrary substitution.

• For logical rules: a cut in which the cut formula is principal
in both premises, can be replaced by smaller cuts (C8)

Only C8 is non-trivial to verify (C8 not applicable to structural

rules)
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Axioms vs rules in display calculus

• Given any suitable display calculus C for a logic L

• Classify the formulas of L according to the invertible rules
of C

• Apply the algorithm using the same ingredients

• the invertible rules of C
• Ackermann’s lemma

S ρ1
X ⊢ A

S A ⊢ M ρ2
X ⊢ M

S δ1A ⊢ X
S M ⊢ A δ2M ⊢ X
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Axioms vs rules in display calculus

• Given any suitable display calculus C for a logic L

• Classify the formulas of L according to the invertible rules
of C

• Apply the algorithm using the same ingredients

Our results

Theorem (AC, Ramanayake 2013)
Let C be an amenable calculus for L and A be an I2 acyclic
axiom. There is an analytic rule extension for L+A.

Theorem (AC, Ramanayake Submitted 2014)
Let C be an amenable and well-behaved calculus for L and
let L′ be an axiomatic extension of L. Then there is an
analytic rule extension of C for L′ iff L′ is an extension of L
by I2 acyclic axioms.
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Suitable display calculi?

Amenable calculi satisfy the following conditions:

1. The structural connectives are interpretable as connective
of the logic

2. There are binary connectives ∨ and ∧ that are
commutative and associative and Moreover

(a)∨ A ⊢ Y and B ⊢ Y implies A ∨B ⊢ Y

(b)∨ X ⊢ A implies X ⊢ A ∨B for any formula B.
(a)∧ X ⊢ A and X ⊢ B implies X ⊢ A ∧B

(b)∧ A ⊢ Y implies A ∧B ⊢ Y for any formula B.

3. There are logical constants ca, cb such that the following
sequents are derivable for arbitrary structures X and Y :

ca ⊢ Y X ⊢ cs
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Algorithm for display calculi

The procedure to transform axioms into structural rules for
display calculi is language and logic independent. It works for

• all display calculi satisfying purely syntactic conditions
• for a large class of axioms depending only on the invertible

rules of the base calculus

An instantiation: back to substructural logics .....
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The logic BiFLe
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The logic BiFLe

Algebraic Semantics

A structure A = (A,∨,∧,⊗,→, 1,⊕, −< , 0) is a commutative
Bi-Lambek algebra BiFLe if:

1. (A,∨,∧) is a lattice

2. (a) (A,⊗, 1) is a commutative monoid
(b) (A,⊕, 0) is a commutative monoid

3. Residuation properties:
(a) x⊗ y ≤ z iff x ≤ y → z iff y ≤ x → z, for every x, y, z ∈ A

(b) z ≤ x⊕ y iff z−<x ≤ y iff z−<y ≤ x, for every x, y, z ∈ A.
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Residuation property and display rules

From the residuation properties (for every x, y, z ∈ A)

x

,
︷︸︸︷

⊗ y ≤ z ⇔ x ≤ y

>
︷︸︸︷
→ z ⇔ y ≤ x

>
︷︸︸︷
→ z

z ≤ x ⊕
︸︷︷︸

;

y ⇔ z −<
︸︷︷︸

<

x ≤ y ⇔ z −<
︸︷︷︸

<

y ≤ x

to residuation rules (display rules)

X,Y ⊢ Z

X ⊢ Y > Z

Y ⊢ X > Z

Z ⊢ X;Y

Z < X ⊢ Y

Z < Y ⊢ X
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Residuation property and display rules

to residuation rules (display rules)

X,Y ⊢ Z

X ⊢ Y > Z

Y ⊢ X > Z

Z ⊢ X;Y

Z < X ⊢ Y

Z < Y ⊢ X

• Example: display the occurrence of r in (p < q; r), s ⊢ z:

(p < q) < (s > z) ⊢ r

p < q ⊢ r; (s > z)

p ⊢ q; r; (s > z)

p < (q; r) ⊢ s > z

(p < q; r), s ⊢ z
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Display calculus rules

• Rewrite rules:

A,B ⊢ Y
⊗l

A⊗B ⊢ Y

X ⊢ A;B
⊕r

X ⊢ A⊕B

L,Φ ⊢ M

L ⊢ M

Φ, L ⊢ M

A < B ⊢ Y
−< l

A−<B ⊢ Y
X ⊢ A > B →r
X ⊢ A → B

L ⊢ M ; Φ

L ⊢ M

L ⊢ Φ;M
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Display calculus rules

• Rewrite rules:

A,B ⊢ Y
⊗l

A⊗B ⊢ Y

X ⊢ A;B
⊕r

X ⊢ A⊕B

L,Φ ⊢ M

L ⊢ M

Φ, L ⊢ M

A < B ⊢ Y
−< l

A−<B ⊢ Y
X ⊢ A > B →r
X ⊢ A → B

L ⊢ M ; Φ

L ⊢ M

L ⊢ Φ;M

• Structural rules:

X,Y ⊢ Z
le

Y,X ⊢ Z

X ⊢ Y, Z
re

X ⊢ Z, Y

X, (Y, Z) ⊢ U
la

(X,Y ), Z ⊢ U

X ⊢ (U ;V );W
ra

X ⊢ U ; (V ;W )
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Display calculus rules

• Rewrite rules:

A,B ⊢ Y
⊗l

A⊗B ⊢ Y

X ⊢ A;B
⊕r

X ⊢ A⊕B

L,Φ ⊢ M

L ⊢ M

Φ, L ⊢ M

A < B ⊢ Y
−< l

A−<B ⊢ Y
X ⊢ A > B →r
X ⊢ A → B

L ⊢ M ; Φ

L ⊢ M

L ⊢ Φ;M

• Obtain missing decoding rules:
X ⊢ A Y ⊢ B ⊗r
X,Y ⊢ A⊗B

A ⊢ X B ⊢ Y
⊕l

A⊕B ⊢ X;Y

X ⊢ A B ⊢ Y −< r
X < Y ⊢ A−<B

X ⊢ A B ⊢ Y
→l

A → B ⊢ X > Y
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From axioms to rules for substructural logics

.. Let us consider intermediate logics
• Sequent Calculus: class N2

• Hypersequent Calculus: class P3

w.r.t.

Pn+1 := Nn | Pn+1 ∧ Pn+1 | Pn+1 ∨ Pn+1 | ⊥

Nn+1 := Pn | Pn+1 → Nn+1 | Nn+1 ∧ Nn+1 | ⊤

With display calculus we capture N d
2 (⊃ P3), where

Pd
n+1 := N d

n | Pd
n+1 ∧ Pd

n+1 | P
d
n+1 ∨ Pd

n+1 | ⊥

N d
n+1 := Pd

n | Pd
n+1 → N d

n+1 | N
d
n+1 ∧ N d

n+1 | N
d
n+1 ∨ N d

n+1 | ⊤
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)

X ⊢ A,B

X ⊢ A ∨B
(∨r)

I ⊢ α → β, β → α
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)

I ⊢ α → β, β → α

by display rules I < (α → β) ⊢ β → α
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)

I ⊢ α → β, β → α

by display rules I < (α → β) ⊢ β → α

X ⊢ A > B
X ⊢ A → B

(→ r)
I < (α → β) ⊢ β > α
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)

I ⊢ α → β, β → α

by display rules I < (α → β) ⊢ β → α

I < (α → β) ⊢ β > α

and I < (β > α) ⊢ α > β
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Our algorithm: an example

⊢ (α → β) ∨ (β → α)

I ⊢ α → β, β → α

by display rules I < (α → β) ⊢ β → α

I < (α → β) ⊢ β > α

and I < (β > α) ⊢ α > β

I < (β > α), α ⊢ β

β ⊢ M

I < (β > α), α ⊢ M

(Algebraic) Proof Theory for Substructural Logics and Applications – p.58/59



Our algorithm: an example

⊢ (α → β) ∨ (β → α)

I ⊢ α → β, β → α

by display rules I < (α → β) ⊢ β → α

I < (α → β) ⊢ β > α

and I < (β > α) ⊢ α > β

I < (β > α), α ⊢ β

β ⊢ M

I < (β > α), α ⊢ M

L ⊢ α β ⊢ M Z ⊢ β α ⊢ V

I ⊢ (L > M), (Z > V )
L ⊢ V Z ⊢ M

I ⊢ (L > M), (Z > V )
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Further open problems (a selection)

• First-order, modal logics, ...
• ”Applications”:

E.g.
◦ new semantic foundations (e.g. non-deterministic

matrices) (AC, O. Lahav, A. Zamansky)
◦ automated deduction procedures (AC, E. Pimentel)
◦ new algebraic completions
◦ admissibility of other rules (e.g. standard

completeness)
◦ ...
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