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» specific correspondences as logical reflections of dualities
» dual characterizations as instances of Generalized Correspondence

Jénsson-style Canonicity for ALBA-Inequalities (Unified Corespondence 1)



A calculus mechanizing minimal valuation meta-arguments

Jénsson-style Canonicity for ALBA-Inequalities (Unified Corespondence 1)



A calculus mechanizing minimal valuation meta-arguments

Transitivity:
Vp[OOp < Op]

iff  VpViVm[(i < OOp & Op < m) =i < m|

Jénsson-style Canonicity for ALBA-Inequalities (Unified Corespondence 1)



A calculus mechanizing minimal valuation meta-arguments

Transitivity:
Vp[OOp < Op]

iff  VpViVm[(i < OOp & Op < m) =i < m|
Ack iff VpViVmVj[(i < OO/ & j<p & Op<m)=i<m]

Jénsson-style Canonicity for ALBA-Inequalities (Unified Corespondence 1)



A calculus mechanizing minimal valuation meta-arguments

Transitivity:
Vp[OOp < Op]
iff  VpViVm[(i < OOp & Op < m) =i < m|

Ack iff VpViVmVj[(i < OO/ & j<p & Op<m)=i<m]
iff  VivmVj[(i < O0j & Oj < m) =i < m|

Jénsson-style Canonicity for ALBA-Inequalities (Unified Corespondence 1)



A calculus mechanizing minimal valuation meta-arguments

Transitivity:
Vp[OOp < Op]

iff  VpViVm[(i < OOp & Op < m) =i < m|
Ack iff VpViVmVj[(i < OO/ & j<p & Op<m)=i<m]
iff  ViVmVj[(i < 00j & &j <m) =i < m]
iff  ViVj[i < OCj = Vm[Oj < m=i < m]]
iff Vivj[i < 00) = i < O]
iff Vj[ooj < Oj]
iff  Vw[RTURw]] € R1[w]]
iff  Vw[R[R[w]] C R[w]].
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Unified correspondence

Hybrid logics DLE-logics
[CR15] [CP12, CPS]

Mu-calculi

Substructural logics [CFPS15, CGP14, CC15]

[CP15]

Regular DLE-logics
Kripke frames with

impossible worlds
[PSZ15a]

Display calculi
[GMPTZ]

Jénsson-style vs Finite lattices and
Sambin-style canonicity monotone ML
[PSZ15b] Canonicity via [FPS15]
pseudo-correspondence
[CPSZ]
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Sahlqvist Correspondence & Canonicity

Sahlqvist theory

sufficient syntactic conditions on modal formulas:
@ to have a first order correspondent;

@ to be canonical.
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Sahlqvist theory

sufficient syntactic conditions on modal formulas:
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Two Approaches to Algebraic Canonicity

Canonicity: AFp <y = A_5 Fo <y
Jénsson-style Via-Correspondence
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Two Approaches to Algebraic Canonicity

Canonicity: AFp <y = A_5 Fo <y
Via-Correspondence
Decompositional Strategy

GFRe<vy Fre<vy
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Two Approaches to Algebraic Canonicity
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Same conditions, two strategies

Jénsson-style Via-Correspondence
P
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Same conditions, two strategies

Jonsson-style Sahlqvist Via-Correspondence
@
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Same conditions, two strategies

Jonsson-style Inductive Via-Correspondence
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Same conditions, two strategies

Jonsson-style Inductive Via-Correspondence

AE @<

4

AV ¢

oh < b
I Fig @ < o
5 5
AT < (M) < (ph)T < ph 1}
o-exp. ﬁ o-contr. D
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777 Success

o Conceptual Aim: Understanding how they compare.
@ Technical Aim: Jénsson-style canonicity for Inductive inequalities.
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Combining the two strategies

Let ¢ < 1) be inductive.

AFp<vy = AFEp<y
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Let ¢ < 1) be inductive.
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Combining the two strategies

Let ¢ < 1) be inductive.

AFp=<vy A Ep<y
)
Ay o <9 (i
)
A’Epa<p AEFa<p
) )
o < ph = oA’ < (OzA)U < (B4 < BAS
generalized Sahlqvist generalized o-expanding generalized o-contracting

(in expanded language) (using generalized canonical extension)
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