Structural completeness in logics of dependence

Fan Yang
Utrecht University, the Netherlands

Ischia
15-19 June, 2015

Joint work with Rosalie lemhoff

Outline

(9) logics of dependence
(2) admissible rules and structural completeness

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961):

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961):

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989):

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961):

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989):

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

First-order dependence Logic (Väänänen 2007):

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(=\left(x_{2}, y_{2}\right) \wedge \phi\right)
$$

Dependence between first-order variables

First Order Quantifiers:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \phi
$$

Henkin Quantifiers (Henkin, 1961):

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \\
\forall x_{2} & \exists y_{2}
\end{array}\right) \phi
$$

Independence Friendly Logic (Hintikka, Sandu, 1989):

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}\right\} \phi
$$

First-order dependence Logic (Väänänen 2007):

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(=\left(x_{2}, y_{2}\right) \wedge \phi\right)
$$

Theorem (Enderton, Walkoe). Over sentences, all of the above extensions of FO have the same expressive power as Σ_{1}^{1}.

Propositional dependence logic $=$
classical propositional logic $+=(\vec{p}, q)$

Propositional dependence logic =
 classical propositional logic $+=(\vec{p}, q)$

- Whether $f(x)>0$ depends completely on whether $x<0$ or not.

$$
=(x, f)
$$

Propositional dependence logic $=$
classical propositional logic $+=(\vec{p}, q)$

- Whether $f(x)>0$ depends completely on whether $x<0$ or not.
- I will be absent depending on whether he shows up or not.

$$
=(s, a)
$$

Propositional dependence logic $=$
classical propositional logic $+=(\vec{p}, q)$

- Whether $f(x)>0$ depends completely on whether $x<0$ or not.
- I will be absent depending on whether he shows up or not.
- Whether it rains depends completely on whether it is summer or not.

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not. Team semantics (Hodges 1997)

	leap year	summer	rainy
v_{1}	0	0	1

$=(s, r)$

- Whether it rains depends completely on whether it is summer or not. Team semantics (Hodges 1997)

	leap year	summer	rainy
v_{1}	0	0	1

$$
v_{1} \models=(s, r) ?
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

$$
X \models=(s, r)
$$

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

- Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

This type of dependence corresponds precisely to functional dependency, widely investigated in Database Theory.

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \vee \phi
$$

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \otimes \phi
$$

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \otimes \phi
$$

- propositional intuitionistic dependence logic (PID):

$$
\phi::=p|\perp|=(\vec{p}, q)|\phi \wedge \phi| \phi \vee \phi \mid \phi \rightarrow \phi
$$

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \otimes \phi
$$

- propositional intuitionistic dependence logic (PID):

$$
\begin{aligned}
\phi::=p|\perp|=(\vec{p}, q)|\phi \wedge \phi| \phi \vee \phi \mid & \phi \rightarrow \phi \\
& (\neg \phi:=\phi \rightarrow \perp)
\end{aligned}
$$

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \otimes \phi
$$

- propositional intuitionistic dependence logic (PID):

$$
\begin{aligned}
\phi::=p|\perp|=(\vec{p}, q)|\phi \wedge \phi| \phi \vee \phi \mid \phi \rightarrow \phi & \\
& (\neg \phi:=\phi \rightarrow \perp)
\end{aligned}
$$

A valuation is a function $v: \operatorname{Prop} \rightarrow\{0,1\}$.

	p_{0}	p_{1}	p_{2}	\ldots
v_{1}	1	0	0	\ldots

Logics of dependence

- Well-formed formulas of propositional dependence logic (PD) are given by the following grammar

$$
\phi::=p|\neg p|=(\vec{p}, q)|\phi \wedge \phi| \phi \otimes \phi
$$

- propositional intuitionistic dependence logic (PID):

$$
\begin{aligned}
\phi::=p|\perp|=(\vec{p}, q)|\phi \wedge \phi| \phi \vee \phi \mid \phi & \rightarrow \phi \\
& (\neg \phi:=\phi \rightarrow \perp)
\end{aligned}
$$

A valuation is a function $v: \operatorname{Prop} \rightarrow\{0,1\}$.
A team is a set of valuations.

	p_{0}	p_{1}	p_{2}	\cdots
v_{1}	1	0	0	\cdots
v_{2}	1	1	0	\cdots
v_{3}	0	1	0	\cdots
\vdots	\vdots	\vdots	\vdots	\vdots

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;

$$
x\left\{\begin{array}{llll}
& p & q & r \\
v_{1} & 1 & 0 & 0 \\
v_{2} & 1 & 0 & 1 \\
v_{3} & 0 & 1 & 0 \\
v_{4} & 0 & 1 & 1
\end{array} \quad x \models p\right.
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;

$$
X\left\{\begin{array}{lllll}
& p & q & r & \\
v_{1} & 1 & 0 & 0 & \\
v_{2} & 1 & 0 & 1 & \\
v_{3} & 0 & 1 & 0 & Y \models p \\
v_{4} & 0 & 1 & 1
\end{array} \quad .\right.
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$

	p	q	r	
v_{1}	1	0	0	
v_{2}	1	0	1	
v_{3}	0	1	0	
v_{4}	0	1	1	

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$

	p	q	r	
v_{1}	1	0	0	
v_{2}	1	0	1	
v_{3}	0	1	0	
v_{4}	0	1	1	

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;

$$
\begin{aligned}
& Y \models \phi \\
& Z \models \psi
\end{aligned}
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X=\phi$ or $X=\psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X: Y \models \phi \Longrightarrow Y \models \psi$.

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X=\phi$ or $X \equiv \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X: Y \models \phi \Longrightarrow Y \models \psi$.

$$
\begin{array}{|llll|}
& p & q & r \\
\hline v_{1} & 1 & 0 & 0 \\
v_{2} & 1 & 0 & 1 \\
v_{3} & 0 & 1 & 0 \\
\hline v_{4} & 0 & 1 & 1 \\
\hline
\end{array}
$$

$$
Y \models \phi \Longrightarrow Y \models \psi
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X=\phi$ or $X \equiv \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X: Y \models \phi \Longrightarrow Y \models \psi$.

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

$$
Y \models \phi \Longrightarrow Y \models \psi
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X: Y \models \phi \Longrightarrow Y \models \psi$.

A formula ϕ is said to be flat iff for all teams X,

$$
X \models \phi \Longleftrightarrow \forall v \in X,\{v\} \models \phi .
$$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v(\vec{p})=v^{\prime}(\vec{p}) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X=\phi$ or $X \equiv \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X: Y \models \phi \Longrightarrow Y \models \psi$.

A formula ϕ is said to be flat iff for all teams X,

$$
X \models \phi \Longleftrightarrow \forall v \in X,\{v\} \models \phi .
$$

Example:

- Classical formulas (i.e., formulas without any occurrences of $=(\vec{p}, q)$ and $\vee)$ are flat.
- $\neg \phi$ is flat for all ϕ.

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v\left(\vec{p}=v^{\prime}(\vec{p})\right) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X, Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N=\left\{p_{1}, \ldots, p_{n}\right\}$, the set $\llbracket \phi\left(p_{1}, \ldots, p_{n}\right) \rrbracket=\left\{X \subseteq\{0,1\}^{N} \mid X=\phi\right\}$

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v\left(\vec{p}=v^{\prime}(\vec{p})\right) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X, Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N=\left\{p_{1}, \ldots, p_{n}\right\}$, the set $\llbracket \phi\left(p_{1}, \ldots, p_{n}\right) \rrbracket=\left\{X \subseteq\{0,1\}^{N}|X|=\phi\right\}$

- is downwards closed, that is, $Y \subseteq X \in \llbracket \phi \rrbracket \Longrightarrow Y \in \llbracket \phi \rrbracket$,

Team Semantics

Let X be a team.

- $X \models p$ iff for all $v \in X, v(p)=1$;
- $X \models \neg p$ iff for all $v \in X, v(p)=0$;
- $X \models \perp$ iff $X=\emptyset$;
- $X \models=(\vec{p}, q)$ iff for all $v, v^{\prime} \in X: v\left(\vec{p}=v^{\prime}(\vec{p})\right) \Longrightarrow v(q)=v^{\prime}(q)$
- $X \models \phi \wedge \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X=Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \vee \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X, Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N=\left\{p_{1}, \ldots, p_{n}\right\}$, the set $\llbracket \phi\left(p_{1}, \ldots, p_{n}\right) \rrbracket=\left\{X \subseteq\{0,1\}^{N} \mid X \models \phi\right\}$

- is downwards closed, that is, $Y \subseteq X \in \llbracket \phi \rrbracket \Longrightarrow Y \in \llbracket \phi \rrbracket$,
- and nonempty, since $\emptyset \in \llbracket \phi \rrbracket$.

An algebraic view

Write $\mathcal{L}\left(\wp\left(2^{N}\right)\right)$ for the set of all nonempty downwards closed subsets of $\wp\left(2^{N}\right)$.

An algebraic view

Write $\mathcal{L}\left(\wp\left(2^{N}\right)\right)$ for the set of all nonempty downwards closed subsets of $\wp\left(2^{N}\right)$.

Abramsky and Väänänen (2009):
Consider the algebra $\left(\mathcal{L}\left(\wp\left(2^{N}\right)\right), \otimes, \cap, \cup,\{\emptyset\}, \subseteq\right)$, where $A \otimes B=\downarrow\{X \cup Y \mid X \in A$ and $Y \in B\}$.

- $\left(\mathcal{L}\left(\wp\left(2^{N}\right)\right), \otimes,\{\emptyset\}, \subseteq\right)$ is a commutative quantale. In particular, $A \otimes B \leq C \Longleftrightarrow A \leq B \multimap C$.
- $\left(\mathcal{L}\left(\wp\left(2^{N}\right)\right), \cap, \cup,\{\emptyset\}\right)$ is a complete Heyting algebra. In particular, $A \cap B \leq C \Longleftrightarrow A \leq B \rightarrow C$.

Dependence atoms are definable in PID^{-}:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Dependence atoms are definable in PID^{-}:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Dependence atoms are definable in PID^{-}:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Dependence atoms are definable in PID^{-}:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

Dependence atoms are definable in PID^{-}:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax.

Dependence atoms are definable in PID $^{-}$:

$$
=(p, q) \equiv(p \vee \neg p) \rightarrow(q \vee \neg q)
$$

	p	q	r
v_{1}	1	0	0
v_{2}	1	0	1
v_{3}	0	1	0
v_{4}	0	1	1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax. Completely different motivations.

$$
\left(\wp\left(\{0,1\}^{\text {Prop }_{n}}\right) \backslash\{\emptyset\}, \supseteq\right)
$$

A Medvedev frame: $\left(\wp\left(\{0,1\}^{\text {Prop }_{n}}\right) \backslash\{\emptyset\}, \supseteq\right)$

A Medvedev frame: $\left(\wp\left(\{0,1\}^{\text {Prop }_{n}}\right) \backslash\{\emptyset\}, \supseteq\right)$

(Ciardelli and Roelofsen, 2011):

$$
\left.\mathrm{PID}^{-}=\mathbf{M L}\right\urcorner=\{\phi \mid \tau(\phi) \in \mathbf{M L}, \text { where } \tau(p)=\neg \boldsymbol{p}\}
$$

A Medvedev frame: $\left(\wp\left(\{0,1\}^{\text {Prop }_{n}}\right) \backslash\{\emptyset\}, \supseteq\right)$

(Ciardelli and Roelofsen, 2011):

$$
\left.\mathrm{PID}^{-}=\mathbf{M L}\right\urcorner=\{\phi \mid \tau(\phi) \in \mathbf{M L}, \text { where } \tau(p)=\neg \boldsymbol{p}\}
$$

A Medvedev frame: $\left(\wp\left(\{0,1\}^{\text {Prop }_{n}}\right) \backslash\{\emptyset\}, \supseteq\right)$

(Ciardelli and Roelofsen, 2011):
[Recall: ND \subseteq KP \subseteq ML]

$$
\begin{aligned}
\mathrm{PID}^{-} & =\mathbf{M L}\urcorner=\{\phi \mid \tau(\phi) \in \mathbf{M L}, \text { where } \tau(p)=\neg \boldsymbol{p}\} \\
& \left.=\mathbf{K} \mathbf{P}^{\urcorner}=\mathbf{K P} \oplus \neg \neg p \rightarrow \boldsymbol{p}=\mathbf{N D}\right\urcorner
\end{aligned}
$$

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system Axioms:

- all substitution instances of IPC axioms
- all substitution instances of

$$
(\mathrm{KP}) \quad(\neg p \rightarrow(q \vee r)) \rightarrow((\neg p \rightarrow q) \vee(\neg p \rightarrow r)) .
$$

- $\neg \neg p \rightarrow p$ for all propositional variables p
- $=\left(p_{1}, \cdots, p_{n}, q\right) \leftrightarrow\left(\bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right) \rightarrow(q \vee \neg q)\right)$

Rules:

- Modus Ponens

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system Axioms:

- all substitution instances of IPC axioms
- all substitution instances of

$$
(\mathrm{KP}) \quad(\neg p \rightarrow(q \vee r)) \rightarrow((\neg p \rightarrow q) \vee(\neg p \rightarrow r)) .
$$

- $\neg \neg p \rightarrow p$ for all propositional variables p
- $=\left(p_{1}, \cdots, p_{n}, q\right) \leftrightarrow\left(\bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right) \rightarrow(q \vee \neg q)\right)$

Rules:

- Modus Ponens

Theorem (Y., Väänänen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if ϕ does not contain any dependence atoms, then $\vdash_{\text {cPC }} \phi \Longleftrightarrow \vdash_{\text {PD }} \phi$.

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system Axioms:

- all substitution instances of IPC axioms
- all substitution instances of

$$
(\mathrm{KP}) \quad(\neg p \rightarrow(q \vee r)) \rightarrow((\neg p \rightarrow q) \vee(\neg p \rightarrow r)) .
$$

- $\neg \neg p \rightarrow p$ for all propositional variables p
- $=\left(p_{1}, \cdots, p_{n}, q\right) \leftrightarrow\left(\bigwedge_{i=1}^{n}\left(p_{i} \vee \neg p_{i}\right) \rightarrow(q \vee \neg q)\right)$

Rules:

- Modus Ponens

Theorem (Y., Väänänen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if ϕ does not contain any dependence atoms, then $\vdash_{\text {cPC }} \phi \Longleftrightarrow \vdash_{\text {PD }} \phi$.

- Neither PD nor PID is closed under uniform substitution. E.g., for PID, $\vdash \neg \neg p \rightarrow p$, but $\nvdash \neg \neg(p \vee \neg p) \rightarrow(p \vee \neg p)$.
- Neither PD nor PID is closed under uniform substitution. E.g., for PID, $\vdash \neg \neg p \rightarrow p$, but $\nvdash \neg \neg(p \vee \neg p) \rightarrow(p \vee \neg p)$.
- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.
- Neither PD nor PID is closed under uniform substitution.

$$
\text { E.g., for PID, } \vdash \neg \neg p \rightarrow p \text {, but } \nvdash \neg \neg(p \vee \neg p) \rightarrow(p \vee \neg p)
$$

- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ, strings of the form $=(\phi, \psi), \neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics PD and PID.

- Neither PD nor PID is closed under uniform substitution.

$$
\text { E.g., for PID, } \vdash \neg \neg p \rightarrow p \text {, but } \nvdash \neg \neg(p \vee \neg p) \rightarrow(p \vee \neg p)
$$

- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.
One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ, strings of the form $=(\phi, \psi), \neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics PD and PID.

Lemma

PD and PID are closed under flat substitutions, i.e., substitutions σ such that $\sigma(p)$ is flat for all $p \in$ Prop.

admissible rules and structural completeness

- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \sim_{L} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \sim_{L} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- $\ulcorner\vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \sim_{L} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi \sim_{\mathrm{L}} \psi$
- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \sim_{L} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi r_{\mathrm{L}} \psi$

Pf. For any σ,
by assumption: $\left.\begin{array}{c}\vdash_{\mathrm{L}} \sigma(\phi) \\ \sigma(\phi) \vdash_{\mathrm{L}} \sigma(\psi)\end{array}\right\} \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$.

- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \sim_{L} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi r_{\mathrm{L}} \psi$

Pf. For any σ,
by assumption: $\left.\begin{array}{c}\vdash_{\mathrm{L}} \sigma(\phi) \\ \sigma(\phi) \vdash_{\mathrm{L}} \sigma(\psi)\end{array}\right\} \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$.
(since \vdash_{L} is closed under σ)

- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \mid \sim_{\mathrm{L}} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi \sim_{\mathrm{L}} \psi$

Pf. For any $\sigma \in \mathcal{S}$,
by assumption: $\left.\begin{array}{c}\vdash_{\mathrm{L}} \sigma(\phi) \\ \sigma(\phi) \vdash_{\mathrm{L}} \sigma(\psi)\end{array}\right\} \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$.
(since \vdash_{L} is closed under σ)

- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- A rule ϕ / ψ of L is said to be admissible, in symbols $\phi \mid \sim_{\mathrm{L}} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions σ.
- Alternatively, a rule R is admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi \psi_{\mathrm{L}}^{\mathcal{S}} \psi$

Pf. For any $\sigma \in \mathcal{S}$,
by assumption: $\left.\begin{array}{c}\vdash_{\mathrm{L}} \sigma(\phi) \\ \sigma(\phi) \vdash_{\mathrm{L}} \sigma(\psi)\end{array}\right\} \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$.
(since \vdash_{L} is closed under σ)

- $\Gamma \vdash \phi$: a consequence relation on $\wp($ Form $) \times$ Form.
- A logic L is a set of theorems, i.e., $L=\left\{\phi: \emptyset \vdash_{L} \phi\right\}$.
- Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A rule ϕ / ψ of L is said to be \mathcal{S}-admissible, in symbols $\phi \psi_{\mathrm{L}}^{\mathcal{S}} \psi$, if $\vdash_{\mathrm{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$ for all substitutions $\sigma \in \mathcal{S}$.
- Alternatively, a rule R is \mathcal{S}-admissible in L iff
$\left\{\phi: \emptyset \vdash_{\mathrm{L}} \phi\right\}=\left\{\phi: \emptyset \vdash_{\mathrm{L}}^{R} \phi\right\}$.
[Friedman, Citkin, Rybakov, Ghilardi, etc.]
- A rule ϕ / ψ of L is said to be derivable if $\phi \vdash_{\mathrm{L}} \psi$.
- $\phi \vdash_{\mathrm{L}} \psi \Longrightarrow \phi \psi_{\mathrm{L}}^{\mathcal{S}} \psi$

Pf. For any $\sigma \in \mathcal{S}$,
by assumption: $\left.\begin{array}{c}\vdash_{\mathrm{L}} \sigma(\phi) \\ \sigma(\phi) \vdash_{\mathrm{L}} \sigma(\psi)\end{array}\right\} \Longrightarrow \vdash_{\mathrm{L}} \sigma(\psi)$.
(since \vdash_{L} is closed under σ)

Definition

A logic L is said to be \mathcal{S}-structurally complete if every \mathcal{S}-admissible rule is derivable in L, i.e., $\phi \mathcal{L}_{\mathrm{L}}^{\mathcal{S}} \psi \Longleftrightarrow \phi \vdash_{\mathrm{L}} \psi$.

Definition

A logic L is said to be \mathcal{S}-structurally complete if every \mathcal{S}-admissible rule is derivable in L, i.e., $\phi \vdash_{L}^{\mathcal{S}} \psi \Longleftrightarrow \phi \vdash_{L} \psi$.

Example:

- KP rule $\neg p \rightarrow q \vee r /(\neg p \rightarrow q) \vee(\neg p \rightarrow r)$ is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Definition

A logic L is said to be \mathcal{S}-structurally complete if every \mathcal{S}-admissible rule is derivable in L , i.e., $\phi \vdash_{\mathrm{L}}^{\mathcal{S}} \psi \Longleftrightarrow \phi \vdash_{L} \psi$.

Example:

- KP rule $\neg p \rightarrow q \vee r /(\neg p \rightarrow q) \vee(\neg p \rightarrow r)$ is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and PID are \mathcal{F}-structurally complete, where \mathcal{F} is the class of all flat substitutions.

Definition

A logic L is said to be \mathcal{S}-structurally complete if every \mathcal{S}-admissible rule is derivable in L , i.e., $\phi \vdash_{L}^{\mathcal{S}} \psi \Longleftrightarrow \phi \vdash_{\mathrm{L}} \psi$.

Example:

- KP rule $\neg p \rightarrow q \vee r /(\neg p \rightarrow q) \vee(\neg p \rightarrow r)$ is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and PID are \mathcal{F}-structurally complete, where \mathcal{F} is the class of all flat substitutions.

Theorem

$\mathbf{N D}\urcorner, \mathbf{K P}\urcorner$ and $\mathbf{M L}\urcorner$ are $\mathcal{S T}$-structurally complete, where $\mathcal{S T}$ is the class of all stable substitutions, i.e., substitutions σ s.t.
$\vdash \neg \neg \sigma(p) \leftrightarrow \sigma(p)$.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
x\left\{\begin{array}{llll}
& p & q & \text { Let } \\
v_{1} & 1 & 1 & \\
v_{2} & 1 & 0 \\
v_{3} & 0 & 1
\end{array} \quad \Theta_{x}:=\{\right.
$$

for PD;
for PID.
Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
x\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1 \\
\hline v_{2} & 1 & 0 \\
\hline v_{3} & 0 & 1
\end{array} \quad \Theta_{x}:=\left\{\begin{array}{ll}
(p \wedge q) & (p \wedge \neg q)
\end{array} \quad(\neg p \wedge q), \quad \text { for PD; } \quad \text { for PID. } .\right.\right.
$$

Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
x\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1 \\
\hline v_{2} & 1 & 0 \\
\hline v_{3} & 0 & 1
\end{array} \quad \Theta_{x}:=\left\{(p \wedge q) \otimes(p \wedge \neg q) \otimes(\neg p \wedge q), \quad \begin{array}{ll}
& \text { for PD; } \\
\text { for PID. }
\end{array}\right.\right.
$$

Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
x\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1
\end{array} \quad \text { Let } \quad \begin{array}{ll}
\begin{array}{lll}
v_{2} & 1 & 0 \\
v_{3} & 0 & 1
\end{array} & \Theta_{x}:= \begin{cases}(p \wedge q) \otimes(p \wedge \neg q) \otimes(\neg p \wedge q), & \text { for PD; } \\
\neg \neg((p \wedge q) \vee(p \wedge \neg q) \vee(\neg p \wedge q)), & \text { for PID. }\end{cases}
\end{array}\right.
$$

Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
\begin{aligned}
& X\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1 \\
v_{2} & 1 & 0 \\
v_{3} & 0 & 1
\end{array} \quad \Theta_{X}:= \begin{cases}\bigotimes_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PD; } \\
\neg \neg \bigvee_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PID. }\end{cases} \right. \\
& \text { Then } Y \vDash \Theta_{X} \Longleftrightarrow Y \subseteq X \text {, for any team } Y \text { on } N \text {. }
\end{aligned}
$$

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
x\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1 \\
v_{2} & 1 & 0 \\
v_{3} & 0 & 1
\end{array} \quad \Theta_{X}:= \begin{cases}\bigotimes_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PD; } \\
\neg \neg \bigvee_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PID. }\end{cases}\right.
$$

Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Corollary

$\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_{X}$, where $\llbracket \phi \rrbracket=\left\{X \subseteq\{0,1\}^{V} \mid X \models \phi\right\}$, for any consistent formula ϕ of PD and PID.

Lemma

For any team $X \neq \emptyset$ on $V=\left\{p_{1}, \ldots, p_{n}\right\}$, there is a formula Θ_{X} of PD and PID such that for any team Y on $V, Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$.

Proof.

$$
X\left\{\begin{array}{lll}
& p & q \\
v_{1} & 1 & 1 \\
\hline v_{2} & 1 & 0 \\
v_{3} & 0 & 1
\end{array} \quad \Theta_{X}:= \begin{cases}\bigotimes_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PD; } \\
\neg \neg \bigvee_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PID. }\end{cases}\right.
$$

Then $Y \models \Theta_{X} \Longleftrightarrow Y \subseteq X$, for any team Y on N.

Corollary

$\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_{X}$, where $\llbracket \phi \rrbracket=\left\{X \subseteq\{0,1\}^{V} \mid X \models \phi\right\}$, for any consistent formula ϕ of PD and PID.

Lemma

Let L be such that $\mathrm{ND} \subseteq \mathrm{L} \subseteq \mathbf{C P C}$. Every formula is equivalent to a formula of the form $\bigvee_{i \in I} \neg \phi_{i}$ in $\left.L\right\urcorner$.

Definition (Projective formula)

Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that
(1) $\vdash_{\mathrm{L}} \sigma(\phi)$
(2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Such σ is called a \mathcal{S}-projective unifier of ϕ in L .

Definition (Projective formula)

Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that
(1) $\vdash_{\mathrm{L}} \sigma(\phi)$
(2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Such σ is called a \mathcal{S}-projective unifier of ϕ in L .

- Every consistent formula is projective in CPC.

Definition (Projective formula)

Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that
(1) $\vdash_{\mathrm{L}} \sigma(\phi)$
(2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Such σ is called a \mathcal{S}-projective unifier of ϕ in L .

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. $\neg \phi$) is projective in every intermediate logic.

Definition (Projective formula)

Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that
(1) $\vdash_{\mathrm{L}} \sigma(\phi)$
(2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Such σ is called a \mathcal{S}-projective unifier of ϕ in L .

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. $\neg \phi$) is projective in every intermediate logic. Moreover, every consistent $\neg \phi$ is projective in $\mathrm{L}\urcorner$, where L is an intermediate logic s.t. ND $\subseteq \mathrm{L}$.

Definition (Projective formula)

Let \mathcal{S} be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that
(1) $\vdash_{\mathrm{L}} \sigma(\phi)$
(2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Such σ is called a \mathcal{S}-projective unifier of ϕ in L .

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. $\neg \phi$) is projective in every intermediate logic. Moreover, every consistent $\neg \phi$ is projective in $\mathrm{L}\urcorner$, where L is an intermediate logic s.t. $N D \subseteq L$.
- For $L \in\{$ PD, PID $\}$, the formula

$$
\Theta_{X}= \begin{cases}\bigotimes_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PD } \\ \neg \neg \bigvee_{v \in X}\left(p_{1}^{v\left(p_{1}\right)} \wedge \cdots \wedge p_{n}^{v\left(p_{n}\right)}\right), & \text { for PID }\end{cases}
$$

is projective in L .

Theorem
$\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$ is \mathcal{F}-structurally complete, i.e., $\phi{h_{\mathrm{L}}^{\mathcal{F}} \psi \Longleftrightarrow \phi \vdash_{\mathrm{L}} \psi \text {. } ~}_{\text {. }}$

Theorem

Recall: $\phi \equiv \bigvee_{i \in 1} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{x} \sim^{\mathcal{F}} \psi$, then $\Theta_{x} \vdash_{L} \psi$
Proof.

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{x} h^{\mathcal{F}} \psi$, then $\Theta_{X} \vdash_{L} \psi$
Proof.

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

$\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$ is \mathcal{F}-structurally complete, i.e., $\phi{h_{\mathrm{L}}^{\mathcal{F}} \psi \Longleftrightarrow \phi \vdash_{\mathrm{L}} \psi \text {. } ~}_{\text {. }}$
Recall: $\phi \equiv \bigvee_{i \in 1} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{$ PD, PID $\}$. If $\Theta_{x} \sim^{\mathcal{F}} \psi$, then $\Theta_{x} \vdash_{L} \psi$
Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_{X}.

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

Recall: $\phi \equiv \bigvee_{i \in 1} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{x} h^{\mathcal{F}} \psi$, then $\Theta_{X} \vdash_{L} \psi$
Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_{x}. Then $\vdash \sigma\left(\Theta_{X}\right)$.

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

Recall: $\phi \equiv \bigvee_{i \in 1} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{x} \not^{\mathcal{F}} \psi$, then $\Theta_{x} \vdash_{\mathrm{L}} \psi$
Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_{x}. Then $\vdash \sigma\left(\Theta_{x}\right)$. Now, since $\Theta_{X} \vdash_{\mathrm{L}}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

Recall: $\phi \equiv \bigvee_{i \in 1} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{X} h^{\mathcal{F}} \psi$, then $\Theta_{X} \vdash_{\mathrm{L}} \psi$
Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_{x}. Then $\vdash \sigma\left(\Theta_{x}\right)$. Now, since $\Theta_{X} \vdash_{L}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.
On the other hand, as σ is a projective unifier of Θ_{X}, we have that $\Theta_{X}, \sigma(\psi) \vdash \psi$,

A consistent formula ϕ is said to be \mathcal{S}-projective in L if there exists $\sigma \in \mathcal{S}$ such that (1) $\vdash_{\mathrm{L}} \sigma(\phi)$; (2) $\phi, \sigma(\psi) \vdash_{\mathrm{L}} \psi$ and $\phi, \psi \vdash_{\mathrm{L}} \sigma(\psi)$ for all formulas ψ.

Theorem

$\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$ is \mathcal{F}-structurally complete, i.e., $\phi{h_{\mathrm{L}}^{\mathcal{F}} \psi \Longleftrightarrow \phi \vdash_{\mathrm{L}} \psi \text {. } ~}_{\text {. }}$
Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_{i}}$

Example

Let $\mathrm{L} \in\{\mathbf{P D}, \mathbf{P I D}\}$. If $\Theta_{X} h^{\mathcal{F}} \psi$, then $\Theta_{X} \vdash_{\mathrm{L}} \psi$
Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_{x}. Then $\vdash \sigma\left(\Theta_{x}\right)$. Now, since $\Theta_{X} \vdash_{L}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.
On the other hand, as σ is a projective unifier of Θ_{X}, we have that $\Theta_{X}, \sigma(\psi) \vdash \psi$, thus $\Theta_{x} \vdash \psi$ for all $i \in I$, as desired.

Theorem

For any intermediate logic L such that $\mathrm{ND} \subseteq \mathrm{L}$, its negative variant $\mathrm{L}\urcorner=\{\phi \mid \tau(\phi) \in \mathrm{L}$, where $\tau(p)=\neg p\}$ is $\mathcal{S T}$-hereditarily structurally complete, i.e., L^{\prime} is $\mathcal{S T}$-structurally complete, for any intermediate theory L^{\prime} extending L such that $\vdash_{\mathrm{L}^{\prime}}$ is closed under $\mathcal{S} \mathcal{T}$.

- ML is hereditarily structurally complete.
- ML \urcorner is $\mathcal{S T}$-structurally complete. [(Miglioli, Moscato, Ornaghi, Quazza, Usberti, 1989), proved using disjunction property]

Theorem

For any intermediate logic L such that $\mathrm{ND} \subseteq \mathrm{L}$, its negative variant $\mathrm{L}\urcorner=\{\phi \mid \tau(\phi) \in \mathrm{L}$, where $\tau(p)=\neg p\}$ is $\mathcal{S T}$-hereditarily structurally complete, i.e., L^{\prime} is $\mathcal{S T}$-structurally complete, for any intermediate theory L^{\prime} extending L such that $\vdash_{\mathrm{L}^{\prime}}$ is closed under $\mathcal{S T}$.

In particular, $\mathbf{N D}\urcorner, \mathbf{K P}\urcorner$ and $\mathbf{M L}\urcorner$ are $\mathcal{S T}$-hereditarily structurally complete.

- ML is hereditarily structurally complete.
- ML \urcorner is $\mathcal{S T}$-structurally complete. [(Miglioli, Moscato, Ornaghi, Quazza, Usberti, 1989), proved using disjunction property]

