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Dependence between first-order variables

First Order Quantifiers:
∀x1∃y1∀x2∃y2φ

Henkin Quantifiers (Henkin, 1961):(
∀x1 ∃y1
∀x2 ∃y2

)
φ

Independence Friendly Logic (Hintikka, Sandu, 1989):

∀x1∃y1∀x2∃y2/{x1}φ

First-order dependence Logic (Väänänen 2007):
∀x1∃y1∀x2∃y2( =(x2, y2) ∧ φ)

Theorem (Enderton, Walkoe). Over sentences, all of the above
extensions of FO have the same expressive power as Σ1

1.
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Propositional dependence logic =
classical propositional logic + =(~p,q)

Whether f (x) > 0 depends completely on whether x < 0 or not.

I will be absent depending on whether he shows up or not.

Whether it rains depends completely on whether it is summer or not.
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Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

XA team {

leap year summer rainy
v1 0 0 1

Y

{

v1 |=

=(s, r)

?

This type of dependence corresponds precisely to functional
dependency, widely investigated in Database Theory.
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Logics of dependence

Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

φ ::= p | ¬p |=(~p,q) | φ ∧ φ | φ ∨ φ

propositional intuitionistic dependence logic (PID):

φ ::= p | ⊥ |=(~p,q) | φ ∧ φ | φ ∨ φ | φ→ φ

(¬φ := φ→ ⊥)

A valuation is a function v : Prop→ {0,1}.
A team is a set of valuations.

p0 p1 p2 . . .
v1 1 0 0 . . .
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Team Semantics
Let X be a team.

X |= p iff for all v ∈ X , v(p) = 1;
X |= ¬p iff for all v ∈ X , v(p) = 0;
X |= ⊥ iff X = ∅;
X |= =(~p,q) iff for all v , v ′ ∈ X : v(~p) = v ′(~p) =⇒ v(q) = v ′(q)
X |= φ ∧ ψ iff X |= φ and X |= ψ;
X |= φ⊗ ψ iff there exist Y ,Z s.t. X = Y ∪ Z , Y |= φ and Z |= ψ;
X |= φ ∨ ψ iff X |= φ or X |= ψ;
X |= φ→ ψ iff for any team Y ⊆ X : Y |= φ =⇒ Y |= ψ.

X { X |= p

Y |= ¬p

X ∪ Y 6|= p

X ∪ Y 6|= ¬p

X |= =(p,q)

Y {

p q r
v1 1 0 0
v2 1 0 1
v3 0 1 0
v4 0 1 1

Y |= φ

Z |= ψ

Y |= φ =⇒ Y |= ψ

Y |= φ =⇒ Y |= ψ

A formula φ is said to be flat iff for all teams X ,
X |= φ ⇐⇒ ∀v ∈ X , {v} |= φ.

Example:
Classical formulas (i.e., formulas without any occurrences of
=(~p,q) and ∨) are flat.
¬φ is flat for all φ.
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An algebraic view

Write L(℘(2N)) for the set of all nonempty downwards closed subsets
of ℘(2N).

Abramsky and Väänänen (2009):

Consider the algebra (L(℘(2N)),⊗,∩,∪, {∅},⊆), where
A⊗ B =↓ {X ∪ Y | X ∈ A and Y ∈ B}.

(L(℘(2N)),⊗, {∅},⊆) is a commutative quantale.

In particular, A⊗ B ≤ C ⇐⇒ A ≤ B ( C.

(L(℘(2N)),∩,∪, {∅}) is a complete Heyting algebra.

In particular, A ∩ B ≤ C ⇐⇒ A ≤ B → C.
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Dependence atoms are definable in PID−:

=(p,q) ≡ (p ∨ ¬p)→ (q ∨ ¬q)

p q r
v1 1 0 0
v2 1 0 1
v3 0 1 0
v4 0 1 1

Observation (Y. 2014)
PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli
and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax.
Completely different motivations.
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A Medvedev frame:

(

℘({0,1}Propn )

,⊇)

00 01 10 11

00 10 11 01 10 1100 01 1100 01 10

01 10 01 11 10 11110010000100

10 110100

p → q

¬¬p → p

p, 6q

(Ciardelli and Roelofsen, 2011): [Recall: ND ⊆ KP ⊆ ML]

PID− = ML¬ = {φ | τ(φ) ∈ ML, where τ(p) = ¬p}

= KP¬ = KP⊕ ¬¬p → p = ND¬
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Theorem (ess. Ciardelli, Roelofsen)
PID is sound and complete w.r.t. the following Hilbert style deduction system
Axioms:

all substitution instances of IPC axioms

all substitution instances of

(KP) (¬p → (q ∨ r))→ ((¬p → q) ∨ (¬p → r)).

¬¬p → p for all propositional variables p

=(p1, · · · ,pn,q)↔
(∧n

i=1(pi ∨ ¬pi )→ (q ∨ ¬q)
)

Rules:

Modus Ponens

Theorem (Y., Väänänen, 2014)
PD is sound and complete w.r.t. its natural deduction system. In particular, if
φ does not contain any dependence atoms, then `CPC φ ⇐⇒ `PD φ.
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Neither PD nor PID is closed under uniform substitution.
E.g., for PID, ` ¬¬p → p, but 0 ¬¬(p ∨ ¬p)→ (p ∨ ¬p).
Substitution is not well-defined in the logics, since, e.g., =(φ, ψ),
¬φ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat
formulas φ and ψ, strings of the form =(φ, ψ), ¬φ are well-formed
formulas. There are sound and complete deductive systems for the
extended logics PD and PID.

Lemma
PD and PID are closed under flat substitutions, i.e., substitutions σ
such that σ(p) is flat for all p ∈ Prop.
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admissible rules and structural completeness
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Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼L ψ

Pf. For any σ,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

15/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼

S

L ψ

Pf. For any σ∈ S,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

16/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.

A rule φ/ψ of L is said to be admissible, in symbols φ |∼L ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ.
Alternatively, a rule R is admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼SL ψ

Pf. For any σ∈ S,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

16/21



Γ `̀̀ φ : a consequence relation on ℘(Form)× Form.
A logic L is a set of theorems, i.e., L = {φ : ∅ `L φ}.
Let S be a set of substitutions under which `L is closed. A rule
φ/ψ of L is said to be S-admissible, in symbols φ |∼SL ψ, if
`L σ(φ) =⇒`L σ(ψ) for all substitutions σ∈ S.
Alternatively, a rule R is S-admissible in L iff
{φ : ∅ `L φ} = {φ : ∅ `R

L φ}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

A rule φ/ψ of L is said to be derivable if φ `L ψ.
φ `L ψ =⇒ φ |∼SL ψ

Pf. For any σ∈ S,
`L σ(φ)

by assumption: σ(φ) `L σ(ψ)

}
=⇒ `L σ(ψ).

(since `L is closed under σ)

16/21



Definition
A logic L is said to be S-structurally complete if every S-admissible rule
is derivable in L, i.e., φ |∼SL ψ ⇐⇒ φ `L ψ.

Example:
KP rule ¬p → q ∨ r/(¬p → q) ∨ (¬p → r) is admissible in all
intermediate logics, but KP rule is not derivable in IPC.
KP is not structurally complete, ML is structurally complete.
CPC is structurally complete.

Theorem
PD and PID are F-structurally complete, where F is the class of all flat
substitutions.

Theorem
ND¬, KP¬ and ML¬ are ST -structurally complete, where ST is the
class of all stable substitutions, i.e., substitutions σ s.t.
` ¬¬σ(p)↔ σ(p).
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Lemma
For any team X 6= ∅ on V = {p1, . . . ,pn}, there is a formula ΘX of PD
and PID such that for any team Y on V, Y |= ΘX ⇐⇒ Y ⊆ X .

Proof.

X{
p q

v1 1 1
v2 1 0
v3 0 1

Let

ΘX :=

{
for PD;

for PID.

Then Y |= ΘX ⇐⇒ Y ⊆ X , for any team Y on N.

Corollary

φ ≡
∨

X∈JφK ΘX , where JφK = {X ⊆ {0,1}V | X |= φ}, for any consistent
formula φ of PD and PID.

Lemma
Let L be such that ND ⊆ L ⊆ CPC. Every formula is equivalent to a
formula of the form

∨
i∈I ¬φi in L¬.
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Definition (Projective formula)
Let S be a set of substitutions under which `L is closed. A formula φ is
said to be S-projective in L if there exists σ ∈ S such that

(1) `L σ(φ)

(2) φ, σ(ψ) `L ψ and φ, ψ `L σ(ψ) for all formulas ψ.
Such σ is called a S-projective unifier of φ in L.

Every consistent formula is projective in CPC.
Every consistent negated formula (i.e. ¬φ) is projective in every
intermediate logic. Moreover, every consistent ¬φ is projective in
L¬, where L is an intermediate logic s.t. ND ⊆ L.
For L ∈ {PD,PID}, the formula

ΘX =


⊗
v∈X

(pv(p1)
1 ∧ · · · ∧ pv(pn)

n ), for PD;

¬¬
∨

v∈X

(pv(p1)
1 ∧ · · · ∧ pv(pn)

n ), for PID.

is projective in L.
19/21
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A consistent formula φ is said to be S-projective in L if there exists σ ∈ S such
that (1) `L σ(φ); (2) φ, σ(ψ) `L ψ and φ, ψ `L σ(ψ) for all formulas ψ.

Theorem
L ∈ {PD,PID} is F-structurally complete, i.e., φ |∼F

L ψ ⇐⇒ φ `L ψ.

Recall: φ ≡
∨

i∈I ΘXi

Example
Let L ∈ {PD,PID}. If ΘX |∼F ψ, then ΘX `L ψ

Proof. Let σ ∈ F be a projective unifier of ΘX . Then ` σ(ΘX ). Now, since
ΘX |∼F

L ψ, we obtain that ` σ(ψ).

On the other hand, as σ is a projective unifier of ΘX , we have that
ΘX , σ(ψ) ` ψ, thus ΘX ` ψ for all i ∈ I, as desired.

20/21
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ΘX , σ(ψ) ` ψ, thus ΘX ` ψ for all i ∈ I, as desired.
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Theorem

For any intermediate logic L such that ND ⊆ L, its negative variant
L¬ = {φ | τ(φ) ∈ L, where τ(p) = ¬p} is ST -hereditarily structurally
complete, i.e., L′ is ST -structurally complete, for any intermediate
theory L′ extending L such that `L′ is closed under ST .

In particular, ND¬, KP¬ and ML¬ are ST -hereditarily structurally
complete.

ML is hereditarily structurally complete.
ML¬ is ST -structurally complete. [ (Miglioli, Moscato, Ornaghi,
Quazza, Usberti, 1989), proved using disjunction property]
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