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Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxedy20

Henkin Quantifiers (Henkin, 1961):
VX4 E|y1 ¢
VXQ E|y2
Independence Friendly Logic (Hintikka, Sandu, 1989):
Vx13y1Vxodys /{x1 }oé

First-order dependence Logic (Vaananen 2007):
Vx13y1Vxe3ya(=(x2, y2) A ¢)

Theorem (Enderton, Walkoe). Over sentences, all of the above
extensions of FO have the same expressive power as ¥1.
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@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X Vs 1 1 0 %
V4 0 1 0
Vs 1 1 1

X = =(s,r), Y E=(s,r)

This type of dependence corresponds precisely to functional
dependency, widely investigated in Database Theory.
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Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar
pu=pl-p|=(pq) [ ¢AG|dD¢

@ propositional intuitionistic dependence logic (PID):

pu=p| L|=(P,q)|dND|dVI|d— ¢
(~¢:= ¢~ 1)

A valuation is a function v : Prop — {0, 1}.
A teamis a set of valuations.

Vi
V2
V3
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- oo ol
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Team Semantics

Let X be a team.

X = piftforall v e X, v(p) =
X = —piftforall v e X, v(p)

1

°
e XE Liff X=10;
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@ XEo®vyiffthereexist Y, Zst. X=YUZ, Y =¢and Z ¢
e XEoVyiff X E¢or X Ey;

e XEo¢p—vyiffforanyteamYC X: YE¢o = Y E .

1

A formula ¢ is said to be flat iff for all teams X,
XE¢ <= VvelX, {viEo

Example:

@ Classical formulas (i.e., formulas without any occurrences of
=(p, q) and V) are flat.
@ —¢ is flat for all ¢.
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Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p):1,
@ X = —piffforallve X, v(p)
e XE Liff X=10;

@ X = =(p,q)iffforall v,v € X: v(p = Vv'(p)) = v(q) = V'(q)
e XEonyiff X =¢and X = o;

e XEo®viffthereexist Y, Zst. X=YUZ, Y E¢and Z = ¢;
e XEoVyiff X =¢or X = ;

e XEo¢p—vyiffforanyteam Y C X, Y E o= Y .

Fix N = {py.....pn}, the set [o(ps..... pn)] = {X C {0, 1}V | X = ¢}
@ is downwards closed, thatis, Y C X € o] = Y € [4],
@ and nonempty, since 0 € [¢].
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An algebraic view

Write £(p(2V)) for the set of all nonempty downwards closed subsets
of p(2N).

Abramsky and Vaananen (2009):

Consider the algebra (£(p(2V)), ®,N, U, {0}, C), where
A B=l{XUY|XecAandY € B}.

e (L(p(2N)), ®, {0}, C) is a commutative quantale.
In particular, A B< C <— A< B —C.

@ (L(p(2N)),n,u, {0}) is a complete Heyting algebra.
In particular, ANB< C <— A<B— C.
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Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

p q r
V4 1 0 O
v 1 0 1
V3 0 1 0
v 0 1 1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli
and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax.
Completely different motivations.
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A Medvedev frame: (p({0, 1}FPn)\ {0}, D)

00 01 10 11

(Ciardelli and Roelofsen, 2011): [Recall: ND C KP C ML]
PID™ =ML = {¢ | 7(¢) € ML, where 7(p) = —p}
=KP"=KP®-—p— p=ND"

00 01 10
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Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system
Axioms:

@ all substitution instances of IPC axioms
@ all substitution instances of
(KP)  (=p—=(qVvr)—=((=p—q)V(=p—r)).
@ ——p — p for all propositional variables p
® =(pr,Pnyq) & (/\,-”:1 (pi vV =pi) = (q Vv ﬁq))

Rules:

@ Modus Ponens
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@ Neither PD nor PID is closed under uniform substitution.
E.g., for PID, - =—p — p, but ¥ =—=(p Vv —p) — (p vV —p).

@ Substitution is not well-defined in the logics, since, e.g., =(¢, ),
—¢ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat
formulas ¢ and 1, strings of the form =(¢, ¢), —¢ are well-formed
formulas. There are sound and complete deductive systems for the
extended logics PD and PID.

PD and PID are closed under flat substitutions, i.e., substitutions o
such that o(p) is flat for all p € Prop.
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admissible rules and structural completeness
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@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.
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@ [+ ¢ : aconsequence relation on p(Form) x Form.
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intermediate logics, but KP rule is not derivable in IPC.
@ KP is not structurally complete, ML is structurally complete.
@ CPC is structurally complete.

PD and PID are F-structurally complete, where F is the class of all flat
substitutions.

ND™, KP™ and ML™ are ST -structurally complete, where ST is the
class of all stable substitutions, i.e., substitutions o s.t.

= ==o(p) ¢ o(p).
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Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.
P g Let
vl Qo A=A prP), for PD;
X{_v2 T 0 O, — J veX
v, 0 1 ) V0P AP, for PID.

veX
Then Y = O©x < Y C X, for any team Y on N.

Corollary

¢ = Vxepe) ©x, where [¢] = {X C {0, 1}V | X |= ¢}, for any consistent
formula ¢ of PD and PID.

Lemma

LetL be such that ND C L C CPC. Every formula is equivalent to a
formula of the form \/ ;. —~¢; in L™.

| A\

y,
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Definition (Projective formula)
Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo(o)

(2) ¢,0(v) FL v and ¢, | a(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.
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said to be S-projective in L if there exists o € S such that

(1) FLo()
(2) ¢,0(x) FL+ and ¢, 9 = o(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

@ Every consistent formula is projective in CPC.

@ Every consistent negated formula (i.e. —¢) is projective in every
intermediate logic. Moreover, every consistent —¢ is projective in
L™, where L is an intermediate logic s.t. ND C L.

@ For L € {PD,PID}, the formula

Q@ A AP, for PD;
eX veX

=\ Py A A piP), for PID.

veX

is projective in L.
19/21



L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9. \

20/21



L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9. \

Recall: ¢ = \/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof.

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof.

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x.

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then F o(©x).

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

On the other hand, as ¢ is a projective unifier of © x, we have that

eXa U(l/f) F 1/):

20/21



A consistent formula ¢ is said to be S-projective in L if there exists o € S such
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Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

On the other hand, as ¢ is a projective unifier of © x, we have that
Ox,o() -, thus ©x ¢ for all i € /, as desired. O
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Theorem

For any intermediate logic L such that ND C L, its negative variant
L™ ={¢ | 7(¢) € L, where 7(p) = —p} is ST -hereditarily structurally
complete, i.e., L' is ST -structurally complete, for any intermediate
theory L’ extending L such that . is closed under ST.
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Theorem

For any intermediate logic L such that ND C L, its negative variant
L™ ={¢ | 7(¢) € L, where 7(p) = —p} is ST -hereditarily structurally
complete, i.e., L' is ST -structurally complete, for any intermediate
theory L’ extending L such that . is closed under ST.

In particular, ND™, KP™ and ML™ are ST -hereditarily structurally
complete.

@ ML is hereditarily structurally complete.

@ ML is ST -structurally complete. [ (Miglioli, Moscato, Ornaghi,
Quazza, Usberti, 1989), proved using disjunction property]
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