Utrecht University

Structural completeness in logics of dependence

Fan Yang
Utrecht University, the Netherlands

Ischia
15-19 June, 2015

Joint work with Rosalie lemhoff

1/21

Q logics of dependence

e admissible rules and structural completeness

2/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxo3ye0

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxo3y20

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxo3ye g

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxo3ye g

Henkin Quantifiers (Henkin, 1961):

VX4 E|y1 ¢
Vxe dy2

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxedy20

Henkin Quantifiers (Henkin, 1961):
VX4 E|y1 ¢
VXQ E|y2
Independence Friendly Logic (Hintikka, Sandu, 1989):
Vx13y1Vxodys /{x1 }oé

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxedy20

Henkin Quantifiers (Henkin, 1961):
VX4 E|y1 ¢
VXQ E|y2
Independence Friendly Logic (Hintikka, Sandu, 1989):
Vx13y1Vxodys /{x1 }oé

First-order dependence Logic (Vaananen 2007):
Vx13y1Vxe3ya(=(x2, y2) A ¢)

/21

Dependence between first-order variables

First Order Quantifiers:
Vx13y1Vxedy20

Henkin Quantifiers (Henkin, 1961):
VX4 E|y1 ¢
VXQ E|y2
Independence Friendly Logic (Hintikka, Sandu, 1989):
Vx13y1Vxodys /{x1 }oé

First-order dependence Logic (Vaananen 2007):
Vx13y1Vxe3ya(=(x2, y2) A ¢)

Theorem (Enderton, Walkoe). Over sentences, all of the above
extensions of FO have the same expressive power as ¥1.

/21

Propositional dependence logic =
classical propositional logic + =(p, q)

a4/21

Propositional dependence logic =
classical propositional logic + =(p, q)

@ Whether f(x) > 0 depends completely on whether x < 0 or not.

a4/21

Propositional dependence logic =
classical propositional logic + =(p, q)

@ Whether f(x) > 0 depends completely on whether x < 0 or not.

@ | will be absent depending on whether he shows up or not.

:(S’ a)

4/21

Propositional dependence logic =
classical propositional logic + =(p, q)

@ Whether f(x) > 0 depends completely on whether x < 0 or not.
@ | will be absent depending on whether he shows up or not.

@ Whether it rains depends completely on whether it is summer or not.

:(Sv r)

4/21

@ Whether it rains depends completely on whether it is summer or not.

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy
V4 0 0 1

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy
V4 0 0 1

vi = =(s,r)?

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X ™ 1 1 0
Vg 0 1 0

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

A team X

4

V3
V4

leap year

o = =0

(s:7)

summer

rainy
1

1
0
0

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

A team X

4

V3
V4

leap year

o = =0

(s:7)

summer

rainy
1

1
0
0

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Va 1 0 1
A team X ™ 1 1 0
Vs 0 1 0

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X ™ 1] 0
Vg 0 1 0

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X ™ 1] 0
Vg 0 1 0

X =(s,1)

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X Vs 1 1 0 %
V4 0 1 0
Vs 1 1 1

XE=(sr) YlE=(sr)

5/21

@ Whether it rains depends completely on whether it is summer or not.

Team semantics (Hodges 1997)

leap year summer rainy

Vi 0 0 1
Vo 1 0 1
A team X Vs 1 1 0 %
V4 0 1 0
Vs 1 1 1

X = =(s,r), Y E=(s,r)

This type of dependence corresponds precisely to functional
dependency, widely investigated in Database Theory.

5/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

p=p|l-p|=(P,q) | dNP| PV P

B/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

p=p|l-p|=(P,q) | dNP|Pp2¢

B/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

pu=pl-p|=(P.q)|oNd| ¢
@ propositional intuitionistic dependence logic (PID):

pu=p|L|=(B.q)|¢NP|dVS|— o

B/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

pu=pl-p|=(P.q)|oNd| ¢
@ propositional intuitionistic dependence logic (PID):

pu=p| L|=(B,q) | 6A|6VE|6— 0
(~¢ =6 — 1)

B/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar

pu=pl-p|=(P.q)|oNd| ¢
@ propositional intuitionistic dependence logic (PID):

pu=p| L|=(B,q) | 6A|6VE|6— 0
(~¢ =6 — 1)

A valuation is a function v : Prop — {0, 1}.

Po P11 P2
vy 1 0 O

B/21

Logics of dependence

@ Well-formed formulas of propositional dependence logic (PD) are
given by the following grammar
pu=pl-p|=(pq) [¢AG|dD¢

@ propositional intuitionistic dependence logic (PID):

pu=p| L|=(P,q)|dND|dVI|d— ¢
(~¢:= ¢~ 1)

A valuation is a function v : Prop — {0, 1}.
A teamis a set of valuations.

Vi
V2
V3

. O_L_Lg
_L_Lo:g
- oo ol

B/21

Team Semantics

Let X be a team.

e X EpiffforallveX, v(p) =
e X E —piffforall v e X, v(p)
e XE Liff X=10;

1

4
Vo
V3
Va4

OO_L_L‘G
- - O 09N

= Y

7/21

Team Semantics

Let X be a team.
e X EpiffforallveX, v(p

):
e X E —piffforall v e X, v(p)

o X |= Liff X = 0;

4

V3
Va4

OO_L_L‘G

- a2 0o

= Y

1

XkEp

7/21

Team Semantics

Let X be a team.

e X EpiffforallveX, v(p) =
e X E —piffforall v e X, v(p)
e XE Liff X=10;

1

p q r
Vq 1 0 O
X{ v o1 0 1 XEp
010 YE-p
0 1 1

7/21

Team Semantics

Let X be a team.

e X EpiffforallveX, v(p) =
e X E —piffforall v e X, v(p)
e XE Liff X=10;

1

XEp XUYEp
YE-p XUYE-p

x

~

S =
OO_L_L‘G
- 0 009

= Y

7/21

Team Semantics

Let X be a team.
e X Epiffforallv e X, v(p) =
e X E —piffforall v e X, v(p)
e X[Liff X=0;
e X = =(p,q)iffforall v,v € X: v(p) =V (p) = v(q) = V'(q)

1

4
Vo
V3
Va4

OO_L_L‘G

= Y

7/21

Team Semantics

Let X be a team.
e X EpiffforallveX, v(p) =
e X E —piffforall v e X, v(p)
e X[Liff X=0;
@ X = =(p,q)iffforall v,v' € X: v(p) =Vv'(p) = v(q) = Vv'(q)

1

4
Vo
V3
Va4

X E=(p,q)

OO_L_L‘G
- - O 09N

= Y

7/21

Team Semantics

Let X be a team.
e X EpiffforallveX, v(p) =
e X E —piffforall v e X, v(p)
e X[Liff X=0;
@ X = =(p,q)iffforall v,v' € X: v(p) =Vv'(p) = v(q) = Vv'(q)

1

4
Vo
V3
Va4

X >: :(pa q)

OO_L_L‘G
- 0 009

= Y

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X E Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢

1

4
Vo
V3
Va4

OO_L_L‘G

= Y

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X E Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢

1

4
Vo
V3
Va4

OO_L_L‘G

—lo = o=

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X E Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢

1

4
Vo
V3
Va4

OO_L_L‘G

—lo| = ofs

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X E Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢

1

4
Vo
V3
Va4

YiE®

OO_L_L‘O

—lo| = ofs

Zkw

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X = Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢
XE=EoVvyift X =¢or X =1

XEo¢—vyiffforanyteam Y C X: YE¢ = Y .

1

pP
Vq 1
Vo 1
v O
V4 0

- - O 09N
- O =+ O =

7/21

Team Semantics

Let X be a team.

X Epiffforall v e X, v(p) =
X | —piffforall v e X, v(p)
X = Liff X =0;

X E =(p,q)iffforall v,v' € X: v(p) = v'(p) = v(q) = V/(q)
XEoANYiff X =¢and X = ;

XEoxyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢
XE=EoVvyift X =¢or X =1

XEo¢—vyiffforanyteam Y C X: YE¢ = Y .

1

p
Vq 1)
0
0

V3
Va4

—lo = o=

7/21

Team Semantics

Let X be a team.

X = piftforall v e X, v(p) =
X = —piftforall v e X, v(p)

1

°
e XE Liff X=10;
e X = =(p,q)iffforall v,v € X: v(p) =V (p) = v(q) = V'(q)
e XEonyiff X =¢and X = o;
e XEowyiffthereexist Y, Zst. X=YUZ, Y E¢and Z ¢;
e XEoVyiff X =o¢or X,
@ XEop—vyiffforanyteam Y C X: YE¢ = Y .
p q r

Vq 1 0 O

v 1 0 1

vy 0 1 0

vi 0 1 1 YEo=YEY

7/21

Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p) =
e X | —piffforall v e X, v(p)
o X | Liff X =0;

@ X = =(p,q)iffforall v,v € X: v(p) =V (p) = v(q) = V'(q)
e XEonyiff X E¢and X = o;

@ XEo®vyiffthereexist Y, Zst. X=YUZ, Y =¢and Z ¢
@ XEoVyiff X =o¢or X =

e XEo¢p—vyiffforanyteamYC X: YE¢o = Y E .

1

A formula ¢ is said to be flat iff for all teams X,
XE¢ <= VvelX, {viEo

7/21

Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p) =
e X | —piffforall v e X, v(p)
o X | Liff X =0;

@ X = =(p,q)iffforall v,v € X: v(p) =V (p) = v(q) = V'(q)
e XEonyiff X E¢and X = o;

@ XEo®vyiffthereexist Y, Zst. X=YUZ, Y =¢and Z ¢
e XEoVyiff X E¢or X Ey;

e XEo¢p—vyiffforanyteamYC X: YE¢o = Y E .

1

A formula ¢ is said to be flat iff for all teams X,
XE¢ <= VvelX, {viEo

Example:

@ Classical formulas (i.e., formulas without any occurrences of
=(p, q) and V) are flat.
@ —¢ is flat for all ¢.

7/21

Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p):1,

e X | —piffforallve X, v(p) =

e XE Liff X=0;

@ X = =(p,q)iffforall v,v € X: v(p = Vv'(p)) = v(q) = V'(q)
e XEonyiff X =¢and X = o;

e XEo®viffthereexist Y, Zst. X=YUZ, Y E¢and Z = ¢;
e XEoVyiff X =¢or X = ;

e XEo¢p—vyiffforanyteam Y C X, Y E o= Y .

Fix N = {p1,...,pn}, the set [6(p1, ... pn)] = {X C {0, 1}V | X = ¢}

/21

Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p):1,
@ X = —piffforallve X, v(p)
e XE Liff X=10;

@ X = =(p,q)iffforall v,v € X: v(p = Vv'(p)) = v(q) = V'(q)
e XEonyiff X =¢and X = o;

e XEo®viffthereexist Y, Zst. X=YUZ, Y E¢and Z = ¢;
e XEoVyiff X =¢or X = ;

e XEo¢p—vyiffforanyteam Y C X, Y E o= Y .

Fix N = {py.....pn}, the set [o(ps..... pn)] = {X C {0, 1}V | X = ¢}
@ is downwards closed, thatis, Y C X € o] = Y € [4],

/21

Team Semantics

Let X be a team.

@ X =piffforallv e X, v(p):1,
@ X = —piffforallve X, v(p)
e XE Liff X=10;

@ X = =(p,q)iffforall v,v € X: v(p = Vv'(p)) = v(q) = V'(q)
e XEonyiff X =¢and X = o;

e XEo®viffthereexist Y, Zst. X=YUZ, Y E¢and Z = ¢;
e XEoVyiff X =¢or X = ;

e XEo¢p—vyiffforanyteam Y C X, Y E o= Y .

Fix N = {py.....pn}, the set [o(ps..... pn)] = {X C {0, 1}V | X = ¢}
@ is downwards closed, thatis, Y C X € o] = Y € [4],
@ and nonempty, since 0 € [¢].

/21

An algebraic view

Write £(p(2V)) for the set of all nonempty downwards closed subsets
of p(2N).

q9/21

An algebraic view

Write £(p(2V)) for the set of all nonempty downwards closed subsets
of p(2N).

Abramsky and Vaananen (2009):

Consider the algebra (£(p(2V)), ®,N, U, {0}, C), where
A B=l{XUY|XecAandY € B}.

e (L(p(2N)), ®, {0}, C) is a commutative quantale.
In particular, A B< C <— A< B —C.

@ (L(p(2N)),n,u, {0}) is a complete Heyting algebra.
In particular, ANB< C <— A<B— C.

q9/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

V2
V3
Va

_LO_L

10/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

V3 1 0
V4 1 1

10/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

——
4

10/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

p q r
V4 1 0 O
v 1 0 1
V3 0 1 0
v 0 1 1

Observation (Y. 2014)
PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli
and Roelofsen, 2011).

10/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

p q r
V4 1 0 O
v 1 0 1
V3 0 1 0
v 0 1 1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli
and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax.

10/21

Dependence atoms are definable in PID™:

=(p,q) =(pV —p) = (qV Q)

p q r
V4 1 0 O
v 1 0 1
V3 0 1 0
v 0 1 1

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli
and Roelofsen, 2011).

The same semantics (team semantics), almost the same syntax.
Completely different motivations.

10/21

p({0, 1}7roPn)

)
® ® @@ @

@ @ @0 @@ @@ @9
@8 @0 @20 @29
©989)

(p({0,1}77), 2)

(p({0,1}77), 2)

(p({0,1}77), 2)

11/21

(p({0, 1}7P) \ {0}, 2)

11/21

A Medvedev frame: (p({0, 1}FPn)\ {0}, D)

11/21

A Medvedev frame: (p({0, 1}FPn)\ {0}, D)

V,‘%;‘\

00 01 10 11

(Ciardelli and Roelofsen, 2011):
PID™ =ML = {¢ | 7(¢) € ML, where 7(p) = —p}

00 01 10

11/21

A Medvedev frame: (p({0, 1}FPn)\ {0}, D)

00 01 10 11

(Ciardelli and Roelofsen, 2011):
PID™ =ML = {¢ | 7(¢) € ML, where 7(p) = —p}

00 01 10

11/21

A Medvedev frame: (p({0, 1}FPn)\ {0}, D)

00 01 10 11

(Ciardelli and Roelofsen, 2011): [Recall: ND C KP C ML]
PID™ =ML = {¢ | 7(¢) € ML, where 7(p) = —p}
=KP"=KP®-—p— p=ND"

00 01 10

11/21

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system
Axioms:

@ all substitution instances of IPC axioms
@ all substitution instances of
(KP) (=p—=(qVvr)—=((=p—q)V(=p—r)).
@ ——p — p for all propositional variables p
® =(pr,Pnyq) & (/\,-”:1 (pi vV =pi) = (q Vv ﬁq))

Rules:

@ Modus Ponens

19/21

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system
Axioms:

@ all substitution instances of IPC axioms
@ all substitution instances of
(KP) (=p=(qVvr) = ((=p—=q)V(-p =)
@ ——p — p for all propositional variables p
® —(p1,-+.pn) & (ALy(piV-p) = (qV -0))
Rules:
@ Modus Ponens

Theorem (Y., Vaananen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if
¢ does not contain any dependence atoms, thencpc ¢ <= kpp ¢.

19/21

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system
Axioms:

@ all substitution instances of IPC axioms
@ all substitution instances of
(KP) (=p=(qVvr) = ((=p—=q)V(-p =)
@ ——p — p for all propositional variables p
® —(p1,-+.pn) & (ALy(piV-p) = (qV -0))
Rules:
@ Modus Ponens

Theorem (Y., Vaananen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if
¢ does not contain any dependence atoms, thencpc ¢ <= kpp ¢.

19/21

@ Neither PD nor PID is closed under uniform substitution.
E.g., for PID, - =—p — p, but ¥ =—=(p Vv —p) — (p vV —p).

13/21

@ Neither PD nor PID is closed under uniform substitution.
E.g., for PID, - =—p — p, but ¥ =—=(p Vv —p) — (p vV —p).

@ Substitution is not well-defined in the logics, since, e.g., =(¢, ¢),
—¢ are not always well-formed formulas in the logics.

13/21

@ Neither PD nor PID is closed under uniform substitution.
E.g., for PID, - =—p — p, but ¥ =—=(p Vv —p) — (p vV —p).

@ Substitution is not well-defined in the logics, since, e.g., =(¢,),
—¢ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat
formulas ¢ and 1, strings of the form =(¢, ¢), —¢ are well-formed
formulas. There are sound and complete deductive systems for the
extended logics PD and PID.

13/21

@ Neither PD nor PID is closed under uniform substitution.
E.g., for PID, - =—p — p, but ¥ =—=(p Vv —p) — (p vV —p).

@ Substitution is not well-defined in the logics, since, e.g., =(¢,),
—¢ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat
formulas ¢ and 1, strings of the form =(¢, ¢), —¢ are well-formed
formulas. There are sound and complete deductive systems for the
extended logics PD and PID.

PD and PID are closed under flat substitutions, i.e., substitutions o
such that o(p) is flat for all p € Prop.

13/21

admissible rules and structural completeness

14/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

15/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =k o(v) for all substitutions o.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

15/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =k o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0 0FLo} ={o: 01 o).

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

15/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =k o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0 0FLo} ={o: 01 o).

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ pHLY =LV

15/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =k o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0 0FLo} ={o: 01 o).

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ pHLY =LV

Pf. For any o,

FLo(9)

by assumption: o(¢) F o (1) } = FLo(v).

15/21

@ [+ ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e.,L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =k o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0 0FLo} ={o: 01 o).

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ pHLY =LV

Pf. For any o,

FLo(¢)
by assumption: a(¢)L|—L o (1) } = kL o ().

(since - is closed under o) O

15/21

@ I ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e., L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =t o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0: 0FLo} ={o: 0K ¢}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ pLy = ¥

Pf. For any o€ S,

FLo(9)
by assumption: a(¢)L|—L o (1) } = L o(y).

(since - is closed under o) [

16/21

@ I ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e., L ={¢: 0 | ¢}.

@ Arule ¢/ of L is said to be admissible, in symbols ¢ |~ v, if
kL o(¢) =t o(v) for all substitutions o.

@ Alternatively, a rule R is admissible in L iff
{0: 0FLo} ={o: 0K ¢}.

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ Py = P ¥

Pf. Forany o€ S,

FLo(9)
by assumption: a(¢)L|—L o (1) } = L o(¥).

(since - is closed under o) [

16/21

@ I ¢ : aconsequence relation on p(Form) x Form.
@ Alogic L is a set of theorems, i.e., L = {¢: 0 - ¢}.

@ Let S be a set of substitutions under which | is closed. A rule
¢/ of L is said to be S-admissible, in symbols ¢ ¢ 1, if
kL o(¢) = b o(v) for all substitutions o€ S.

@ Alternatively, a rule R is S-admissible in L iff
{o: OFL o} ={o: O] o}

[Friedman, Citkin, Rybakov, Ghilardi, etc.]

@ Arule ¢/v of L is said to be derivable if ¢ - 1.
@ Py = P ¥

Pf. Forany o€ S,

FLo(9)
by assumption: o(¢) L o (1) } = L o(¥).
(since - is closed under o) 0

16/21

Definition

A logic L is said to be S-structurally complete if every S-admissible rule
is derivable in L, i.e., ¢ b ¢ <= ¢ L.

17/21

Definition

A logic L is said to be S-structurally complete if every S-admissible rule
is derivable in L, i.e., ¢ b ¢ <= ¢ L.

Example:
@ KPrule—-p—qVvr/(-p—q)V(-p— r)is admissible in all
intermediate logics, but KP rule is not derivable in IPC.
@ KP is not structurally complete, ML is structurally complete.
@ CPC is structurally complete.

17/21

Definition

A logic L is said to be S-structurally complete if every S-admissible rule
is derivable in L, i.e., ¢ b ¢ <= ¢ L.

Example:
@ KPrule—-p—qVvr/(-p—q)V(-p— r)is admissible in all
intermediate logics, but KP rule is not derivable in IPC.
@ KP is not structurally complete, ML is structurally complete.
@ CPC is structurally complete.

PD and PID are F-structurally complete, where F is the class of all flat
substitutions.

17/21

Definition

A logic L is said to be S-structurally complete if every S-admissible rule
is derivable in L, i.e., ¢ b ¢ <= ¢ L.

Example:
@ KPrule—-p—qVvr/(-p—q)V(-p— r)is admissible in all
intermediate logics, but KP rule is not derivable in IPC.
@ KP is not structurally complete, ML is structurally complete.
@ CPC is structurally complete.

PD and PID are F-structurally complete, where F is the class of all flat
substitutions.

ND™, KP™ and ML™ are ST -structurally complete, where ST is the
class of all stable substitutions, i.e., substitutions o s.t.

= ==o(p) ¢ o(p).

17/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.
p q Let
Vi 1 1 .
X{ w10 . :_{ for PD:
vy 0 1 for PID.

Then Y =E0x < Y C X, forany team Y on N.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.

Let
4!

X{Vz—
V3

Then Y =E0x < Y C X, forany team Y on N.

Ox =

o|=|—=T
—|lol = Q

(PAQ) (PA—Q) (mpAQ), for PD;
for PID.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.

Let
4!

X{Vz—
V3

Then Y =E0x < Y C X, forany team Y on N.

Ox =

o|=|—=T
—|lol = Q

(PA@)R(pA—=g)(—p A Qq), for PD;
for PID.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.

Let
4!

X{Vz—
V3

Then Y =E0x < Y C X, forany team Y on N.

Oy = {(p A Q)3(p A =q)&(-p A Q) for PD;
——((pAQ)V(PA=q)V (~pAq)), forPID.

o|=|—=T
—|lol = Q

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.
P g Let
vl QP A~ A prP), for PD;
X{_v2 70 Oy = J veX
o 1 | Ve A ape), for PID.
veX

Then Y = O©x < Y C X, for any team Y on N.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.
P q Let
vi 11 QP A A PP, for PD;
X{ v, 1 0 Oy vX
Vi 0 1 T = V(R A phE), for PID.

veX
Then Y = O©x < Y C X, for any team Y on N.

¢ = Vxepe) ©x, where [¢] = {X C {0, 1}V | X |= ¢}, for any consistent
formula ¢ of PD and PID.

18/21

Forany team X A0 onV = {ps,...,pn}, there is a formula © x of PD
and PID such that foranyteam Y onV, Y E©Ox < Y C X.

Proof.
P g Let
vl Qo A=A prP), for PD;
X{_v2 T 0 O, — J veX
v, 0 1) V0P AP, for PID.

veX
Then Y = O©x < Y C X, for any team Y on N.

Corollary

¢ = Vxepe) ©x, where [¢] = {X C {0, 1}V | X |= ¢}, for any consistent
formula ¢ of PD and PID.

Lemma

LetL be such that ND C L C CPC. Every formula is equivalent to a
formula of the form \/ ;. —~¢; in L™.

| A\

y,
18/21

Definition (Projective formula)
Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo(o)

(2) ¢,0(v) FL v and ¢, | a(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

19/21

Definition (Projective formula)
Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo(o)

(2) ¢,0(v) FL v and ¢, | a(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

@ Every consistent formula is projective in CPC.

19/21

Definition (Projective formula)
Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo(o)

(2) ¢,0(v) FL v and ¢, | a(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

@ Every consistent formula is projective in CPC.
@ Every consistent negated formula (i.e. —¢) is projective in every
intermediate logic.

19/21

Definition (Projective formula)

Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo()
(2) ¢,0(x) FL+ and ¢, 9 = o(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

@ Every consistent formula is projective in CPC.

@ Every consistent negated formula (i.e. —¢) is projective in every
intermediate logic. Moreover, every consistent —¢ is projective in
L™, where L is an intermediate logic s.t. ND C L.

19/21

Definition (Projective formula)

Let S be a set of substitutions under which | is closed. A formula ¢ is
said to be S-projective in L if there exists o € S such that

(1) FLo()
(2) ¢,0(x) FL+ and ¢, 9 = o(v) for all formulas .
Such ¢ is called a S-projective unifier of ¢ in L.

@ Every consistent formula is projective in CPC.

@ Every consistent negated formula (i.e. —¢) is projective in every
intermediate logic. Moreover, every consistent —¢ is projective in
L™, where L is an intermediate logic s.t. ND C L.

@ For L € {PD,PID}, the formula

Q@ A AP, for PD;
eX veX

=\ Py A A piP), for PID.

veX

is projective in L.
19/21

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9. \

20/21

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9. \

Recall: ¢ = \/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof.

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof.

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x.

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then F o(©x).

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

On the other hand, as ¢ is a projective unifier of © x, we have that

eXa U(l/f) F 1/):

20/21

A consistent formula ¢ is said to be S-projective in L if there exists o € S such
that (1) FL o(@); (2) ¢, 0(v¥) FL ¥ and ¢, ¢ ki o(3) for all formulas .

L € {PD, PID} is F-structurally complete, i.e., ¢ | 1 < ¢ 9.

Recall: ¢ = V/,¢,©x;

Let L € {PD,PID}. If ©x " v, then O k- 1) \

Proof. Let o € F be a projective unifier of ©x. Then I o(©x). Now, since
©x { v, we obtain that - o(1).

On the other hand, as ¢ is a projective unifier of © x, we have that
Ox,o() -, thus ©x ¢ for all i € /, as desired. O

20/21

Theorem

For any intermediate logic L such that ND C L, its negative variant
L™ ={¢ | 7(¢) € L, where 7(p) = —p} is ST -hereditarily structurally
complete, i.e., L' is ST -structurally complete, for any intermediate
theory L’ extending L such that . is closed under ST.

21/21

Theorem

For any intermediate logic L such that ND C L, its negative variant
L™ ={¢ | 7(¢) € L, where 7(p) = —p} is ST -hereditarily structurally
complete, i.e., L' is ST -structurally complete, for any intermediate
theory L’ extending L such that . is closed under ST.

In particular, ND™, KP™ and ML™ are ST -hereditarily structurally
complete.

@ ML is hereditarily structurally complete.

@ ML is ST -structurally complete. [(Miglioli, Moscato, Ornaghi,
Quazza, Usberti, 1989), proved using disjunction property]

21/21

	logics of dependence
	admissible rules and structural completeness

