

Utrecht University

Structural completeness in logics of dependence

Fan Yang Utrecht University, the Netherlands

> Ischia 15-19 June, 2015

> > Joint work with Rosalie lemhoff

2 admissible rules and structural completeness

First Order Quantifiers:

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$

First Order Quantifiers:

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 \phi$$

First Order Quantifiers:

 $\forall \mathbf{x_1} \exists \mathbf{y_1} \forall \mathbf{x_2} \exists \mathbf{y_2} \phi$

First Order Quantifiers:

 $\forall \mathbf{x_1} \exists \mathbf{y_1} \forall \mathbf{x_2} \exists \mathbf{y_2} \phi$

Henkin Quantifiers (Henkin, 1961):

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

First Order Quantifiers:

 $\forall \mathbf{x}_1 \exists \mathbf{y}_1 \forall \mathbf{x}_2 \exists \mathbf{y}_2 \phi$

Henkin Quantifiers (Henkin, 1961):

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989): $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

First Order Quantifiers:

 $\forall \mathbf{x}_1 \exists \mathbf{y}_1 \forall \mathbf{x}_2 \exists \mathbf{y}_2 \phi$

Henkin Quantifiers (Henkin, 1961):

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989): $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

First-order dependence Logic (Väänänen 2007): $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$

First Order Quantifiers:

 $\forall \mathbf{x}_1 \exists \mathbf{y}_1 \forall \mathbf{x}_2 \exists \mathbf{y}_2 \phi$

Henkin Quantifiers (Henkin, 1961):

$$\left(\begin{array}{cc} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{array}\right) \phi$$

Independence Friendly Logic (Hintikka, Sandu, 1989): $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1\} \phi$

First-order dependence Logic (Väänänen 2007): $\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \phi)$

Theorem (Enderton, Walkoe). Over sentences, all of the above extensions of **FO** have the same expressive power as Σ_1^1 .

Propositional dependence logic = classical propositional logic + $=(\vec{p}, q)$

- Whether f(x) > 0 depends completely on whether x < 0 or not.
- I will be absent depending on whether he shows up or not.
- Whether it rains depends completely on whether it is summer or not.

Propositional dependence logic = classical propositional logic + $=(\vec{p}, q)$

• Whether f(x) > 0 depends completely on whether x < 0 or not.

- I will be absent depending on whether he shows up or not.
- Whether it rains depends completely on whether it is summer or not.

=(**x**, **f**)

Propositional dependence logic = classical propositional logic + $=(\vec{p}, q)$

- Whether f(x) > 0 depends completely on whether x < 0 or not.
- I will be absent depending on whether he shows up or not.

Whether it rains depends completely on whether it is summer or not.

=(**s**, **a**)

Propositional dependence logic = classical propositional

classical propositional logic + =(\vec{p}, q)

- Whether f(x) > 0 depends completely on whether x < 0 or not.
- I will be absent depending on whether he shows up or not.
- Whether it rains depends completely on whether it is summer or not.

=(**s**, **r**)

leap year summer rainy V1 0 0 1

=(**s**, **r**)

Team semantics (Hodges 1997)

leap year summer rainy v₁ 0 0 1

=(**s**, **r**)

Team semantics (Hodges 1997)

	leap year	summer	rainy
V_1	0	0	1

Team semantics (Hodges 1997)

	leap year	summer	rainy
<i>V</i> ₁	0	0	1

$$v_1 \models =(s, r)?$$

Team semantics (Hodges 1997)

=(**s**, **r**)

Team semantics (Hodges 1997)

 $X \models =(\underline{s}, \underline{r})$

Team semantics (Hodges 1997)

Team semantics (Hodges 1997)

• Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\vec{\boldsymbol{\rho}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \lor \phi$$

• propositional intuitionistic dependence logic (PID):

 $\phi ::= p \mid \bot \mid = (\vec{p}, q) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$

• Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\vec{\boldsymbol{\rho}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \otimes \phi$$

• propositional intuitionistic dependence logic (PID):

 $\phi ::= p \mid \bot \mid = (\vec{p}, q) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$

 Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{p} \mid \neg \boldsymbol{p} \mid = (\boldsymbol{\vec{p}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \otimes \phi$$

• propositional intuitionistic dependence logic (PID):

$$\phi ::= \boldsymbol{p} \mid \bot \mid = (\boldsymbol{\vec{p}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi$$
$$(\neg \phi := \phi \rightarrow \phi)$$

 Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{p} \mid \neg \boldsymbol{p} \mid = (\boldsymbol{\vec{p}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \otimes \phi$$

• propositional intuitionistic dependence logic (PID):

$$\phi ::= p \mid \bot \mid = (\vec{p}, q) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$
$$(\neg \phi := \phi \to \bot)$$

 Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\vec{\boldsymbol{\rho}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \otimes \phi$$

• propositional intuitionistic dependence logic (PID):

$$\phi ::= \mathbf{p} \mid \bot \mid = (\mathbf{\vec{p}}, \mathbf{q}) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$
$$(\neg \phi := \phi \to \bot$$

A valuation is a function $v : \text{Prop} \rightarrow \{0, 1\}$.

 Well-formed formulas of *propositional dependence logic* (PD) are given by the following grammar

$$\phi ::= \boldsymbol{\rho} \mid \neg \boldsymbol{\rho} \mid = (\vec{\boldsymbol{\rho}}, \boldsymbol{q}) \mid \phi \land \phi \mid \phi \otimes \phi$$

• propositional intuitionistic dependence logic (PID):

$$\phi ::= p \mid \bot \mid = (\vec{p}, q) \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi$$
$$(\neg \phi := \phi \to \bot)$$

A valuation is a function $v : \text{Prop} \rightarrow \{0, 1\}$. A *team* is a set of valuations.

	p_0	p_1	<i>p</i> ₂	
<i>V</i> ₁	1	0	0	
<i>V</i> ₂	1	1	0	
<i>V</i> 3	0	1	0	
:	:	:	:	:
-	•	•	•	•

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$ • $X \vdash \phi \land \psi$ iff $X \vdash \phi$ and $X \vdash \psi$:
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;
- $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

	р	q	r
<i>V</i> ₁	1	0	0
<i>V</i> ₂	1	0	1
V ₃	0	1	0
<i>V</i> 4	0	1	1

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$ • $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$; • $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$:
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

$$X \models p$$

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$ • $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$; • $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$:
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$ • $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$; • $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

$$\begin{array}{ll} X \models \rho & X \cup Y \not\models \rho \\ Y \models \neg \rho & X \cup Y \not\models \neg \rho \end{array}$$

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- *X* ⊨ φ ⊗ ψ iff there exist *Y*, *Z* s.t. *X* = *Y* ∪ *Z*, *Y* ⊨ φ and *Z* ⊨ ψ;
 X ⊨ φ ∨ ψ iff *X* ⊨ φ or *X* ⊨ ψ;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

	р	q	r
<i>V</i> ₁	1	0	0
<i>V</i> ₂	1	0	1
V ₃	0	1	0
<i>V</i> 4	0	1	1

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- *X* ⊨ φ ⊗ ψ iff there exist *Y*, *Z* s.t. *X* = *Y* ∪ *Z*, *Y* ⊨ φ and *Z* ⊨ ψ;
 X ⊨ φ ∨ ψ iff *X* ⊨ φ or *X* ⊨ ψ;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

$$X\models=(p,q)$$

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- *X* ⊨ φ ⊗ ψ iff there exist *Y*, *Z* s.t. *X* = *Y* ∪ *Z*, *Y* ⊨ φ and *Z* ⊨ ψ;
 X ⊨ φ ∨ ψ iff *X* ⊨ φ or *X* ⊨ ψ;
- $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

$$X\models=(p,q)$$

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

	р	q	r
<i>V</i> 1	1	0	0
<i>V</i> ₂	1	0	1
V ₃	0	1	0
<i>V</i> 4	0	1	1

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

Let X be a team.

- $X \models p$ iff for all $v \in X$, v(p) = 1;
- $X \models \neg p$ iff for all $v \in X$, v(p) = 0;
- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

Let X be a team.

•
$$X \models p$$
 iff for all $v \in X$, $v(p) = 1$;

• $X \models \neg p$ iff for all $v \in X$, v(p) = 0;

•
$$X \models \bot$$
 iff $X = \emptyset$;

- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- *X* ⊨ φ ⊗ ψ iff there exist *Y*, *Z* s.t. *X* = *Y* ∪ *Z*, *Y* ⊨ φ and *Z* ⊨ ψ;
 X ⊨ φ ∨ ψ iff *X* ⊨ φ or *X* ⊨ ψ;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

Let X be a team.

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

	р	q	r
<i>V</i> 1	1	0	0
<i>V</i> ₂	1	0	1
V ₃	0	1	0
<i>V</i> 4	0	1	1

Let X be a team.

•
$$X \models p$$
 iff for all $v \in X$, $v(p) = 1$;
• $X \models \neg p$ iff for all $v \in X$, $v(p) = 0$;
• $X \models \bot$ iff $X = \emptyset$;
• $X \models =(\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
• $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
• $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;
• $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

$$\mathbf{Y}\models\phi\Longrightarrow\mathbf{Y}\models\psi$$

Let X be a team.

•
$$X \models p$$
 iff for all $v \in X$, $v(p) = 1$;
• $X \models \neg p$ iff for all $v \in X$, $v(p) = 0$;
• $X \models \bot$ iff $X = \emptyset$;
• $X \models =(\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
• $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
• $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;
• $X \models \phi \lor \psi$ iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

Let X be a team.

•
$$X \models p$$
 iff for all $v \in X$, $v(p) = 1$;

• $X \models \neg p$ iff for all $v \in X$, v(p) = 0;

•
$$X \models \bot$$
 iff $X = \emptyset$;

- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

•
$$X \models \phi \lor \psi$$
 iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

A formula ϕ is said to be flat iff for all teams X,

$$\boldsymbol{X} \models \phi \iff \forall \boldsymbol{v} \in \boldsymbol{X}, \ \{\boldsymbol{v}\} \models \phi.$$

Example:

 Classical formulas (i.e., formulas without any occurrences of =(p, q) and ∨) are flat.

• $\neg \phi$ is flat for all ϕ .

Let X be a team.

•
$$X \models p$$
 iff for all $v \in X$, $v(p) = 1$;

• $X \models \neg p$ iff for all $v \in X$, v(p) = 0;

•
$$X \models \bot$$
 iff $X = \emptyset$;

- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p}) = v'(\vec{p}) \Longrightarrow v(q) = v'(q)$
- $X \models \phi \land \psi$ iff $X \models \phi$ and $X \models \psi$;
- $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

•
$$X \models \phi \lor \psi$$
 iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$: $Y \models \phi \Longrightarrow Y \models \psi$.

A formula ϕ is said to be flat iff for all teams X,

$$\boldsymbol{X} \models \phi \iff \forall \boldsymbol{v} \in \boldsymbol{X}, \ \{\boldsymbol{v}\} \models \phi.$$

Example:

- Classical formulas (i.e., formulas without any occurrences of =(p, q) and ∨) are flat.
- $\neg \phi$ is flat for all ϕ .

Let X be a team.

• $X \models p$ iff for all $v \in X$, v(p) = 1;

•
$$X \models \neg p$$
 iff for all $v \in X$, $v(p) = 0$;

- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p} = v'(\vec{p})) \Longrightarrow v(q) = v'(q)$

•
$$X \models \phi \land \psi$$
 iff $X \models \phi$ and $X \models \psi$?

• $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

•
$$X \models \phi \lor \psi$$
 iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$, $Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N = \{p_1, ..., p_n\}$, the set $[\![\phi(p_1, ..., p_n)]\!] = \{X \subseteq \{0, 1\}^N \mid X \models \phi\}$

- is downwards closed, that is, $Y \subseteq X \in \llbracket \phi \rrbracket \Longrightarrow Y \in \llbracket \phi \rrbracket$
- and nonempty, since $\emptyset \in \llbracket \phi \rrbracket$.

Let X be a team.

• $X \models p$ iff for all $v \in X$, v(p) = 1;

•
$$X \models \neg p$$
 iff for all $v \in X$, $v(p) = 0$;

- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p} = v'(\vec{p})) \Longrightarrow v(q) = v'(q)$

•
$$X \models \phi \land \psi$$
 iff $X \models \phi$ and $X \models \psi$?

• $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

•
$$X \models \phi \lor \psi$$
 iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$, $Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N = \{p_1, \dots, p_n\}$, the set $\llbracket \phi(p_1, \dots, p_n) \rrbracket = \{X \subseteq \{0, 1\}^N \mid X \models \phi\}$

• is downwards closed, that is, $Y \subseteq X \in \llbracket \phi \rrbracket \Longrightarrow Y \in \llbracket \phi \rrbracket$,

• and nonempty, since $\emptyset \in \llbracket \phi
rbracket$.

Let X be a team.

• $X \models p$ iff for all $v \in X$, v(p) = 1;

•
$$X \models \neg p$$
 iff for all $v \in X$, $v(p) = 0$;

- $X \models \bot$ iff $X = \emptyset$;
- $X \models = (\vec{p}, q)$ iff for all $v, v' \in X$: $v(\vec{p} = v'(\vec{p})) \Longrightarrow v(q) = v'(q)$

•
$$X \models \phi \land \psi$$
 iff $X \models \phi$ and $X \models \psi$;

• $X \models \phi \otimes \psi$ iff there exist Y, Z s.t. $X = Y \cup Z, Y \models \phi$ and $Z \models \psi$;

•
$$X \models \phi \lor \psi$$
 iff $X \models \phi$ or $X \models \psi$;

• $X \models \phi \rightarrow \psi$ iff for any team $Y \subseteq X$, $Y \models \phi \Longrightarrow Y \models \psi$.

Fix $N = \{p_1, \dots, p_n\}$, the set $\llbracket \phi(p_1, \dots, p_n) \rrbracket = \{X \subseteq \{0, 1\}^N \mid X \models \phi\}$

- is downwards closed, that is, $Y \subseteq X \in \llbracket \phi \rrbracket \Longrightarrow Y \in \llbracket \phi \rrbracket$,
- and nonempty, since $\emptyset \in \llbracket \phi \rrbracket$.

Write $\mathcal{L}(\wp(2^N))$ for the set of all nonempty downwards closed subsets of $\wp(2^N)$.

Abramsky and Väänänen (2009):

Consider the algebra $(\mathcal{L}(\wp(2^N)), \otimes, \cap, \cup, \{\emptyset\}, \subseteq)$, where $A \otimes B = \downarrow \{X \cup Y \mid X \in A \text{ and } Y \in B\}$.

- (L(℘(2^N)), ⊗, {∅}, ⊆) is a commutative quantale.
 In particular, A ⊗ B ≤ C ⇐⇒ A ≤ B → C.
- (L(℘(2^N)), ∩, ∪, {∅}) is a complete Heyting algebra.
 In particular, A ∩ B ≤ C ⇐⇒ A ≤ B → C.

Write $\mathcal{L}(\wp(2^N))$ for the set of all nonempty downwards closed subsets of $\wp(2^N)$.

Abramsky and Väänänen (2009):

Consider the algebra $(\mathcal{L}(\wp(2^N)), \otimes, \cap, \cup, \{\emptyset\}, \subseteq)$, where $A \otimes B = \downarrow \{X \cup Y \mid X \in A \text{ and } Y \in B\}$.

- $(\mathcal{L}(\wp(2^N)), \otimes, \{\emptyset\}, \subseteq)$ is a commutative quantale. In particular, $A \otimes B \leq C \iff A \leq B \multimap C$.
- (L(℘(2^N)), ∩, ∪, {∅}) is a complete Heyting algebra.
 In particular, A ∩ B ≤ C ⇔ A ≤ B → C.

$$=(p,q)\equiv (p\vee \neg p)
ightarrow (q\vee \neg q)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$=(p,q)\equiv (pee
eg
eg
eg)
ightarrow (qee
eg
eg
eg)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$=(p,q)\equiv (p\vee \neg p)
ightarrow (q\vee \neg q)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$=(p,q)\equiv (p\vee \neg p)
ightarrow (q\vee \neg q)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$=(p,q)\equiv (p\vee \neg p)
ightarrow (q\vee \neg q)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$=(p,q)\equiv (pee
eg
eg
eg)
ightarrow (qee
eg
eg
eg)$$

Observation (Y. 2014)

PID is essentially equivalent to Inquisitive Logic (Groenendijk, Ciardelli and Roelofsen, 2011).

$$(\wp(\{0,1\}^{\operatorname{Prop}_n})\setminus\{\emptyset\},\supseteq)$$

(Ciardelli and Roelofsen, 2011):

[Recall: ND \subset KP \subset ML]

 $\mathsf{PID}^- = \mathsf{ML}^\neg = \{\phi \mid \tau(\phi) \in \mathsf{ML}, \text{ where } \tau(p) = \neg p\}$

(Ciardelli and Roelofsen, 2011):

[Recall: ND \subset KP \subset ML]

 $\mathsf{PID}^- = \mathsf{ML}^- = \{\phi \mid \tau(\phi) \in \mathsf{ML}, \text{ where } \tau(p) = \neg p\}$

(Ciardelli and Roelofsen, 2011):

[Recall: $ND \subseteq KP \subseteq ML$]

$$\mathsf{PID}^{-} = \mathsf{ML}^{\neg} = \{ \phi \mid \tau(\phi) \in \mathsf{ML}, \text{ where } \tau(p) = \neg p \}$$
$$= \mathsf{KP}^{\neg} = \mathsf{KP} \oplus \neg \neg p \to p = \mathsf{ND}^{\neg}$$

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system *Axioms:*

- all substitution instances of IPC axioms
- all substitution instances of

 $(\mathsf{KP}) \qquad (\neg p \to (q \lor r)) \to ((\neg p \to q) \lor (\neg p \to r)).$

• $\neg \neg p \rightarrow p$ for all propositional variables p

• =
$$(p_1, \cdots, p_n, q) \leftrightarrow \left(\bigwedge_{i=1}^n (p_i \vee \neg p_i) \rightarrow (q \vee \neg q) \right)$$

Rules:

Modus Ponens

Theorem (Y., Väänänen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if ϕ does not contain any dependence atoms, then $\vdash_{CPC} \phi \iff \vdash_{PD} \phi$.

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system *Axioms:*

- all substitution instances of IPC axioms
- all substitution instances of

 $(\mathsf{KP}) \qquad (\neg p \to (q \lor r)) \to ((\neg p \to q) \lor (\neg p \to r)).$

• $\neg \neg p \rightarrow p$ for all propositional variables p

• =
$$(p_1, \cdots, p_n, q) \leftrightarrow \left(\bigwedge_{i=1}^n (p_i \vee \neg p_i) \rightarrow (q \vee \neg q) \right)$$

Rules:

Modus Ponens

Theorem (Y., Väänänen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if ϕ does not contain any dependence atoms, then $\vdash_{CPC} \phi \iff \vdash_{PD} \phi$.

Theorem (ess. Ciardelli, Roelofsen)

PID is sound and complete w.r.t. the following Hilbert style deduction system *Axioms:*

- all substitution instances of IPC axioms
- all substitution instances of

 $(\mathsf{KP}) \qquad (\neg p \to (q \lor r)) \to ((\neg p \to q) \lor (\neg p \to r)).$

- $\neg \neg p \rightarrow p$ for all propositional variables p
- = $(p_1, \cdots, p_n, q) \leftrightarrow \left(\bigwedge_{i=1}^n (p_i \vee \neg p_i) \rightarrow (q \vee \neg q) \right)$

Rules:

Modus Ponens

Theorem (Y., Väänänen, 2014)

PD is sound and complete w.r.t. its natural deduction system. In particular, if ϕ does not contain any dependence atoms, then $\vdash_{CPC} \phi \iff \vdash_{PD} \phi$.

• Neither PD nor PID is closed under uniform substitution. E.g., for PID, $\vdash \neg \neg p \rightarrow p$, but $\nvdash \neg \neg (p \lor \neg p) \rightarrow (p \lor \neg p)$.

• Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ , strings of the form $=(\phi, \psi), \neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics **PD** and **PID**.

Lemma

PD and **PID** are closed under flat substitutions, i.e., substitutions σ such that $\sigma(p)$ is flat for all $p \in Prop$.

- Neither PD nor PID is closed under uniform substitution.
 E.g., for PID, ⊢ ¬¬p → p, but ⊬ ¬¬(p ∨ ¬p) → (p ∨ ¬p).
- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ , strings of the form $=(\phi, \psi), \neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics **PD** and **PID**.

Lemma

PD and **PID** are closed under flat substitutions, i.e., substitutions σ such that $\sigma(p)$ is flat for all $p \in Prop$.

- Neither PD nor PID is closed under uniform substitution.
 E.g., for PID, ⊢ ¬¬p → p, but ⊬ ¬¬(p ∨ ¬p) → (p ∨ ¬p).
- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ , strings of the form $=(\phi, \psi)$, $\neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics **PD** and **PID**.

Lemma

PD and **PID** are closed under flat substitutions, i.e., substitutions σ such that $\sigma(p)$ is flat for all $p \in Prop$.

- Neither PD nor PID is closed under uniform substitution. E.g., for PID, $\vdash \neg \neg p \rightarrow p$, but $\nvdash \neg \neg (p \lor \neg p) \rightarrow (p \lor \neg p)$.
- Substitution is not well-defined in the logics, since, e.g., $=(\phi, \psi)$, $\neg \phi$ are not always well-formed formulas in the logics.

One can expand the languages of PD and PID such that for all flat formulas ϕ and ψ , strings of the form $=(\phi, \psi)$, $\neg \phi$ are well-formed formulas. There are sound and complete deductive systems for the extended logics **PD** and **PID**.

Lemma

PD and **PID** are closed under flat substitutions, i.e., substitutions σ such that $\sigma(p)$ is flat for all $p \in \text{Prop}$.

admissible rules and structural completeness

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \mid \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \mathrel{\sim_{\mathsf{L}}} \psi$

Pf. For any σ_i

 $\left\{\begin{array}{l} (\phi)v_{1,1} \\ (\phi)v_{2,1} \\ (\phi)v_{2,1$

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{ \phi : \emptyset \vdash_L \phi \}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \mathrel{\sim_{\mathsf{L}}} \psi$
 - Pf. For any *o*,

 $\left\{ \begin{array}{l} (\phi)_{\mathcal{D},\mathcal{L}} \\ (\phi$

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

• A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.

 $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \mathrel{\sim_{\mathsf{L}}} \psi$

Pf. For any σ_i

 $\{\phi_i\}_{i \in J} \in \{\phi_i\}_{i \in J$

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \models_{\mathsf{L}} \psi$

Pf. For any σ ,

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \not\sim_{\mathsf{L}} \psi$

Pf. For any σ ,

 $\begin{array}{c} \vdash_{\mathsf{L}} \sigma(\phi) \\ \text{by assumption: } \sigma(\phi) \vdash_{\mathsf{L}} \sigma(\psi) \end{array} \end{array} \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi).$ (since \vdash_{L} is closed under σ)

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \not\sim_{\mathsf{L}} \psi$

Pf. For any σ ,

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}.$
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\bullet \ \phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \mathrel{{\mid}_{\mathsf{L}}} \psi$

Pf. For any $\sigma \in S$,

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{\phi : \emptyset \vdash_L \phi\}$.
- A rule ϕ/ψ of L is said to be *admissible*, in symbols $\phi \sim_{\mathsf{L}} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions σ .
- Alternatively, a rule *R* is admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \models_{\mathsf{L}}^{\mathcal{S}} \psi$

Pf. For any $\sigma \in S$,

- $\Gamma \vdash \phi$: a consequence relation on $\wp(Form) \times Form$.
- A logic L is a set of theorems, i.e., $L = \{ \phi : \emptyset \vdash_L \phi \}.$
- Let S be a set of substitutions under which \vdash_{L} is closed. A rule ϕ/ψ of L is said to be *S*-admissible, in symbols $\phi \models_{\mathsf{L}}^{S} \psi$, if $\vdash_{\mathsf{L}} \sigma(\phi) \Longrightarrow \vdash_{\mathsf{L}} \sigma(\psi)$ for all substitutions $\sigma \in S$.
- Alternatively, a rule R is *S*-admissible in L iff $\{\phi : \emptyset \vdash_{\mathsf{L}} \phi\} = \{\phi : \emptyset \vdash_{\mathsf{L}}^{R} \phi\}.$

- A rule ϕ/ψ of L is said to be *derivable* if $\phi \vdash_{\mathsf{L}} \psi$.
- $\phi \vdash_{\mathsf{L}} \psi \Longrightarrow \phi \models_{\mathsf{L}}^{\mathcal{S}} \psi$

Pf. For any $\sigma \in S$,

A logic L is said to be *S*-structurally complete if every *S*-admissible rule is derivable in L, i.e., $\phi \models_{\mathsf{L}}^{S} \psi \iff \phi \vdash_{\mathsf{L}} \psi$.

Example:

- KP rule ¬p → q ∨ r/(¬p → q) ∨ (¬p → r) is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and **PID** are \mathcal{F} -structurally complete, where \mathcal{F} is the class of all flat substitutions.

Theorem

ND¬, **KP**¬ and **ML**¬ are ST-structurally complete, where ST is the class of all stable substitutions, i.e., substitutions σ s.t. $\vdash \neg\neg\sigma(p) \leftrightarrow \sigma(p)$.

A logic L is said to be *S*-structurally complete if every *S*-admissible rule is derivable in L, i.e., $\phi \models_{\mathsf{L}}^{S} \psi \iff \phi \vdash_{\mathsf{L}} \psi$.

Example:

- KP rule ¬p → q ∨ r/(¬p → q) ∨ (¬p → r) is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and **PID** are \mathcal{F} -structurally complete, where \mathcal{F} is the class of all flat substitutions.

Theorem

ND¬, **KP**¬ and **ML**¬ are ST-structurally complete, where ST is the class of all stable substitutions, i.e., substitutions σ s.t. $\vdash \neg\neg\sigma(p) \leftrightarrow \sigma(p)$.

A logic L is said to be *S*-structurally complete if every *S*-admissible rule is derivable in L, i.e., $\phi \models_{\mathsf{L}}^{S} \psi \iff \phi \vdash_{\mathsf{L}} \psi$.

Example:

- KP rule ¬p → q ∨ r/(¬p → q) ∨ (¬p → r) is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and **PID** are \mathcal{F} -structurally complete, where \mathcal{F} is the class of all flat substitutions.

Theorem

ND¬, **KP**¬ and **ML**¬ are ST-structurally complete, where ST is the class of all stable substitutions, i.e., substitutions σ s.t. $\vdash \neg\neg\sigma(p) \leftrightarrow \sigma(p)$.

A logic L is said to be *S*-structurally complete if every *S*-admissible rule is derivable in L, i.e., $\phi \models_{\mathsf{L}}^{S} \psi \iff \phi \vdash_{\mathsf{L}} \psi$.

Example:

- KP rule ¬p → q ∨ r/(¬p → q) ∨ (¬p → r) is admissible in all intermediate logics, but KP rule is not derivable in IPC.
- KP is not structurally complete, ML is structurally complete.
- CPC is structurally complete.

Theorem

PD and **PID** are \mathcal{F} -structurally complete, where \mathcal{F} is the class of all flat substitutions.

Theorem

ND[¬], **KP**[¬] and **ML**[¬] are ST-structurally complete, where ST is the class of all stable substitutions, i.e., substitutions σ s.t. $\vdash \neg \neg \sigma(p) \leftrightarrow \sigma(p)$.

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0, 1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \begin{cases} \begin{array}{ccc} p & q \\ v_1 & 1 & 1 \\ v_2 & 1 & 0 \\ v_3 & 0 & 1 \end{array} & \Theta_X := \begin{cases} for \ PD; \\ for \ PID. \end{cases}$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0, 1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \begin{cases} \begin{array}{ccc} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \quad \Theta_X := \begin{cases} (p \land q) & (p \land \neg q) & (\neg p \land q), \\ \hline 0 & \text{for PD}; \\ \hline 0 & \text{for PID}. \end{cases}$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0,1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \begin{cases} \begin{array}{ccc} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \quad \Theta_X := \begin{cases} (p \land q) \otimes (p \land \neg q) \otimes (\neg p \land q), & \text{for PD}; \\ \hline for \text{ PID}. \end{cases}$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0,1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

_emma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \begin{cases} \begin{array}{ccc} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \quad \Theta_X := \begin{cases} (p \land q) \otimes (p \land \neg q) \otimes (\neg p \land q), & \text{for PD}; \\ \neg \neg ((p \land q) \lor (p \land \neg q) \lor (\neg p \land q)), & \text{for PID}. \end{cases}$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0,1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

_emma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \begin{cases} \begin{array}{c|c} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \quad \begin{array}{c} \text{Let} \\ \Theta_X := \begin{cases} \bigotimes_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PID}. \end{cases}$$

Then $Y \models \Theta_X \iff Y \subset X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0, 1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \left\{ \begin{array}{ccc} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \right. \quad \Theta_X := \left\{ \begin{array}{ccc} \bigotimes(p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PID}. \end{array} \right.$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0,1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

For any team $X \neq \emptyset$ on $V = \{p_1, \dots, p_n\}$, there is a formula Θ_X of **PD** and **PID** such that for any team Y on V, $Y \models \Theta_X \iff Y \subseteq X$.

Proof.

$$X \left\{ \begin{array}{ccc} p & q \\ \hline v_1 & 1 & 1 \\ \hline v_2 & 1 & 0 \\ \hline v_3 & 0 & 1 \end{array} \right. \quad \Theta_X := \left\{ \begin{array}{ccc} \bigotimes(p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PID}. \end{array} \right.$$

Then $Y \models \Theta_X \iff Y \subseteq X$, for any team Y on N.

Corollary

 $\phi \equiv \bigvee_{X \in \llbracket \phi \rrbracket} \Theta_X$, where $\llbracket \phi \rrbracket = \{X \subseteq \{0, 1\}^V \mid X \models \phi\}$, for any consistent formula ϕ of **PD** and **PID**.

Lemma

Let S be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be *S*-projective in L if there exists $\sigma \in S$ such that

(1) $\vdash_{\mathsf{L}} \sigma(\phi)$ (2) $\phi, \sigma(\psi) \vdash_{\mathsf{L}} \psi$ and $\phi, \psi \vdash_{\mathsf{L}} \sigma(\psi)$ for all formulas ψ .

Such σ is called a S-projective unifier of ϕ in L.

 Every consistent formula is projective in CPC.
 Every consistent negated formula (i.e. a) is projective in every intermediate logic

• For $L \in \{PD, PID\}$, the formula

in L.

Let S be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be *S*-projective in L if there exists $\sigma \in S$ such that

(1) $\vdash_{\mathsf{L}} \sigma(\phi)$ (2) $\phi, \sigma(\psi) \vdash_{\mathsf{L}} \psi$ and $\phi, \psi \vdash_{\mathsf{L}} \sigma(\psi)$ for all formulas ψ .

Such σ is called a S-projective unifier of ϕ in L.

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. $\neg \phi$) is projective in every intermediate logic.
- For $L \in \{PD, PID\}$, the formula

$$\Theta_X = \begin{cases} \bigotimes_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PID}. \end{cases}$$

Let S be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be *S*-projective in L if there exists $\sigma \in S$ such that

(1) $\vdash_{\mathsf{L}} \sigma(\phi)$ (2) $\phi, \sigma(\psi) \vdash_{\mathsf{L}} \psi$ and $\phi, \psi \vdash_{\mathsf{L}} \sigma(\psi)$ for all formulas ψ .

Such σ is called a S-projective unifier of ϕ in L.

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. ¬φ) is projective in every intermediate logic. Moreover, every consistent ¬φ is projective in L[¬], where L is an intermediate logic s.t. ND ⊆ L.
 For L ∈ {PD, PID}, the formula

$$\Theta_{X} = \begin{cases} \bigotimes_{v \in X} (p_{1}^{v(p_{1})} \wedge \dots \wedge p_{n}^{v(p_{n})}), & \text{for PD}; \\ & \bigvee_{v \in X} (p_{1}^{v(p_{1})} \wedge \dots \wedge p_{n}^{v(p_{n})}), & \text{for PID} \end{cases}$$

Let S be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be *S*-projective in L if there exists $\sigma \in S$ such that

(1) $\vdash_{\mathsf{L}} \sigma(\phi)$ (2) $\phi, \sigma(\psi) \vdash_{\mathsf{L}} \psi$ and $\phi, \psi \vdash_{\mathsf{L}} \sigma(\psi)$ for all formulas ψ .

Such σ is called a *S*-projective unifier of ϕ in L.

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. ¬φ) is projective in every intermediate logic. Moreover, every consistent ¬φ is projective in L[¬], where L is an intermediate logic s.t. ND ⊆ L.

• For $L \in \{PD, PID\}$, the formula

$$\Theta_X = \begin{cases} \bigotimes_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \wedge \dots \wedge p_n^{v(p_n)}), & \text{for PID}. \end{cases}$$

Let S be a set of substitutions under which \vdash_{L} is closed. A formula ϕ is said to be *S*-projective in L if there exists $\sigma \in S$ such that

(1) $\vdash_{\mathsf{L}} \sigma(\phi)$ (2) $\phi, \sigma(\psi) \vdash_{\mathsf{L}} \psi$ and $\phi, \psi \vdash_{\mathsf{L}} \sigma(\psi)$ for all formulas ψ .

Such σ is called a *S*-projective unifier of ϕ in L.

- Every consistent formula is projective in CPC.
- Every consistent negated formula (i.e. ¬φ) is projective in every intermediate logic. Moreover, every consistent ¬φ is projective in L[¬], where L is an intermediate logic s.t. ND ⊆ L.
- For $L \in \{PD, PID\}$, the formula

$$\Theta_X = \begin{cases} \bigotimes_{v \in X} (p_1^{v(p_1)} \land \dots \land p_n^{v(p_n)}), & \text{for PD}; \\ \neg \neg \bigvee_{v \in X} (p_1^{v(p_1)} \land \dots \land p_n^{v(p_n)}), & \text{for PID} \end{cases}$$

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \mid \sim^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_L^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \sim^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_L^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \models^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_L^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \models^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \vdash_{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \models^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \vdash \mathcal{F} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \models^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_{\mathsf{L}}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \sim^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_{\mathsf{L}}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

 $\mathsf{L} \in \{\mathsf{PD}, \mathsf{PID}\} \text{ is } \mathcal{F}\text{-structurally complete, i.e., } \phi \vdash_{\mathsf{L}}^{\mathcal{F}} \psi \iff \phi \vdash_{\mathsf{L}} \psi.$

Recall: $\phi \equiv \bigvee_{i \in I} \Theta_{X_i}$

Example

Let $L \in \{PD, PID\}$. If $\Theta_X \sim^{\mathcal{F}} \psi$, then $\Theta_X \vdash_L \psi$

Proof. Let $\sigma \in \mathcal{F}$ be a projective unifier of Θ_X . Then $\vdash \sigma(\Theta_X)$. Now, since $\Theta_X \models_{\mathsf{L}}^{\mathcal{F}} \psi$, we obtain that $\vdash \sigma(\psi)$.

Theorem

For any intermediate logic L such that ND \subseteq L, its negative variant L[¬] = { $\phi \mid \tau(\phi) \in$ L, where $\tau(p) = \neg p$ } is *ST*-hereditarily structurally complete, i.e., L' is *ST*-structurally complete, for any intermediate theory L' extending L such that $\vdash_{L'}$ is closed under *ST*.

In particular, ND[¬], KP[¬] and ML[¬] are ST -hereditarily structurally complete.

- ML is hereditarily structurally complete.
- **ML**[¬] is *ST*-structurally complete. [(Miglioli, Moscato, Ornaghi, Quazza, Usberti, 1989), proved using disjunction property]

Theorem

For any intermediate logic L such that ND \subseteq L, its negative variant L[¬] = { $\phi \mid \tau(\phi) \in$ L, where $\tau(p) = \neg p$ } is *ST*-hereditarily structurally complete, i.e., L' is *ST*-structurally complete, for any intermediate theory L' extending L such that $\vdash_{L'}$ is closed under *ST*.

In particular, ND[¬], KP[¬] and ML[¬] are ST-hereditarily structurally complete.

- ML is hereditarily structurally complete.
- **ML**[¬] is *ST*-structurally complete. [(Miglioli, Moscato, Ornaghi, Quazza, Usberti, 1989), proved using disjunction property]