
States on finite

GBL*algebras

Francesco Marigo

francesco.marigo@uninsubria.it

Dipartimento di Scienze Teoriche e Applicate
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Introduction

Classically, a probability measure is defined on a
sigma-algebra of events, that is a countably complete
Boolean algebra.

As there is a correspondence between events and
sentences expressing them, one may wonder how
probability can be associated to events expressed by a
non-classical propositional logic.

In fact, analog notions have been given, for instance
the notion of state on a MV-algebra [Mundici ’95],
finitely additive probability measure on Gödel algebras
[Aguzzoli, Gerla, Marra ’08] and more generally the
notion of valuation [Rota ’64, ’73].



GBL-algebras are the divisible residuated lattices, and
their variety extends the ones of Heyting algebras and
MV-algebras.

In our ongoing work [3, 4] we give a representation
of finite GBL-algebras in terms of GBL-pairs, which
are Heyting algebras with certain equivalence relations
induced by groups of automorphisms.

We used the representation of finite GBL-algebras as
labelled posets [Jipsen, Montagna ’09] and similar
models of algebraic structures with equivalence
relations [Jenča ’07][Vetterlein ’08].

In [Di Nola, Holčapek, Jenča ’09] a representation of
this kind is extended to a functorial correspondence.



Aiming to generalize it to GBL-algebras, we found more

natural to make explicit one further operation, thus

defining GBL*algebras.

The representation of GBL*algebras as GBL-pairs

allows us to define a notion of state on GBL*algebras

which generalizes the existing ones, and it suggests an

interpretation of state based on Kripke models for

intuitionistic logic.

We make use of this representation to investigate some

properties of a state, in particular the relation between

the state and the density function, and the expression

of the state in terms of conditional states
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Posets and Heyting algebras

Let 〈P,≤〉 be a poset.

For x ∈ P , let ↓x = {y ∈ P | y ≤ x}.
X ⊆ P is a downset if ↓x ⊆ X for all x ∈ X.
Let D(P ) be the set of downsets of P .
Let > = P , ⊥ be the empty subset and

A→ B =
∨
{X ∈ D(P ) | (X ∧A) ≤ B}

where ∧ and ∨ are intersection and union of sets.

Let 〈H,∧,∨,→,>,⊥〉 be a Heyting algebra.
An element x ∈ H, x 6= ⊥, is join-prime if,
for all a, b ∈ H, x ≤ a ∨ b implies x ≤ a or x ≤ b.
Let J(H) be the set of join-prime elements of H.



Theorem. (reformulation of Birkhoff representation)

For every poset P ,

〈D(P ),∧,∨,→,>,⊥〉 is a Heyting algebra and

〈J(D(P )),≤〉 ∼= 〈P,≤〉.
Conversely,

for every finite Heyting algebra H,

〈H,∧,∨,→,>,⊥〉 ∼= 〈D(J(H)),∧,∨,→,>,⊥〉.

J(f): restriction of f to J(H),

for f automorphism of H.

J(f) is an order automorphism.

Every order automorphism g of J(H) can be extended

in a unique way to an automorphism of H.



States on Heyting algebras

We define state as a weak notion of probability.

Definition.

Let H be a finite Heyting algebra.

A state on H is a function v : H → [0,1] such that

v(⊥) = 0

v(>) = 1

if a ≤ b, then v(a) ≤ v(b)

v(a ∧ b) + v(a ∨ b) = v(a) + v(b)

for all a, b ∈ H.



A density on a finite poset P is a function
d : P → [0,1] such that

∑
x∈P d(x) = 1.

States on a Heyting algebra H and densities on J(H)
are related by the Möbius inversion formula (see [8]).
If d : J(H) → [0,1] is a density, then v : H → [0,1] is a
state, where

v(x) =
∑

i∈J(H),i≤x
d(i);

if v : H → [0,1] is a state, then d : J(H) → [0,1] is a
density, where

d(x) =
∑

i∈J(H),i≤x
µ(i, x)v(i);

and µ is the Möbius function (see [8]).
The two transformations are inverse to each other.



Interpretation

Classically, probability is defined on a Boolean algebra
of events. If events are denoted by sentences of a
propositional logic, it is natural to consider also other
relational structures for events.

Here we give the following interpretation:

An element x ∈ P represents a possible case;
The relation x ≤ y represents the fact that all the events
realized in y are realized in x as well;
an event E is interpreted as the set of all the cases in
which E is realized, that is a downset of P .

The probabilities of the possible cases are not subject
to any logical constraint, and the density function can
be interpreted as a prior probability distribution.



Finite GBL*algebras

A finite GBL*algebra is a structure
〈X,�,⊕,→,>,⊥〉
such that X is a finite set and
〈X,�,>〉 is a commutative monoid
〈X,⊕,⊥〉 is a commutative monoid
a→ (a⊕ b) = >
a� (a→ b) = b� (b→ a)
(a� b)→ c = b→ (a→ c)
(a⊕ b)→ b = a→ (a� b).

Derived operations are
a ∧ b = a� (a→ b) = b� (b→ a)
a ∨ b = (a⊕ b) ∧ (a→ b)→ b = (a⊕ b) ∧ (b→ a)→ a.
With these operations,
〈X,�,∨,→,>,⊥〉 is a GBL-algebra (see [4]).



Let X be a finite GBL*algebra.

An element a ∈ X is idempotent if a� a = a⊕ a.
We call skeleton of X the set of idempotents:

I(X) = {a ∈ X | a� a = a⊕ a}

I(X) is closed with respect to �,⊕,→,>,⊥;
a� b = a ∧ b and a⊕ b = a ∨ b for all a ∈ I(X), b ∈ X;
〈I(X),∧,∨,→,>,⊥〉 is a Heyting algebra.

If I(X) = X, then X is a Heyting algebra.
Conversely, every Heyting algebra 〈H,∧,∨,→,>,⊥〉
is a GBL*algebra, by setting a�b = a∧b and a⊕b = a∨b.

If I(X) is a Boolean algebra, then X is a MV-algebra,
and all finite MV-algebra are such kind of GBL*algebras.



GBL-pairs

Let H be a finite Heyting algebra,

G be a subgroup of Aut(H),
∼ ⊆ H ×H be the equivalence relation:
a ∼ b if there is g ∈ G such that g(a) = b,
[a] be the class of a,
H/G be the quotient set with the order relation:
[a] ≤ [b] if there is c ∼ a such that c ≤ b,

J(G) be the group of {J(g) | g ∈ G}, isomorphic to G,
∼ ⊆ J(H)× J(H) be the equivalence relation:
x ∼ y if there is g ∈ G such that J(g)(x) = y,
[x] be the class of x,
J(H)/J(G) be the quotient set with the order relation:
[x] ≤ [y] if there is z ∼ x such that z ≤ y.



G is chain-transitive on H if, for every pair of chains

a1 < a2 < . . . < ak ∈ H, b1 < b2 < . . . < bk ∈ H
such that ai ∼ bi for all i, 1 ≤ i ≤ k,
there is g ∈ G such that g(ai) = bi for all i, 1 ≤ i ≤ k.

In other words, if two chains are elementwise equivalent,
they are equivalent through the same automorphism.

Definition.

A finite GBL-pair is a pair (H,G) such that
H is a finite Heyting algebra and
G is a subgroup of Aut(G) chain-transitive on H.

This definition generalizes, for the finite case, the
definition of MV-pairs in [5], where Boolean algebras
instead of Heyting algebras are considered.



Example 1.

The following are a Heyting algebra H with
an equivalence relation given by a group G

(equivalent elements are labeled by the same letter)
and the quotient H/G.

H :

>
z x x

w w v

u s s

r r o

n

m m m

e e e

⊥

H/G :

>
z x

w v

u s

r o

n

m

e

⊥



A more direct characterization of GBL-pairs can
be given on the restriction to join-prime elements.

Let (H,G) be a finite GBL-pair.

Proposition 1.

J(G) is the group of bijective functions f : J(H)→ J(H)
such that f([x]) = [x] for all [x] ∈ J(H)/J(G).

The proof relies on a suitable totally ordered extension
of J(H), then reasoning by induction on the total order.

Corollary.

For all x, y ∈ J(H),
x < y if, and only if, [x] < [y].



On the other hand, let

H be a finite Heyting algebra;
∼ ⊆ J(H)× J(H) be an equivalence relation
such that, for all x, y ∈ J(H),
x < y if, and only if, [x] < [y];
F be a group of bijective functions f : J(H)→ J(H)
such that f([x]) = [x] for all [x] ∈ J(H)/J(G).

Proposition 2.

F = J(G), where G is a subgroup of Aut(H);
(H,G) is a GBL-pair.

Proposition 1 and Proposition 2 imply that G is
univocally determined by the equivalence relation ∼.
Hence, we can identify (H,G) and H/G.



Example.

Let H be as in Example 1.

The following is J(H), with equivalent elements

labelled by the same letter.

H :

>
z x x

w w v

u s s

r r o

n

m m m

e e e

⊥

J(H) :
d d

c c b

a a a



We can recover the GBL*algebra operations between
two classes in H/G by means of infima and suprema of
classes of the results of Heyting operations performed
between elements in the two classes.

For [a], [b] ∈ H/G let
[a]� [b] =

∧
{[x ∧ y] | x ∼ a, y ∼ b}

[a]⊕ [b] =
∨
{[x ∨ y] | x ∼ a, y ∼ b}

[a]→ [b] =
∨
{[x→y] | x ∼ a, y ∼ b}

Proposition.

〈H/G,�,⊕,→, [>], [⊥]〉 is a GBL*algebra.

Derived connectives turn out to be:
[a] ∧ [b] =

∨
{[x ∧ y] | x ∼ a, y ∼ b}

[a] ∨ [b] =
∧
{[x ∨ y] | x ∼ a, y ∼ b}



The following is a representation theorem

for finite GBL*algebras.

Theorem.

Let let X be a finite GBL*algebra.

Then, there is a GBL-pair (H,G) such that

〈X,�,⊕,→,>,⊥〉 ∼= 〈H/G,�,⊕,→, [>], [⊥]〉.

The proof relies on a representation of GBL*algebras

as labelled (or weighted) posets (see [3], [6]).

By Birkhoff duality applied to H, the representation can

be given by equivalence classes of downsets of a poset

isomorphic to J(H).



States on GBL*algebras

We generalize the notion of state from Heyting to

GBL*algebras.

Definition.

Let X be a finite GBL*algebra.

A state on H is a function s : H → [0,1] such that

s(⊥) = 0

s(>) = 1

if a ≤ b, then s(a) ≤ s(b)
s(a� b) + s(a⊕ b) = s(a) + s(b)

for all a, b ∈ H.



Properties:

s(a ∧ b) + s(a ∨ b) = s(a) + s(b);
s restricted to I(X) is a state of Heyting algebra;
if X is a MV-algebra, then s is a state of MV-algebra,
as defined in [7];
if X is a Gödel algebra, then s is a finitely additive
probability in the sense of [1].

Proposition.

Let X be a finite GBL*algebra and v : J(H) → [0,1] a
state on its Heyting skeleton. Then, v can be extended
uniquely to a state s : H → [0,1].

The proof makes use of a chain decomposition of X
(see also [6])



Definition.

Let (H,G) be a finite GBL-pair
and v : H → [0,1] a state on H.
v is invariant with respect to G if
a ∼ b implies v(a) = v(b) for all a, b ∈ H.

Proposition.

Let (H,G) be a GBL-pair and
v an invariant state on H.
Then, the function s : H/G→ [0,1], s ([x]) = v(x)
is a state on the GBL*algebra H/G.
Conversely, let s : H/G→ [0,1] be a state on H/G.
Then, the function v : H → [0,1], v(x) = s ([x])
is a G-invariant state on H.



Example.

Let H and H/G be as in Example 1.
The following are an invariant state on H and the cor-
responding state on H/G.

v :

1.

.9 .9 .9

.8 .8 .8

.7 .6 .6

.5 .5 .4

.3

.2 .2 .2

.1 .1 .1

.0

s :

1.

.9 .9

.8 .8

.7 .6

.5 .4

.3

.2

.1

.0



In a similar way we say a density d : J(H) → [0,1]
is invariant with respect to J(G) when a ∼ b implies
d(a) = d(b) for all a, b ∈ J(H). Invariance on H and on
J(H) are related by Möbius inversion formula.

Proposition.

If d : J(H)→ [0,1] is an invariant density,
then the state v : H → [0,1] is invariant, where

v(x) =
∑

i∈J(H),i≤x
d(i).

Conversely, if v : H → [0,1] is an invariant state,
then the density d : J(H)→ [0,1] is invariant, where

d(x) =
∑

i∈J(H),i≤x
µ(i, x)v(i).



Example.

Let H and J(H) be as in Example 2.
The following are an invariant state on H and the cor-
responding invariant density on J(H).

v :

1.

.9 .9 .9

.8 .8 .8

.7 .6 .6

.5 .5 .4

.3

.2 .2 .2

.1 .1 .1

.0

d :
.1 .1

.2 .2 .1

.1 .1 .1



Interpretation

Starting from the relational model for a Heyting algebra
of events previously described, we make the assumption
that sentences denoting events are not sharp, hence
some events are indiscernible, and they are partitioned
into equivalence classes of indiscernibility.

The equivalence between two cases involves also
their relations with all the other cases, hence it is
determined by an automorphism. Chain-transitivity is a
further strengthening of the relation of indiscernibility.

If a prior probability is assigned, it is natural to think
that indiscernible events have the same probability and
indiscernible events have the same density.



Conditional states

Let P be a finite poset. We define a function e : P → Z
as the opposite of the Möbius function on the opposite
of P , closed with a least point. Namely,

e(x) = 1−
∑
y>x

e(y)

Proposition 3.

Let X be a finite GBL*algebra and s : X → [0,1] be a
state on X. Then,

s(x) =
∑

j∈J(I(X))

e(j)s(x ∧ j).

It follows from Möbius inversion formula and the
representation of a GBL*algebra as a GBL-pair.



Let X be a finite GBL*algebra and s : X → [0,1]

be a strictly monotone state on X, that is

a < b implies s(a) < s(b) for all a, b ∈ X.

s corresponds to a strictly positive density on J(H),

where (H,G) is the GBL-pair representing X.

For every x ∈ X and i ∈ I(X) it is well defined:

s(x | i) =
s(x ∧ i)
s(i)

.

We call the function s(· | i) a conditional state

with respect to the idempotent i.

If X is a MV-algebra, s(· | i) coincides with an

established notion of conditional state (see [7]).



For a strictly monotone state s : X → [0,1], the formula

in Proposition 3 becomes:

s(x) =
∑

j∈J(I(X))

e(j)s(x|j)s(j),

which recalls the law of total probability.

If X is a MV-algebra, then e(j) = 1 for all j, hence

s(x) =
∑

j∈J(I(X))

s(x|j)s(j).

In this case s(x|j) corresponds to a truth valuation, that

is a homomorphism to the generic algebra [0,1], and all

truth valuation arise in this way as j varies in J(I(X)).

This suggests to think of the conditional state as a

truth valuation for any GBL*algebra, although the

connection with homomorphisms is lost.



Example.

s(·) s(· | j)

1.

.9 .9

.8 .8

.7 .6

.5 .4

.3

.2

.1

.0

1.0

.75 1.0

.75 1.0

.75 1.0

.75 1.0

.75

.50

.25

.00



Conclusion

We have defined a notion of state, or finitely

additive probability measure, which generalizes analog

established notions on classes of algebras such as Boolean

algebras, Gödel algebras and MV-algebras. Indeed we

defined states on finite GBL*algebras, which have the

previous as particular finite cases.

We investigated the properties of states on GBL*algebras

through their representation as GBL-pairs and Birkhoff’s

representation. To do so, we applied combinatorial

methods such as the Möbius inversion formula, that

could not be easily generalizable to the infinite case.



Representation theorems allow us to think of the state

in terms of distribution, being also a support for inter-

pretation.

We made few assumptions on the distribution. We

didn’t make full use of the logical structure of algebras,

in particular the implication.

On this point other approaches exist, but we believe

that also the one presented here can be adapted to be

logically more expressive.

THANK Y OU
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