Endomorphism monoids of ω -categorical structures

Michael Kompatscher

michaelkompatscher@hotmail.com

Institut of Computer Languages Technische Universität Wien

TACL - 24/06/2015

A structure is called ω -categorical iff its theory has exactly one countable model.

A structure is called ω -categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure \mathcal{A} is ω -categorical

• iff Aut(A) is oligomorphic: Every action $Aut(A) \curvearrowright A^n$ has only finitely many orbits.

A structure is called ω -categorical iff its theory has exactly one countable model.

Theorem (Ryll-Nardzewski '59)

A countable structure $\mathcal A$ is ω -categorical

- iff Aut(A) is oligomorphic: Every action $Aut(A) \curvearrowright A^n$ has only finitely many orbits.
- Definable relations = unions of orbits

A structure is called ω -categorical iff its theory has exactly one countable model

Theorem (Ryll-Nardzewski '59)

A countable structure A is ω -categorical

- iff Aut(A) is oligomorphic: Every action $Aut(A) \curvearrowright A^n$ has only finitely many orbits.
- Definable relations = unions of orbits

Countable, ω -cat. structures \mathcal{A} and \mathcal{B} are interdefinable iff

$$\mathsf{Aut}(\mathcal{A}) = \mathsf{Aut}(\mathcal{B})$$

A surjective partial function $I: \mathcal{A}^n \to \mathcal{B}$ is called an interpretation iff every preimage of a relation in \mathcal{B} is definable in \mathcal{A} .

A surjective partial function $I: A^n \to \mathcal{B}$ is called an interpretation iff every preimage of a relation in \mathcal{B} is definable in \mathcal{A} .

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

$$\operatorname{\mathsf{Aut}}(\mathcal{A})\cong_{\mathcal{T}}\operatorname{\mathsf{Aut}}(\mathcal{B})$$

with the topology of pointwise convergence.

A surjective partial function $I: A^n \to \mathcal{B}$ is called an interpretation iff every preimage of a relation in \mathcal{B} is definable in \mathcal{A} .

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

$$\operatorname{\mathsf{Aut}}(\mathcal{A})\cong_{\mathcal{T}}\operatorname{\mathsf{Aut}}(\mathcal{B})$$

with the topology of pointwise convergence.

What about Aut(A) as abstract group?

A surjective partial function $I: A^n \to \mathcal{B}$ is called an interpretation iff every preimage of a relation in \mathcal{B} is definable in \mathcal{A} .

Theorem (Ahlbrandt and Ziegler '86)

Two countable ω -categorical structures \mathcal{A}, \mathcal{B} are bi-interpretable iff

$$\operatorname{\mathsf{Aut}}(\mathcal{A})\cong_{\mathcal{T}}\operatorname{\mathsf{Aut}}(\mathcal{B})$$

with the topology of pointwise convergence.

- What about Aut(A) as abstract group?
- Can we reconstruct the topology of Aut(A)?

More refined notion of interpretability with:

More refined notion of interpretability with:

• The endomorphisms monoid End(A): All the homomorphisms $h: A \to A$

More refined notion of interpretability with:

- The endomorphisms monoid End(A): All the homomorphisms $h: A \rightarrow A$
- The polymorphism clone Pol(A): All the homomorphism $h: A^n \to A$ for $1 \le n < \omega$

The clone closure

More refined notion of interpretability with:

- The endomorphisms monoid End(A): All the homomorphisms $h: A \rightarrow A$
- The polymorphism clone Pol(A): All the homomorphism $h: A^n \to A$ for $1 \le n < \omega$

	acting on A	topologically	abstract
$Aut(\mathcal{A})$	first-order	first-order	
	interdefinability	bi-interpretability	
$End(\mathcal{A})$	positive existential	positive existential	
	interdefinability	bi-interpretability*	
$Pol(\mathcal{A})$	primitive positive	primitive positive	
	interdefinability	bi-interpretability	

More refined notion of interpretability with:

- The endomorphisms monoid End(A): All the homomorphisms $h: A \rightarrow A$
- The polymorphism clone Pol(A): All the homomorphism $h: A^n \to A$ for $1 \le n < \omega$

	acting on A	topologically	abstract
$Aut(\mathcal{A})$	first-order	first-order	?
	interdefinability	bi-interpretability	
$End(\mathcal{A})$	positive existential	positive existential	?
	interdefinability	bi-interpretability*	
$Pol(\mathcal{A})$	primitive positive	primitive positive	?
	interdefinability	bi-interpretability	

Reconstruction

Questions

Can we reconstruct the topology of a closed oligomorphic

- permutation group
- transformation monoid
- function clone

from its abstract algebraic structure?

Reconstruction

 ω -categorical structures

Questions

Can we reconstruct the topology of a closed oligomorphic

- permutation group
- transformation monoid
- function clone

from its abstract algebraic structure?

No!

(Evans + Hewitt '90; Bodirsky + Evans + Pinsker + MK '15)

The clone closure

Is there any closed subgroup of S_{ω} without reconstruction?

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

So from now on work in ZFC.

Is there any closed subgroup of S_{ω} without reconstruction?

ZF+DC is consistent with the statement that every isomorphism between closed subgroups of S_{ω} is a homeomorphism.

So from now on work in ZFC.

Profinite groups are closed permutation groups where every orbits contains finitely many elements.

Example (Witt '54)

There are two separable profinite groups G, G' that are isomorphic, but not topologically isomorphic.

Lift the result to oligomorphic groups:

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

- $\Sigma_R/\Phi \cong_T R$.
- Φ is the intersection of open subgroups of finite index in Σ_R

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

- $\Sigma_R/\Phi \cong_T R$.
- Φ is the intersection of open subgroups of finite index in Σ_R

Proof idea: $R \leq \prod_{n \geq 1} \operatorname{Sym}(n)$.

Lift the result to oligomorphic groups:

Lemma (Hrushovski)

There is a oligomorphic Φ such that for every separable profinite group R there is an oligomorphic Σ_R :

- $\Sigma_R/\Phi \cong_T R$.
- ullet Φ is the intersection of open subgroups of finite index in Σ_R

Proof idea: $R \leq \prod_{n>1} \operatorname{Sym}(n)$.

Look at finite sets. Partition the *n*-tuples into partition classes $P_1^n, P_2^n, \dots P_n^n$ for all $n \ge 1$. This gives us a Fraïssé-class.

Let
$$A = (A, (P_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = Aut(A)$

Let
$$A = (A, (P_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = Aut(A)$

Forget about the labelling \rightarrow equivalence relations E^n

Let
$$A = (A, (P_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = Aut(A)$

Forget about the labelling \to equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

Let
$$A = (A, (P_i^n)_{i,n})$$
 be the Fraïssé-limit; $\Phi = \operatorname{Aut}(A)$

Forget about the labelling \rightarrow equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

We can think of Σ acting on the partition classes $P_1^n, P_2^n, \dots P_n^n$.

Let
$$A = (A, (P_i^n)_{i,n})$$
 be the Fraissé-limit; $\Phi = Aut(A)$

Forget about the labelling \to equivalence relations E^n $\Sigma = \operatorname{Aut}(A, (E^n)_{n \in \mathbb{N}})$

We can think of Σ acting on the partition classes $P_1^n, P_2^n, \dots P_n^n$.

This gives us
$$\Sigma/\Phi \cong^T \prod_{n \in \mathbb{N}} \operatorname{Sym}(n)$$
.

Idea

Use the encoding lemma to show:

Idea

Use the encoding lemma to show:

$$G \ncong_T G' \Rightarrow \Sigma_G \ncong_T \Sigma_{G'}$$

Idea

Use the encoding lemma to show:

$$G \ncong_{\mathcal{T}} G' \Rightarrow \Sigma_{G} \ncong_{\mathcal{T}} \Sigma_{G'}$$
$$G \cong G' \Rightarrow \Sigma_{G} \cong \Sigma_{G'}$$

Idea

Use the encoding lemma to show:

$$G \ncong_{\mathcal{T}} G' \Rightarrow \Sigma_{G} \ncong_{\mathcal{T}} \Sigma_{G'}$$
$$G \cong G' \Rightarrow \Sigma_{G} \cong \Sigma_{G'}$$

Problem: We do not know if $\Sigma_G \cong \Sigma_{G'}$ for $G \cong G'$.

Idea

Use the encoding lemma to show:

$$G \ncong_{\mathcal{T}} G' \Rightarrow \Sigma_{G} \ncong_{\mathcal{T}} \Sigma_{G'}$$
$$G \cong G' \Rightarrow \Sigma_{G} \cong \Sigma_{G'}$$

Problem: We do not know if $\Sigma_G \cong \Sigma_{G'}$ for $G \cong G'$.

The real proof deviates from the above.

Lifting to the monoid closure

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^ω .

Lifting to the monoid closure

Let $\overline{\Sigma_R}$ be the topological closure of Σ_R in ω^ω .

Lemma

The quotient homomorphism $\Sigma_R \to R$ extends to a continuous monoid homomorphism

$$\overline{\Sigma_R} \to R$$
 with kernel $\overline{\Phi}$.

Lifting to the monoid closure

Let $\overline{\Sigma}_R$ be the topological closure of Σ_R in ω^{ω} .

Lemma

The quotient homomorphism $\Sigma_R \to R$ extends to a continuous monoid homomorphism

$$\overline{\Sigma_R} \to R$$
 with kernel $\overline{\Phi}$.

We get:

Result for monoids

 $\overline{\Sigma_G}$ and $\overline{\Sigma_{G'}}$ are isomorphic, but not topologically isomorphic.

Oligomorphic clones

Observation

Let $I:\Gamma\to\Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $\mathsf{Clo}(\Gamma) \to \mathsf{Clo}(\Delta)$.

Oligomorphic clones

Observation

Let $I: \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $Clo(\Gamma) \rightarrow Clo(\Delta)$.

Result for clones

The clones $Clo(\overline{\Sigma_G})$ and $Clo(\overline{\Sigma_{G'}})$ are isomorphic but not topologically isomorphic.

Oligomorphic clones

Observation

Let $I: \Gamma \to \Delta$ be a monoid homomorphism. If I sends constants to constants, it has a natural extension to a clone homomorphism $Clo(\Gamma) \rightarrow Clo(\Delta)$.

Result for clones

The clones $Clo(\overline{\Sigma_G})$ and $Clo(\overline{\Sigma_{G'}})$ are isomorphic but not topologically isomorphic.

This answers a question by Bodirsky, Pinsker and Pongrácz.