Dual characterizations for finite lattices via correspondence theory for monotone modal logic

Sabine Frittella¹

joint work with Alessandra Palmigiano² and Luigi Santocanale¹

1. LIF. Aix-Marseille Université. CNRS UMR 7279. France 2. TPM, TU Delft & Dep. Mathematics, University of Johannesburg

May 1, 2014

TACL 2015, Ischia, Italy

Correspondence via Duality

Correspondence theory arises semantically:

Aim Lattices & frames ALBA for MML Result

Correspondence via Duality

An asymmetry:

Correspondence via Duality

Symmetry re-established via duality:

Correspondence via Duality

Correspondence available <u>not</u> just for normal modal logic:

Unified correspondence

Hybrid logics [CR15]

DLE-logics [CP12, CPS]

Substructural logics [CP15]

Display calculi [GMPTZ]

Jónsson-style vs Sambin-style canonicity [PSZ15b]

Canonicity via pseudo-correspondence

Mu-calculi [CFPS15, CGP14, CC15]

> Regular DLE-logics Kripke frames with impossible worlds [PSZ15a]

Finite lattices and monotone ML [FPS15]

Lattices & frames ALBA for MML Result

Aim: Algorithmic Correspondence Theory for Finite Lattices

Theorem [Nation 90]

 $t_n \le s_n$ sequence of lattice inequalities generalizing distributivity, L a lattice, and $D \subseteq J(L) \times J(L)$ binary relation (defined in Nation 90).

 $L \models s_n \le t_n$ iff there is no *D*-chain of length *n* in *L*

Aim: Embed Nation's theorem into correspondence theory for lattices

Strategy:

- Finite lattices as relational structures (join-presentations)
- Join-presentations as enriched monotone neighbourhood frames
- Oevelop ALBA for monotone neighbourhood frames
- Oevelop ALBA for enriched monotone neighbourhood frames

Finite lattices as relational frames

L finite lattice, J(L) set of join-irreducible elements of L.

Def: $j \in J(L)$, $C \subseteq J(L)$.

C is a cover of j iff
$$j \leq \bigvee C$$

Def: The join-presentation of *L* is

$$\langle J(L), \leq, \sigma : J(L) \longrightarrow \mathcal{PP}J(L) \rangle$$

s.t. for every $j \in J(L)$,

$$\sigma(j) := \{ C \subseteq J(L) \mid j \leq \bigvee C \}.$$

Def: $S \subseteq J(L)$ is closed if $\forall j \in J(L)$ ($S \in \sigma(j) \Rightarrow j \in S$).

Theorem [Santocanale2009]

Every finite lattice *L* is isomorphic to the lattice of its closed sets.

Def:

- Kripke frame: $\langle W, R : W \longrightarrow \mathcal{P}W \rangle$
- Neighbourhood frame: $\langle W, N : W \longrightarrow \mathcal{PP}W \rangle$
- Monotone neighbourhood frame: $\langle W, N : W \longrightarrow \mathcal{PP}W \rangle$ such that, for every $w \in W$, N(w) is upward closed. i.e. $S \subseteq T$ and $S \in N(w)$ implies $T \in N(w)$.

join-presentation of $L: \langle J(L), \leq, \sigma : J(L) \longrightarrow \mathcal{PP}J(L) \rangle$ with $\sigma(j) := \{ C \subseteq J(L) \mid j \leq \bigvee C \}.$

 $\langle J(L), \ \sigma: J(L) \longrightarrow \mathcal{PP}J(L) \rangle$ is a monotone neighbourhood frame.

Join-presentations as enriched monotone neighbourhood frames

Def:

- Monotone neighbourhood frame: $\langle W, N : W \longrightarrow \mathcal{PP}W \rangle$ such that, for every $w \in W$, N(w) is upward closed.
- Enriched monotone neighbourhood frame:

$$\langle W, \leq, N : W \longrightarrow \mathcal{PP}W \rangle$$

s.t.

- (W, \leq) is a poset
- $\langle W, N : W \longrightarrow \mathcal{PP}W \rangle$ is a monotone neighbourhood frame

 $\langle J(L), \leq, \sigma : J(L) \longrightarrow \mathcal{PP}J(L) \rangle$ is an enriched monotone neighbourhood frame.

Duality-induced translation: lattice terms \rightarrow modal fm'as

Monotone neighbourhood frames $\langle W, N : W \longrightarrow \mathcal{PP}W \rangle$ are natural models for the modal language:

$$\varphi ::= \bot \mid \top \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid (\exists \forall) \varphi \mid (\forall \exists) \varphi.$$

$$\mathbb{M}$$
, $w \Vdash (\exists \forall) \varphi$ iff $\exists C \in N(w)$, $\forall c \in C$, \mathbb{M} , $c \Vdash \varphi$
 \mathbb{M} , $w \vdash (\forall \exists) \varphi$ iff $\forall C \in N(w)$, $\exists c \in C$, \mathbb{M} , $c \vdash \varphi$.

Lattice terms → modal <u>formulas</u>

Language of lattices:
$$\varphi ::= \bot \mid \top \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi$$

$$ST(p) = p, ST(\top) = \top, ST(\bot) = \bot, ST(t \land s) = ST(t) \land ST(s),$$

$$ST(t \lor s) = (\exists \forall) (ST(t) \lor ST(s)).$$

ALBA for monotone modal logic

ALBA: algorithm based on

- adjunction, residuation, minimal/maximal valuation argument
- Ackerman Lemma (to eliminate propositional variables)

Monotone modal logic: $(\exists \forall)$ and $(\forall \exists)$ are non-normal modalities \longrightarrow no adjunction \longrightarrow no ALBA

Solution [Hansen 2003]:

$$(\exists \forall) X \sim \Diamond_N \square_{\ni} X \sim \{ w \in W \mid \exists C \in N(w), \ \forall w' \in C, \ w' \in X \}$$

Two-sorted frames: $\mathbb{X} = \langle X, Y, R_{XY}, R_{YX} \rangle$

ex:
$$\langle W, \mathcal{P}W, R_N \subseteq W \times \mathcal{P}W, \exists \subseteq \mathcal{P}W \times W \rangle$$

ex:
$$\langle J(L), \mathcal{P}J(L), R_{\sigma} \subseteq J(L) \times \mathcal{P}J(L), \ni \subseteq \mathcal{P}J(L) \times J(L) \rangle$$

ALBA for monotone modal logic

two-sorted frame:

$$\langle J(L), \mathcal{P}J(L), R_{\sigma} \subseteq J(L) \times \mathcal{P}J(L), \ni \subseteq \mathcal{P}J(L) \times J(L) \rangle$$

$$\textbf{Formulas:} \ \varphi ::= \bot \mid \top \mid p \mid \neg \varphi \mid \varphi \vee \varphi \mid \varphi \wedge \varphi \mid \lozenge_{\sigma} \square_{\ni} \varphi \mid \square_{\sigma} \lozenge_{\ni} \varphi.$$

Syntax in ALBA

$$\varphi ::= \bot \mid \top \mid p \mid \mathbf{j} \mid \mathbf{m} \mid \mathbf{j} \mid \underline{\mathbf{m}} \mid \neg \varphi \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \\ \Diamond_{\sigma} \varphi \mid \Box_{\sigma} \varphi \mid \Diamond_{\ni} \varphi \mid \Box_{\ni} \varphi \mid \blacklozenge_{\sigma} \varphi \mid \blacksquare_{\sigma} \varphi \mid \blacklozenge_{\ni} \varphi \mid \blacksquare_{\ni} \varphi.$$

ALBA for join-presentations: we add some rules describing the specific behaviour of join-presentations.

ALBA for monotone modal logic

SOME RULES

$$\frac{\varphi \leq \psi_1 \wedge \psi_2}{\varphi \leq \psi_1 \ \& \ \varphi \leq \psi_2} \qquad \frac{\alpha \wedge \beta \leq \gamma}{\alpha \leq \beta \rightarrow \gamma} \qquad \frac{\alpha \leq_{\mathbf{Y}} \square_{\ni} \beta}{\blacklozenge_{\ni} \alpha \leq_{\mathbf{X}} \beta}$$

Ackermann Rule:

$$\frac{\exists p \left[\&_{i=1}^n \{ p \le \alpha_i \} \& \&_{j=1}^m \{ \beta_j(p) \le \gamma_j(p) \} \right]}{\&_{j=1}^m \{ \beta_j((\bigwedge_{i=1}^n \alpha_i)/p) \le \gamma_j((\bigwedge_{i=1}^n \alpha_i)/p) \}} (LAR)$$

where p does not occur in $\alpha_1, \ldots, \alpha_n$, the formulas $\beta_1(p), \ldots, \beta_m(p)$ are negative in p, and $\gamma_1(p), \ldots, \gamma_m(p)$ are positive in p.

ALBA for join-presentations

Ackermann Rule:

$$\frac{\exists p \left[\&_{i=1}^{n} \{ \alpha_{i} \leq p \} \& \&_{j=1}^{m} \{ \beta_{j}(p) \leq \gamma_{j}(p) \} \right]}{\&_{j=1}^{m} \{ \beta_{j}((\langle \lhd \rangle [\ni] \langle \leq_{X} \rangle \bigvee_{i=1}^{n} \alpha_{i})/p) \leq \gamma_{j}((\langle \lhd \rangle [\ni] \langle \leq_{X} \rangle \bigvee_{i=1}^{n} \alpha_{i})/p) \}}$$

Lemma:

$$(S1) := \begin{pmatrix} \mathbf{j} \leq \langle \lhd \rangle \mathbf{C} \\ \mathbf{k} \leq \langle \in \rangle \mathbf{C} \\ \langle \leq_{J} \rangle \mathbf{j} \wedge \langle \leq_{J} \rangle \mathbf{k} \leq \kappa(\mathbf{k}) \\ \langle \leq_{J} \rangle \mathbf{k} \wedge s \leq \kappa(\mathbf{k}) \end{pmatrix},$$

$$(S2) := \begin{pmatrix} (S1) \\ \mathbf{j} \wedge \langle \lhd \rangle [\ni] (\langle \lhd \rangle [\ni] \langle \leq_{J} \rangle (\langle \in \rangle \mathbf{C} \setminus \mathbf{k}) \vee (\langle \leq_{J} \rangle \mathbf{j} \wedge \langle \leq_{J} \rangle \mathbf{k}) \\ \vee (\langle \leq_{J} \rangle \mathbf{k} \wedge s)) \leq \bot \end{pmatrix}.$$

Result & Open questions

Results:

- ALBA for monotone modal logic
- Obtain a new correspondence result similar to Nation's result
- New Ackermann type rule based on a minimal/maximal valuation argument

Open questions:

- Adapt ALBA for non-normal modal logics
- Generalize the new Ackermann type rule

[Conradie Fomatati Palmigiano Sourabh] Correspondence theory for intuitionistic modal mu-calculus, *TCS*, 564:30-62 (2015).

[Conradie Ghilardi Palmigiano] Unified Correspondence, in *Johan van Benthem on Logic and Information Dynamics*, Springer, 2014.

[Conradie Palmigiano 2012] Algorithmic Correspondence and Canonicity for Distributive Modal Logic, *APAL*, 163:338-376.

[Conradie Palmigiano 2015] Algorithmic correspondence and canonicity for non-distributive logics, *JLC*, to appear.

[Conradie Palmigiano Sourabh] Algebraic modal correspondence: Sahlqvist and beyond, submitted, 2014.

[Conradie Palmigiano Sourabh Zhao] Canonicity and relativized canonicity via pseudo-correspondence, submitted, 2014.

[Conradie Robinson 2015] On Sahlqvist Theory for Hybrid Logics, *JLC*, to appear. [Frittella Palmigiano Santocanale] Dual characterizations for finite lattices via correspondence theory for monotone modal logic, *JLC*, to appear.

[Greco Ma Palmigiano Tzimoulis Zhao] Unified correspondence as a proof-theoretic tool, submitted, 2015.

[Hansen] Monotonic modal logics, Master's thesis, University of Amsterdam, 2003. [Nation] An approach to lattice varieties of finite height, *Algebra Universalis*, 1990. [Palmigiano Sourabh Zhao/a] Sahlqvist theory for impossible worlds, *JLC*, 2015. [Palmigiano Sourabh Zhao/b] Jónsson-style canonicity for ALBA inequalities, *JLC*, 2015.

[Santocanale] A duality for finite lattices, preprint HAL, 2009.