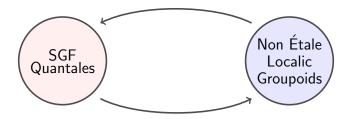
SGF-quantales and their groupoids

Catalina Ossa joint work with Helle Hansen, Alessandra Palmigiano and Riccardo Re

TACL 2015 25 June 2015

Bijective correspondence:



< E

Quantales and Groupoids

	Étale	Non Étale
Point-set		Spatial SGF-Quantales & "Set" Groupoids + Bases [Palmigiano & Re 2011]
Point-free	Inverse Quantal Frames & Localic Étale Groupoids [Resende 2007]	SGF-Quantales & Localic Groupoids

Quantales

Definition

Quantale= sup lattice + associative product $(a, b) \mapsto ab$ satisfying

$$a(\lor b_i) = \lor (ab_i)$$
$$(\lor a_i)b = \lor (a_ib)$$

< ∃ >

A 10

- ∢ ⊒ →

э

Quantales

Definition

Quantale= sup lattice + associative product $(a, b) \mapsto ab$ satisfying

$$a(\lor b_i) = \lor (ab_i)$$
$$(\lor a_i)b = \lor (a_ib)$$

Definition

Q is unital if $\exists e \in Q$ s.t.

$$qe = q = eq$$

Q is involutive if $\exists (-)^{\dagger} : Q \rightarrow Q$ sup lattice map st

$$x^{\dagger\dagger} = x$$

$$(xy)^{\dagger} = y^{\dagger}x^{\dagger}$$

Example

Subrelations of eq rel $R \subset X \times X$

- Join = union
- Product: xSTy iff $\exists z \text{ st } xSz$ and zTy
- $e = \Delta$ diagonal relation
- $S^{\dagger} = \{(y, x) \mid xSy\}.$

Example

Subrelations of eq rel $R \subset X \times X$

- Join = union
- Product: xSTy iff $\exists z \text{ st } xSz$ and zTy
- $e = \Delta$ diagonal relation
- $S^{\dagger} = \{(y, x) \mid xSy\}.$

Definition

A homomorphism of (involutive) quantales is a map $f: Q \to Q'$ that preserves \lor , \cdot (and \dagger). It need not preserve \top .

An element $f \in Q$ is functional if $f^{\dagger} \cdot f \leq e$ and is a partial unit if both f and f^{\dagger} are functional.

 $\mathcal{I}(Q)$ = set of partial units

An element $f \in Q$ is functional if $f^{\dagger} \cdot f \leq e$ and is a partial unit if both f and f^{\dagger} are functional.

 $\mathcal{I}(Q)$ = set of partial units

An SGF quantale is a unital involutive quantale Q such that

- Q is \lor -generated by $\mathcal{I}(Q)$
- $f = ff^{\dagger}f$ for all $f \in \mathcal{I}(Q)$
- For any $f, g \in \mathcal{I}(Q)$ and $h \in Q_e$ if $f \leq h \cdot \top \lor g$ then $f \leq h \cdot f \lor g$

A frame L is a sup-lattice with a meet satisfying

$$x \land (\bigvee Y) = \bigvee_{y \in Y} (x \land y)$$

▲ 同 ▶ → 三 ▶

э

A frame L is a sup-lattice with a meet satisfying

$$x \land (\bigvee Y) = \bigvee_{y \in Y} (x \land y)$$

- **→** → **→**

Any frame is an idempotent unital quantale by taking product=meet and $e = \top$.

A frame L is a sup-lattice with a meet satisfying

$$x \land (\bigvee Y) = \bigvee_{y \in Y} (x \land y)$$

▲□ ▶ ▲ □ ▶ ▲ □

Any frame is an idempotent unital quantale by taking product=meet and $e = \top$.

Example

 $\Omega(X)$ for X top space, $\wedge =$ intersection, e = X

A frame L is a sup-lattice with a meet satisfying

$$x \land (\bigvee Y) = \bigvee_{y \in Y} (x \land y)$$

Any frame is an idempotent unital quantale by taking product=meet and $e = \top$.

Example

 $\Omega(X)$ for X top space, $\wedge =$ intersection, e = X

Definition

 $\label{eq:Homomorphism} \begin{array}{l} \mbox{Homomorphism of frames} = \mbox{homomorphism of unital quantales} \\ \mbox{between frames} \end{array}$

Loc	Frm
X	$\mathcal{O}(X)$
$f: X \to Y$	$f^*:\mathcal{O}(Y)\to\mathcal{O}(X)$

< /□> < □>

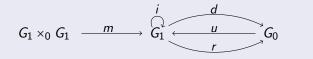
æ

Set Groupoids: small category where every arrow is an iso

▲ 同 ▶ → 三 ▶

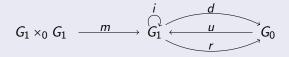
Set Groupoids: small category where every arrow is an iso

Set groupoids are tuples $G = (G_0, G_1, m, d, r, u, i)$ s.t. G_0 and G_1 are sets, and:

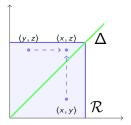


Set Groupoids: small category where every arrow is an iso

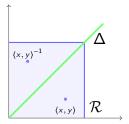
Set groupoids are tuples $G = (G_0, G_1, m, d, r, u, i)$ s.t. G_0 and G_1 are sets, and:



Topological, Localic Groupoids: Groupoids in Top, Loc.



$$(G_0, G_1, \cdot, d, r, u, -1)$$
$$X = G_0 \qquad \mathcal{R} = G_1$$
$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

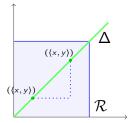


$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$

$$X = G_0 \qquad \mathcal{R} = G_1$$

$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$



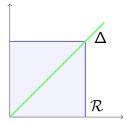
$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$

$$X = G_0 \qquad \mathcal{R} = G_1$$

$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$

$$d(\langle x, y \rangle) = x \ r(\langle x, y \rangle) = y$$



$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$

$$X = G_0 \quad \mathcal{R} = G_1$$

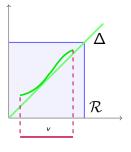
$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$

$$d(\langle x, y \rangle) = x \ r(\langle x, y \rangle) = y$$

$$u : \Delta \subset \mathcal{R}; \text{ alternatively}$$

$$u : x \in G_0 \mapsto \langle x, x \rangle \in \Delta$$



$$(G_0, G_1, \cdot, d, r, u, {}^{-1})$$

$$X = G_0 \qquad \mathcal{R} = G_1$$

$$\langle x, y \rangle \cdot \langle y, z \rangle = \langle x, z \rangle$$

$$\langle x, y \rangle^{-1} = \langle y, x \rangle$$

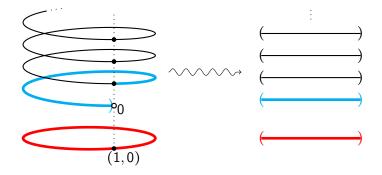
$$d(\langle x, y \rangle) = x \ r(\langle x, y \rangle) = y$$

$$u : \Delta \subset \mathcal{R}; \text{ alternatively}$$

$$u : x \in G_0 \mapsto \langle x, x \rangle \in \Delta$$

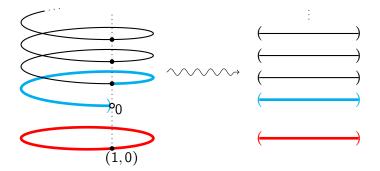
A map $v: V \to G_1$ is a local bisection if • $d \circ v = id_V$ • $r \circ v: V \to U$ is a local homeomorphism

Étale vs Non Étale



문 🛌 문

Étale vs Non Étale



<u>Fact</u>: If G_0 is locally compact then:

- if G is étale, images of local bisections form a basis for the topology of G₁.
- If the topology of G_1 has a basis of images of local bisections, then G is étale.

Point set non étale case

G groupoid $\implies \mathcal{P}(G_1)$ can be given the structure of a unital involutive quantale:

$$S \cdot T = \{x \cdot y \mid x \in S, y \in T \text{ and } r(x) = d(y)\}$$

$$S^{\dagger} = \{x^{-1} \mid x \in S\}$$

E = the image of $u: G_0 \rightarrow G_1$

Point set non étale case

G groupoid $\implies \mathcal{P}(G_1)$ can be given the structure of a unital involutive quantale:

$$S \cdot T = \{x \cdot y \mid x \in S, y \in T \text{ and } r(x) = d(y)\}$$

$$S^{\dagger} = \{x^{-1} \mid x \in S\}$$

E = the image of $u: G_0 \rightarrow G_1$

Want: to substitute $\mathcal{P}(G_1)$ with $Sp(G_1) =$ set of sublocales of G_1 .

Protin and Resende:

if \mathcal{G} is a localic groupoid such that m^* preserves all meets (iff m^* has left adjoint $m_!$) $\implies \mathcal{O}(G_1)$ is quantale, multiplication = composite

$$\mathcal{O}(G_1) \otimes \mathcal{O}(G_1) \xrightarrow{q} \mathcal{O}(G_1 \times_{G_0} G_1) \xrightarrow{m_!} \mathcal{O}(G_1)$$

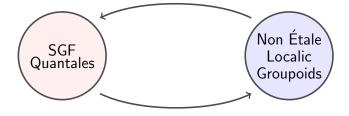
Protin and Resende:

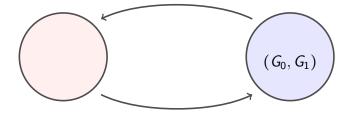
if \mathcal{G} is a localic groupoid such that m^* preserves all meets (iff m^* has left adjoint $m_!$) $\implies \mathcal{O}(G_1)$ is quantale, multiplication = composite

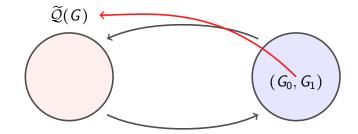
$$\mathcal{O}(G_1) \otimes \mathcal{O}(G_1) \xrightarrow{q} \mathcal{O}(G_1 \times_{G_0} G_1) \xrightarrow{m_!} \mathcal{O}(G_1)$$

Problem:

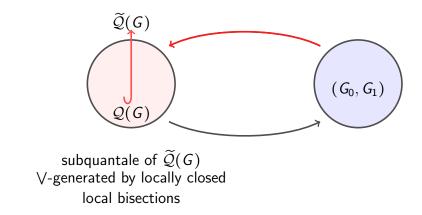
 m^* need not preserve arbitrary meets.

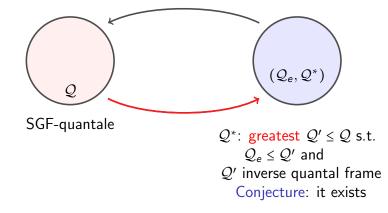






Unital Involutive Quantale $\tilde{Q}(G) := \{ B \subset \mathcal{O}(G_1) \mid B \text{ is up closed} \}$





From Groupoids to Quantales

2 assumptions:

- $u: G_0 \rightarrow G_1$ is a closed embedding
- $m: G_1 \times_{G_0} G_1 \rightarrow G_1$ is a closed map

Construction 1: $\tilde{\mathcal{Q}}(G)$

- Define $\tilde{\mathcal{Q}}(G) = U(G_1) := \{ B \subset \mathcal{O}(G_1) \mid B \text{ is upward closed } \}$
- $U(G_1)$ is a complete meet semi lattice, meets = intersections

$$\mathcal{O}(G_1) \hookrightarrow \mathcal{U}(G_1)$$

 $a \mapsto (a) \uparrow$

• $m^*: \mathcal{O}(G_1) \to \mathcal{O}(G_1) \otimes_{\mathcal{O}(G_0)} \mathcal{O}(G_1) = \mathcal{O}(G_1 \times_{G_0} G_1)$ can be extended to

$$\bar{m}^*: U(G_1) \to U(G_1 \times G_1)$$
$$B \mapsto \bar{m}^*(B) = m^*(B)$$

$ilde{\mathcal{Q}}({\it G})$ is a unital involutive quantale

 \overline{m}^* preserves arbitrary meets \implies has left adjoint $\overline{m}_!^*$ \exists map of sup lattices $U(G_1) \otimes U(G_1) \xrightarrow{q} U(G_1 \times_{G_0} G_1)$

Multiplication:

$$U(G_1) \otimes U(G_1) \xrightarrow{q} U(G_1 \times_{G_0} G_1) \xrightarrow{\bar{m}_!^*} U(G_1)$$

Involution:

$$\begin{aligned} & \dagger : \tilde{\mathcal{Q}}(G) \to \tilde{\mathcal{Q}}(G) \\ & B \mapsto B^{\dagger} = \{ i^*(b) \mid b \in B \} \end{aligned}$$

Unit:

$$u(G_0) = a_u \uparrow \text{ for some } a_u \in \mathcal{O}(G_1)$$

Thank you for your attention.

$\mathcal{Q}(G)$

Q a quantale. A nucleus on Q is a closure operator $j: Q \rightarrow Q$ st $i(x)i(y) \le i(xy) \forall x, y \in Q$

Open sublocale

L locale, j nucleus on $\mathcal{O}(L)$. The sublocale defined by j is open if j is the nucleus induced by the quotient

$$(-) \land a: \mathcal{O}(L) \to \downarrow a$$

for some $a \in (\mathcal{O})$

A local bisection $\sigma: U \to G_1$ is a section of $d: G_1 \to G_0$ over U such that $r \circ \sigma: U \to G_0$ is a open embedding, with image an open sublocale $V \subset G_0$.

- 4 同 6 4 日 6 4 日 6

Open sublocales $U, V \subset G_0$; associate the open sublocale of G_1 defined by

$$G_1(U,V)=d^{-1}(U)\cap r^1(V)\subset G_1.$$

Definition

A local bisection $\sigma: U \to G_1$ has domain $U \subset G_0$ and codomain $V \subset G_0$ if $V = r(\sigma(U))$. We say that σ is locally closed in G_1 if $\sigma(U)$ is a closed subspace of $G_1(U, V)$.

Given any locally closed local bisection σ we denote $a_{\sigma} \in \mathcal{O}(G_1(U, V))$ the uniquely defined element such that the closed subspace $\sigma(U)$ of $G_1(U, V)$ has nucleus image

 $c(a_{\sigma}) = a_{\sigma} \uparrow \in U(G_1(U, V))$

We denote by $Q(U, V) \subset eQ(U, V)$ the join sub suplattice of $\hat{Q}(U, V)$ generated by the upsets of the form $c(a_{\sigma}) = a_{\sigma} \uparrow$, associated to locally closed local bisections $\sigma: U \to G_1$ with domain U and codomain V.

Fact

From the open embeddings $j: G_1(U, V) \to G_1$ one can define the sup-lattice morphisms $j!: \widetilde{Q}(U, V) \to \widetilde{Q}(G)$ for any U, V.

Definition

We define Q(G) as the sub suplattice of $\widetilde{Q}(G)$ that is join-generated by all the images $j!(Q(U, V)) \subset \widetilde{Q}(G)$, for varying $U, V \subset G_0$.