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Work in progress

Bijective correspondence:

SGF
Quantales

Non Étale
Localic

Groupoids
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Quantales and Groupoids

Étale Non Étale

Spatial SGF-Quantales
Point-set &

“Set” Groupoids + Bases
[Palmigiano & Re 2011]

Inverse Quantal Frames SGF-Quantales
Point-free & &

Localic Étale Groupoids Localic Groupoids
[Resende 2007]
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Quantales

Definition

Quantale= sup lattice + associative product (a,b)↦ ab satisfying

a(∨bi) = ∨(abi)

(∨ai)b = ∨(aib)

Definition

Q is unital if ∃e ∈ Q s.t.

qe = q = eq

Q is involutive if ∃(−)�∶Q → Q sup lattice map st

x�� = x

(xy)� = y �x�
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Example

Example

Subrelations of eq rel R ⊂ X ×X

Join = union

Product: xSTy iff ∃z st xSz and zTy

e = ∆ diagonal relation

S� = {(y , x) ∣ xSy}.

Definition

A homomorphism of (involutive) quantales is a map f ∶Q → Q ′

that preserves ∨, ⋅ (and �). It need not preserve ⊺.
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SGF Quantales

An element f ∈ Q is functional if f � ⋅ f ≤ e and is a partial unit if
both f and f � are functional.

I(Q) = set of partial units

An SGF quantale is a unital involutive quantale Q such that

Q is ∨-generated by I(Q)
f = ff �f for all f ∈ I(Q)
For any f ,g ∈ I(Q) and h ∈ Qe if f ≤ h ⋅ ⊺ ∨ g then f ≤ h ⋅ f ∨ g
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Frames

Definition

A frame L is a sup-lattice with a meet satisfying

x ∧ (⋁Y ) = ⋁
y∈Y
(x ∧ y)

Any frame is an idempotent unital quantale by taking
product=meet and e = ⊺.

Example

Ω(X ) for X top space, ∧ = intersection, e = X

Definition

Homomorphism of frames = homomorphism of unital quantales
between frames
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Frames and locales

Definition

Frmop = Loc

Loc Frm

X O(X )
f ∶X → Y f ∗∶O(Y )→ O(X )
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Groupoids

Definition

Set Groupoids: small category where every arrow is an iso

Set groupoids are tuples G = (G0,G1,m,d , r ,u, i) s.t. G0 and G1

are sets, and:

i d

r

umG1 ×0 G1 G1 G0

Topological, Localic Groupoids: Groupoids in Top, Loc.
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Groupoids and equivalence relations

R

(G0,G1, ⋅,d , r ,u,−1 )
X = G0 R = G1

∆

⟨x , y⟩ ⋅ ⟨y , z⟩ = ⟨x , z⟩

⟨x, y⟩

⟨y, z⟩ ⟨x, z⟩

⟨x , y⟩−1 = ⟨y , x⟩

⟨x, y⟩−1

d(⟨x , y⟩) = x r(⟨x , y⟩) = y

(⟨x, y⟩)

(⟨x, y⟩)

u ∶∆ ⊂R; alternatively

u ∶ x ∈ G0 ↦ ⟨x , x⟩ ∈ ∆

v

A map v ∶V → G1 is a local bisection if

d ○ v = idV

r ○ v ∶V → U is a local homeomorphism
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Étale vs Non Étale

)

(1,0)

0

( )

( )
( )
( )
( )

Fact: If G0 is locally compact then:

if G is étale, images of local bisections form a basis for the
topology of G1.

If the topology of G1 has a basis of images of local bisections,
then G is étale.
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From groupoids to quantales, first approach

Point set non étale case

G groupoid Ô⇒ P(G1) can be given the structure of a unital
involutive quantale:

S ⋅T = {x ⋅ y ∣ x ∈ S , y ∈ T and r(x) = d(y)}

S� = {x−1 ∣ x ∈ S}

E = the image of u∶G0 → G1

Want: to substitute P(G1) with Sp(G1) = set of sublocales of G1.
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Protin and Resende:

if G is a localic groupoid such that m∗ preserves all meets (iff m∗

has left adjoint m!) Ô⇒ O(G1) is quantale, multiplication =
composite

O(G1)⊗O(G1)
q // O(G1 ×G0 G1)

m! // O(G1)

Problem:

m∗ need not preserve arbitrary meets.
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Localic Non-Étale (Work in progress)

SGF
Quantales

Non Étale
Localic

Groupoids

(G0,G1)

Q̃(G)

Unital Involutive Quantale
Q̃(G)∶= {B ⊂ O(G1) ∣ B is up closed}

Q(G)

subquantale of Q̃(G)
⋁-generated by locally closed

local bisections

Q

SGF-quantale

(Qe ,Q∗)

Q∗: greatest Q′ ≤ Q s.t.
Qe ≤ Q′ and

Q′ inverse quantal frame
Conjecture: it exists
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From Groupoids to Quantales

2 assumptions:

u∶G0 → G1 is a closed embedding

m∶G1 ×G0 G1 → G1 is a closed map

Construction 1: Q̃(G)
Define Q̃(G) = U(G1)∶= {B ⊂ O(G1) ∣ B is upward closed }
U(G1) is a complete meet semi lattice, meets = intersections

O(G1)↪ U(G1)
a ↦ (a) ↑

m∗∶O(G1)→ O(G1)⊗O(G0) O(G1) = O(G1 ×G0 G1) can be
extended to

m̄∗∶U(G1)→ U(G1 ×G1)
B ↦ m̄∗(B) = m∗(B) ↑

Catalina Ossa joint work with Helle Hansen, Alessandra Palmigiano and Riccardo ReSGF-quantales and their groupoids



Q̃(G) is a unital involutive quantale

m̄∗ preserves arbitrary meets Ô⇒ has left adjoint m̄∗
!

∃ map of sup lattices U(G1)⊗U(G1)
q // // U(G1 ×G0 G1)

Multiplication:

U(G1)⊗U(G1)
q // // U(G1 ×G0 G1)

m̄∗! // U(G1)

Involution:

�∶ Q̃(G)→ Q̃(G)
B ↦ B� = {i∗(b) ∣ b ∈ B}

Unit:
u(G0) = au ↑ for some au ∈ O(G1)
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Thank you for your attention.
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Q(G)

Q a quantale. A nucleus on Q is a closure operator j ∶Q → Q st

j(x)j(y) ≤ j(xy)∀x , y ∈ Q

Open sublocale

L locale, j nucleus on O(L). The sublocale defined by j is open if j
is the nucleus induced by the quotient

(−) ∧ a∶O(L)→↓ a

for some a ∈ (O)

A local bisection σ∶U → G1 is a section of d ∶G1 → G0 over U such
that r ○ σ∶U → G0 is a open embedding, with image an open
sublocale V ⊂ G0.
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Open sublocales U,V ⊂ G0; associate the open sublocale of G1

defined by
G1(U,V ) = d−1(U) ∩ r 1(V ) ⊂ G1.

Definition

A local bisection σ∶U → G1 has domain U ⊂ G0 and codomain
V ⊂ G0 if V = r(σ(U)). We say that σ is locally closed in G1 if
σ(U) is a closed subspace of G1(U,V ).
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Given any locally closed local bisection σ we denote
aσ ∈ O(G1(U,V )) the uniquely defined element such that the
closed subspace σ(U) of G1(U,V ) has nucleus image

c(aσ) = aσ ↑∈ U(G1(U,V ))

We denote by Q(U,V ) ⊂ eQ(U,V ) the join sub suplattice of
Q̂(U,V ) generated by the upsets of the form c(aσ) = aσ ↑,
associated to locally closed local bisections σ∶U → G1 with domain
U and codomain V .
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Fact

From the open embeddings j ∶G1(U,V )→ G1 one can define the
sup-lattice morphisms j! ∶ Q̃(U,V )→ Q̃(G) for any U,V .

Definition

We define Q(G) as the sub suplattice of Q̃(G) that is
join-generated by all the images j!(Q(U,V )) ⊂ Q̃(G), for varying
U,V ⊂ G0.
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