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Masaryk University in Brno

TACL 2015, Ischia

1The author acknowledges the support by a project GAČR 15-15286S.
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Generalized effect algebra

Definition

A partial algebra (E ;⊕, 0) is called a generalized effect algebra if 0 ∈ E is
a distinguished element and ⊕ is a partially defined binary operation on E
which satisfy the following conditions for any x , y , z ∈ E :

(GEi) x ⊕ y = y ⊕ x , if one side is defined,

(GEii) (x ⊕ y)⊕ z = x ⊕ (y ⊕ z), if one side is defined,

(GEiii) x ⊕ 0 = x ,

(GEiv) x ⊕ y = x ⊕ z implies y = z (cancellation law),

(GEv) x ⊕ y = 0 implies x = y = 0.

In every generalized effect algebra E , a partial binary relation ≤ can be
defined by

(ED) x ≤ y iff there exists an element z ∈ E such that x ⊕ z is
defined and x ⊕ z = y .
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A sub-generalized effect algebra

Definition

Let (E ;⊕, 0) be a generalized effect algebra. A subset Q ⊆ E is called a
sub-generalized effect algebra of E iff

(i) 0 ∈ Q,

(ii) if x , y ∈ Q such that x ⊕ y is defined, then x ⊕ y ∈ Q,

(iii) if x , z ∈ Q such that x ⊕ y = z , then y ∈ Q.
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Generalized states

Definition

A map ϕ : P1 → P2 between posets (P1;≤1), (P2;≤2) is order
reflecting if for any a, b ∈ P1, ϕ(a) ≤2 ϕ(b) implies a ≤1 b.

A set M of isotone maps ϕ : P1 → P2 is order determining if for any
a, b ∈ P1, ϕ(a) ≤2 ϕ(b) for all ϕ ∈ M implies a ≤1 b.

A morphism of generalized effect algebras is a map ϕ : E1 → E2 such
that ϕ(01) = 02 and whenever a⊕1 b is defined, then
ϕ(a⊕1 b) = ϕ(a)⊕2 ϕ(b), for any a, b ∈ E1.

A generalized state is a morphism ϕ : E → R+, R+ equipped with the
usual sum.
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A generalized effect algebra of operators on H

Lin(H) - linear operators on a sub-space of H.

Theorem (Riečanová Z., Zajac M., Pulmannová S., 2011)

Let H be an infinite-dimensional complex Hilbert space. Let
V(H) ⊆ Lin(H) be the set of linear operators such that

V(H) := {A | A ≥ 0,D(A) = H and if A is bounded, then D(A) = H}

Let ⊕ be a partial operation on V(H) defined by

for A,B ∈ V(H), A⊕ B is defined if and only if A or B is bounded or
D(A) = D(B) and then A⊕ B = A + B.

Then (V(H);⊕, 0) is a generalized effect algebra.
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Bilinear forms on H

Let D(t) ⊆ H be a linear subspace of H,

a bilinear form is a map t : D(t)× D(t)→ C such as t is additive in
both arguments and (αx , βy) = αβ(x , y) for all α, β ∈ C,
x , y ∈ D(t), where β is the complex conjugation of β.

t is symmetric if t(x , y) = t(y , x), positive if t(x , x) ≥ 0 for all
x ∈ D(t), bounded if there exists c ∈ R, such that t(x , x) ≤ c , for all
x ∈ D(t), ‖x‖ = 1.

Given a positive bilinear form t, we can equip its domain D(t) with
an inner product (x , y)t := t(x , y) + (x , y). Whenever D(t) with
(x , y)t is a Hilbert space, we call t closed.

A bilinear form t is closable if it has some closed extension.
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Bounded bilinear forms

Proposition

There is a one-to-one correspondence between bounded linear operators
and bounded bilinear forms on H given by t(x , y) = (Ax , y) for some
A ∈ B(H) and all x , y ∈ H.

On the set of all bilinear forms we can define a usual sum t + s for each
t, s on D(t + s) := D(t) ∩D(s) by (t + s)(x , y) := t(x , y) + s(x , y) for all
x , y ∈ D(t) ∩ D(s), and the multiplication by a scalar α ∈ C by
(αt)(x , y) := αt(x , y) for x , y ∈ D(αt) := D(t).
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A general case of bilinear forms

Theorem (Simon B., 1978)

Let t be a densely defined positive symmetric bilinear form on a Hilbert
space H. Then there exist two positive symmetric bilinear forms tr and ts
such that D(t) = D(tr ) = D(ts) such that

t = tr + ts , (1)

where tr is the largest closable bilinear form less than t in the ordering � .

Proposition

For any positive operator A : D(A)→ H, the induced bilinear form
t(x , y) = (Ax , y) on D(t) = D(A) is closeable (that is ts = 0).
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A generalized effect algebra of bilinear forms

PBF := positive bilinear forms

Theorem (Dvurečenskij A., J.J., 2013)

Let H be an infinite-dimensional complex Hilbert space. Let us define the
set of bilinear forms

Vf (H) = {t | t ∈ PBF ,D(t) = H and if t is bounded, then D(t) = H}.

Let us define a partial operation ⊕ on Vf (H) by

for t, s ∈ Vf (H), t ⊕ s is defined if and only if t or s is bounded or
D(t) = D(s) and then t ⊕ s = t + s.

Then (Vf (H);⊕, o) is a generalized effect algebra.
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A sub-GEA with fixed domain

Theorem (Dvurečenskij A., J.J., 2013)

Let H be an infinite-dimensional complex Hilbert space and D ⊆ H its
dense linear subspace. Let us define the set VfD(H) ⊆ Vf (H) by

VfD(H) = {t ∈ Vf (H) | t is bounded, or D(t) = D}.

Then VfD(H) is a sub-generalized effect algebra of (Vf (H);⊕, o),.
Moreover, operation ⊕|VfD(H), is total on VfD(H) and (VfD(H);
⊕|VfD(H), o), is monotone Dedekind upwards and downwards σ-complete.
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Po-groups

Definition

An abelian group (G ; +, 0) is called po-group with partial order ≤ if for all
x , y , z ∈ G , x ≤ y implies x + z ≤ y + z (we write (G ; +,≤, 0)). Then
Pos(G ) := {x ∈ G | 0 ≤ x}.

Definition

Let (G1; +1,≤1, 01) and (G2; +2,≤2, 02) be a po-groups. A
homomorphism of po-groups f : G1 → G2 is an order preserving
homomorphism of groups. We call f an order embedding if f (x) ≤2 f (y)
implies x ≤1 y . An R-map f : G1 → G2 is a homomorphism of po-group
such that G2 = R (with the usual sum and order on reals).
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Po-groups of linear operators

Proposition (Chajda I., Paseka J., Lei Q., 2013)

Let H be an infinite-dimensional complex Hilbert space and
D ⊆ H,D = H. Let

LinD(H) = {A : D → H | A is a linear operator defined on D}

Then (LinD(H); +,≤, 0) is a partially ordered abelian group where, + is
the usual sum of operators defined on D and ≤ is defined for all
A,B ∈ LinD(H) by A ≤ B iff B − A is positive.
Moreover, let

SymmD(H) = {A ∈ LinD(H) | A is a symmetric linear operator}.

Then (SymmD(H); +,≤, 0) is a partially ordered subgroup of the partially
ordered group (LinD(H); +,≤, 0).
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Po-groups of bilinear forms

Theorem

Let H be an infinite-dimensional complex Hilbert space and
D ⊆ H,D = H its dense sub-space. Then the set

FD(H) = {t : D(t)× D(t)→ C | t is a bilinear form,D(t) = D}

with operation + being the usual pointwise sum of mappings, and a partial
order ≤ defined by r ≤ s iff s − r is a positive bilinear form, forms a
partially ordered abelian group (FD(H); +,≤, o).
Moreover, let

SD(H) = {t | t ∈ FD(H), t is a symmetric bilinear form}.

Then (SD(H); +,≤, o) is a partially ordered abelian subgroup of FD(H).
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Positive cones in po-groups are GEA’s

Remark

In every partially ordered abelian group (G ; +,≤, 0), a set of all positive
elements Pos(G ) with restricted operation +|Pos(G) forms a generalized
effect algebra (Pos(G ); +|Pos(G), 0). The restriction f|Pos(G) of any R-map
f is a generalized state on a generalized effect algebra Pos(G ).

Remark

A positive elements Pos(SD(H)) of a po-group SD(H) forms an
isomorphic generalized effect algebra to (VfD(H);⊕|VfD(H), o).
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Representation theorem for EAs

Let (E ;⊕, 0, 1) be an effect algebra with an order determining set M of
states. Let

l2(M) = {(xω)ω∈M | xω ∈ C,
∑
ω∈M

|xω|2 <∞}

be a Hilbert space with a usual inner product

〈(xω)ω∈M, (yω)ω∈M〉 =
∑
ω∈M

xω · yω

We have E(l2(M)) = [0, I ] ⊆ B+(l2(M)).

Theorem (Riečanová Z., Zajac M.)

An effect algebra (E ;⊕, 0, 1) has a Hilbert space effect-representation ϕ iff
there exists an order determining set M of states on E.

Namely, such ϕ : E → E(l2(M)) that for every a ∈ E the image ϕ(a) is
the operator A ∈ E(l2(M)) defined by Ax = (ω(a)xω)ω∈M, for all
x ∈ l2(M).
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Representation theorem for po-groups

Theorem (Chajda I., Paseka J., Lei Q., 2013)

For every partially ordered abelian group G, the following conditions are
equivalent.

There exists an order determining set M of R-maps on G,

there exists an order embedding of G to the symmetric operators on a
dense subspace of a Hilbert space,

there exists a set T and an order embedding of G to RT .
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An embedding of a po-group of bilinear forms

Lemma

Let H be an infinite-dimensional complex Hilbert space and
D ⊆ H,D = H its dense sub-space. Then, for every x ∈ D, a map
ωx : SD(H)→ R given by ωx(t) := t(x , x) is an R-map and the set
M = {ωx | x ∈ D, ||x || = 1} is an order determining set of R-maps.

Theorem

Let H be an infinite-dimensional complex Hilbert space and
D ⊆ H,D = H its dense sub-space. Then there exists an order embedding
from the partially ordered abelian group (SD(H); +,≤, o) of symmetric
bilinear forms on D into the partially ordered abelian group of symmetric
linear operators (Symm(M); +,≤, 0) on the dense subspace of the Hilbert
space l2(M).
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Corollary for GEAs

Corollary

Let H be an infinite-dimensional complex Hilbert space and
D ⊆ H,D = H its dense sub-space. Then there exists an order
determining set M of generalized states on Pos(FD(H)) and an order
reflecting morphism from the generalized effect algebra
(Pos(FD(H)); +|Pos(FD(H)), o) of positive bilinear forms on D into the
generalized effect algebra of positive linear operators (Pos(Symm(M));
+|Pos(Symm(M)), 0) on the dense subspace of the Hilbert space l2(M).
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Measures on L(H)

Definition

A mapping m : L(H)→ [0,∞] is said to be a finitely additive measure if
(i) m(sp(0)) = 0, and (ii) m(M ∨ N) = m(M) + m(N) whenever M ⊥ N,
M,N ∈ L(H).

Definition

A finitely additive measure m on L(H) is said to be (i) regular if

m(M) = sup{m(P) | P ⊆ M,P ∈ L(H), dimP <∞}, M ∈ L(H),

(ii) P(H)1-bounded if sup{m(sp(x)) | x ∈ D(m)} <∞, where

D(m) := {x ∈ H | m(sp(x)) <∞} ∪ {0},

(iii) satisfies L-S density property if D(m) = H and there is a
two-dimensional subspace Q of H such that m(Q) <∞.
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GEA of measures

Theorem

Let H be an infinite-dimensional complex Hilbert space. Let Regf (H) be
the set of regular finitely additive measures m on L(H) with the L-S
density property such that if m is P1(H)-bounded, then D(m) = H. Let
us define a partial operation ⊕ on Regf (H): For m1,m2 ∈ Regf (H),
m1 ⊕m2 is defined if and only if m1 or m2 is P1(H)-bounded or
D(m1) = D(m2) and then m1 ⊕m2 := m1 + m2. Then (Regf (H);⊕, o) is
a generalized effect algebra.
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An extension of Gleason’s Theorem

Theorem (Dvurečenskij A.)

Let H be a complex Hilbert space.
(1) Let t be a positive bilinear form such that D(t) is dense in H. Then
the mapping mt : L(H)→ [0, ∞] given by

mt(M) =

{
tr(t ◦ PM) if t ◦ PM ∈ Tr(H),

∞ otherwise,
(6.2)

is a regular finitely additive measure with the L-S density property.
(2) Let m be a regular finitely additive measure with the L-S density
property on L(H), dimH 6= 2. Then there exists a unique bilinear form t
with domain D(t) = D(m) such that (6.2) holds.
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Representation of GEA’s of measures by linear operators

Theorem

Let H be an infinite-dimensional complex Hilbert space and let D ∈ H be
a linear subspace of H. Let RegfD(H) be the set of regular finitely
additive measures m on L(H) with the L-S density property such that if m
is P1(H)-bounded, then D(m) = H, in other case D(m) = D. Then
RegfD(H) forms a sub-generalized effect algebra of (Regf (H);⊕, o).
Moreover, there exists an order determining set M of generalized states on
RegfD(H) and an embedding from the generalized effect algebra
(RegfD(H); +RegfD(H)), o) into the generalized effect algebra of positive
linear operators (Pos(Symm(M)); +|Pos(Symm(M)), 0) on the dense
subspace of the Hilbert space l2(M).
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