A Hilbert space operator representation of generalized effect algebras of bilinear forms and measures

Jiří Janda¹, Jan Paseka² and Anatolij Dvurečenskij¹

Masaryk University in Brno

TACL 2015, Ischia

¹The author acknowledges the support by a project GAČR 15-15286S.

Generalized effect algebra

Definition

A partial algebra $(E; \oplus, 0)$ is called a *generalized effect algebra* if $0 \in E$ is a distinguished element and \oplus is a partially defined binary operation on E which satisfy the following conditions for any $x, y, z \in E$:

(GEi)
$$x \oplus y = y \oplus x$$
, if one side is defined,
(GEii) $(x \oplus y) \oplus z = x \oplus (y \oplus z)$, if one side is defined,
(GEiii) $x \oplus 0 = x$,
(GEiv) $x \oplus y = x \oplus z$ implies $y = z$ (cancellation law),
(GEv) $x \oplus y = 0$ implies $x = y = 0$.

In every generalized effect algebra E, a partial binary relation \leq can be defined by

(ED)
$$x \le y$$
 iff there exists an element $z \in E$ such that $x \oplus z$ is defined and $x \oplus z = y$.

Definition

Let $(E; \oplus, 0)$ be a generalized effect algebra. A subset $Q \subseteq E$ is called a *sub-generalized effect algebra* of E iff

(i) $0 \in Q$,

(ii) if $x, y \in Q$ such that $x \oplus y$ is defined, then $x \oplus y \in Q$,

(iii) if $x, z \in Q$ such that $x \oplus y = z$, then $y \in Q$.

Definition

- A map φ : P₁ → P₂ between posets (P₁; ≤₁), (P₂; ≤₂) is order reflecting if for any a, b ∈ P₁, φ(a) ≤₂ φ(b) implies a ≤₁ b.
- A set M of isotone maps φ : P₁ → P₂ is order determining if for any a, b ∈ P₁, φ(a) ≤₂ φ(b) for all φ ∈ M implies a ≤₁ b.
- A morphism of generalized effect algebras is a map φ : E₁ → E₂ such that φ(0₁) = 0₂ and whenever a ⊕₁ b is defined, then φ(a ⊕₁ b) = φ(a) ⊕₂ φ(b), for any a, b ∈ E₁.
- A generalized state is a morphism $\varphi: E \to \mathbb{R}^+$, \mathbb{R}^+ equipped with the usual sum.

 $Lin(\mathcal{H})$ - linear operators on a sub-space of \mathcal{H} .

Theorem (Riečanová Z., Zajac M., Pulmannová S., 2011)

Let \mathcal{H} be an infinite-dimensional complex Hilbert space. Let $\mathcal{V}(\mathcal{H}) \subseteq Lin(\mathcal{H})$ be the set of linear operators such that

 $\mathcal{V}(\mathcal{H}) := \{A \mid A \ge \mathbf{0}, \overline{D(A)} = \mathcal{H} \text{ and if } A \text{ is bounded, then } D(A) = \mathcal{H}\}$

Let \oplus be a partial operation on $\mathcal{V}(\mathcal{H})$ defined by

 for A, B ∈ V(H), A ⊕ B is defined if and only if A or B is bounded or D(A) = D(B) and then A ⊕ B = A + B.

Then $(\mathcal{V}(\mathcal{H}); \oplus, \mathbf{0})$ is a generalized effect algebra.

Let $D(t) \subseteq \mathcal{H}$ be a linear subspace of \mathcal{H} ,

- a bilinear form is a map t : D(t) × D(t) → C such as t is additive in both arguments and (αx, βy) = αβ(x, y) for all α, β ∈ C, x, y ∈ D(t), where β is the complex conjugation of β.
- t is symmetric if t(x, y) = t(y, x), positive if $t(x, x) \ge 0$ for all $x \in D(t)$, bounded if there exists $c \in \mathbb{R}$, such that $t(x, x) \le c$, for all $x \in D(t)$, ||x|| = 1.
- Given a positive bilinear form t, we can equip its domain D(t) with an inner product $(x, y)_t := t(x, y) + (x, y)$. Whenever D(t) with $(x, y)_t$ is a Hilbert space, we call t closed.
- A bilinear form t is *closable* if it has some closed extension.

Proposition

There is a one-to-one correspondence between bounded linear operators and bounded bilinear forms on \mathcal{H} given by t(x, y) = (Ax, y) for some $A \in \mathcal{B}(\mathcal{H})$ and all $x, y \in \mathcal{H}$.

On the set of all bilinear forms we can define a *usual sum* t + s for each t, s on $D(t + s) := D(t) \cap D(s)$ by (t + s)(x, y) := t(x, y) + s(x, y) for all $x, y \in D(t) \cap D(s)$, and the multiplication by a scalar $\alpha \in \mathbb{C}$ by $(\alpha t)(x, y) := \alpha t(x, y)$ for $x, y \in D(\alpha t) := D(t)$.

Theorem (Simon B., 1978)

Let t be a densely defined positive symmetric bilinear form on a Hilbert space \mathcal{H} . Then there exist two positive symmetric bilinear forms t_r and t_s such that $D(t) = D(t_r) = D(t_s)$ such that

$$t = t_r + t_s, \tag{1}$$

where t_r is the largest closable bilinear form less than t in the ordering \leq .

Proposition

For any positive operator $A : D(A) \to H$, the induced bilinear form t(x, y) = (Ax, y) on D(t) = D(A) is closeable (that is $t_s = 0$).

A generalized effect algebra of bilinear forms

$\mathcal{PBF}:=\text{positive bilinear forms}$

Theorem (Dvurečenskij A., J.J., 2013)

Let ${\mathcal H}$ be an infinite-dimensional complex Hilbert space. Let us define the set of bilinear forms

 $\mathcal{V}_f(\mathcal{H}) = \{t \mid t \in \mathcal{PBF}, \overline{D(t)} = \mathcal{H} \text{ and if } t \text{ is bounded, then } D(t) = \mathcal{H}\}.$

Let us define a partial operation \oplus on $\mathcal{V}_f(\mathcal{H})$ by

• for $t, s \in \mathcal{V}_f(\mathcal{H})$, $t \oplus s$ is defined if and only if t or s is bounded or D(t) = D(s) and then $t \oplus s = t + s$.

Then $(\mathcal{V}_f(\mathcal{H}); \oplus, o)$ is a generalized effect algebra.

Theorem (Dvurečenskij A., J.J., 2013)

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}$ its dense linear subspace. Let us define the set $\mathcal{V}_{fD}(\mathcal{H}) \subseteq \mathcal{V}_f(\mathcal{H})$ by

 $\mathcal{V}_{fD}(\mathcal{H}) = \{t \in \mathcal{V}_f(\mathcal{H}) \mid t \text{ is bounded, or } D(t) = D\}.$

Then $\mathcal{V}_{fD}(\mathcal{H})$ is a sub-generalized effect algebra of $(\mathcal{V}_f(\mathcal{H}); \oplus, o)$,. Moreover, operation $\oplus_{|\mathcal{V}_{fD}(\mathcal{H})}$, is total on $\mathcal{V}_{fD}(\mathcal{H})$ and $(\mathcal{V}_{fD}(\mathcal{H}); \oplus_{|\mathcal{V}_{fD}(\mathcal{H})}, o)$, is monotone Dedekind upwards and downwards σ -complete.

Definition

An abelian group (G; +, 0) is called *po-group* with partial order \leq if for all $x, y, z \in G, x \leq y$ implies $x + z \leq y + z$ (we write $(G; +, \leq, 0)$). Then $Pos(G) := \{x \in G \mid 0 \leq x\}.$

Definition

Let $(G_1; +_1, \leq_1, 0_1)$ and $(G_2; +_2, \leq_2, 0_2)$ be a po-groups. A homomorphism of po-groups $f : G_1 \to G_2$ is an order preserving homomorphism of groups. We call f an order embedding if $f(x) \leq_2 f(y)$ implies $x \leq_1 y$. An \mathbb{R} -map $f : G_1 \to G_2$ is a homomorphism of po-group such that $G_2 = \mathbb{R}$ (with the usual sum and order on reals).

Proposition (Chajda I., Paseka J., Lei Q., 2013)

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}, \overline{D} = \mathcal{H}$. Let

 $Lin_D(\mathcal{H}) = \{A : D \to \mathcal{H} \mid A \text{ is a linear operator defined on } D\}$

Then $(Lin_D(\mathcal{H}); +, \leq, \mathbf{0})$ is a partially ordered abelian group where, + is the usual sum of operators defined on D and \leq is defined for all $A, B \in Lin_D(\mathcal{H})$ by $A \leq B$ iff B - A is positive. Moreover, let

 $Symm_D(\mathcal{H}) = \{A \in Lin_D(\mathcal{H}) \mid A \text{ is a symmetric linear operator}\}.$

Then $(Symm_D(\mathcal{H}); +, \leq, \mathbf{0})$ is a partially ordered subgroup of the partially ordered group $(Lin_D(\mathcal{H}); +, \leq, \mathbf{0})$.

Theorem

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}, \overline{D} = \mathcal{H}$ its dense sub-space. Then the set

 $\mathcal{F}_D(\mathcal{H}) = \{t : D(t) \times D(t) \to \mathbb{C} \mid t \text{ is a bilinear form}, D(t) = D\}$

with operation + being the usual pointwise sum of mappings, and a partial order \leq defined by $r \leq s$ iff s - r is a positive bilinear form, forms a partially ordered abelian group $(\mathcal{F}_D(\mathcal{H}); +, \leq, o)$. Moreover, let

 $S_D(\mathcal{H}) = \{t \mid t \in \mathcal{F}_D(\mathcal{H}), t \text{ is a symmetric bilinear form}\}.$

Then $(\mathcal{S}_D(\mathcal{H}); +, \leq, o)$ is a partially ordered abelian subgroup of $\mathcal{F}_D(\mathcal{H})$.

Remark

In every partially ordered abelian group $(G; +, \leq, 0)$, a set of all positive elements Pos(G) with restricted operation $+_{|Pos(G)}$ forms a generalized effect algebra $(Pos(G); +_{|Pos(G)}, 0)$. The restriction $f_{|Pos(G)}$ of any \mathbb{R} -map f is a generalized state on a generalized effect algebra Pos(G).

Remark

A positive elements $Pos(S_D(\mathcal{H}))$ of a po-group $S_D(\mathcal{H})$ forms an isomorphic generalized effect algebra to $(\mathcal{V}_{fD}(\mathcal{H}); \oplus_{|\mathcal{V}_{fD}(\mathcal{H})}, o)$.

Representation theorem for EAs

Let $(E; \oplus, 0, 1)$ be an effect algebra with an order determining set \mathcal{M} of states. Let

$$l_2(\mathcal{M}) = \{(x_\omega)_{\omega \in \mathcal{M}} \mid x_\omega \in \mathbb{C}, \sum_{\omega \in \mathcal{M}} |x_\omega|^2 < \infty\}$$

be a Hilbert space with a usual inner product

$$\langle (x_\omega)_{\omega \in \mathcal{M}}, (y_\omega)_{\omega \in \mathcal{M}}
angle = \sum_{\omega \in \mathcal{M}} \overline{x}_\omega \cdot y_\omega$$

We have $\mathcal{E}(I_2(\mathcal{M})) = [\mathbf{0}, I] \subseteq \mathcal{B}^+(I_2(\mathcal{M})).$

Theorem (Riečanová Z., Zajac M.)

An effect algebra $(E; \oplus, 0, 1)$ has a Hilbert space effect-representation φ iff there exists an order determining set \mathcal{M} of states on E.

Namely, such $\varphi : E \to \mathcal{E}(l_2(\mathcal{M}))$ that for every $a \in E$ the image $\varphi(a)$ is the operator $A \in \mathcal{E}(l_2(\mathcal{M}))$ defined by $A\mathbf{x} = (\omega(a)x_{\omega})_{\omega \in \mathcal{M}}$, for all $\mathbf{x} \in l_2(\mathcal{M})$.

Theorem (Chajda I., Paseka J., Lei Q., 2013)

For every partially ordered abelian group G, the following conditions are equivalent.

- There exists an order determining set M of \mathbb{R} -maps on G,
- there exists an order embedding of G to the symmetric operators on a dense subspace of a Hilbert space,

イロト イポト イヨト イヨト

16 / 25

• there exists a set T and an order embedding of G to \mathbb{R}^T .

Lemma

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}, \overline{D} = \mathcal{H}$ its dense sub-space. Then, for every $x \in D$, a map $\omega_x : S_D(\mathcal{H}) \to \mathbb{R}$ given by $\omega_x(t) := t(x, x)$ is an \mathbb{R} -map and the set $M = \{\omega_x \mid x \in D, ||x|| = 1\}$ is an order determining set of \mathbb{R} -maps.

Theorem

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}, \overline{D} = \mathcal{H}$ its dense sub-space. Then there exists an order embedding from the partially ordered abelian group $(\mathcal{S}_D(\mathcal{H}); +, \leq, o)$ of symmetric bilinear forms on D into the partially ordered abelian group of symmetric linear operators $(Symm(M); +, \leq, \mathbf{0})$ on the dense subspace of the Hilbert space $l_2(M)$.

Corollary

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and $D \subseteq \mathcal{H}, \overline{D} = \mathcal{H}$ its dense sub-space. Then there exists an order determining set M of generalized states on $Pos(\mathcal{F}_D(\mathcal{H}))$ and an order reflecting morphism from the generalized effect algebra $(Pos(\mathcal{F}_D(\mathcal{H})); +_{|Pos(\mathcal{F}_D(\mathcal{H}))}, o)$ of positive bilinear forms on D into the generalized effect algebra of positive linear operators (Pos(Symm(M)); $+_{|Pos(Symm(M))}, \mathbf{0})$ on the dense subspace of the Hilbert space $l_2(M)$.

Measures on $L(\mathcal{H})$

Definition

A mapping $m : L(\mathcal{H}) \to [0, \infty]$ is said to be a *finitely additive measure* if (i) $m(\operatorname{sp}(\mathbf{0})) = 0$, and (ii) $m(M \lor N) = m(M) + m(N)$ whenever $M \perp N$, $M, N \in L(\mathcal{H})$.

Definition

A finitely additive measure m on $L(\mathcal{H})$ is said to be (i) regular if

$$m(M) = \sup\{m(P) \mid P \subseteq M, P \in L(\mathcal{H}), \dim P < \infty\}, M \in L(\mathcal{H}),$$

(ii) $\mathcal{P}(\mathcal{H})_1$ -bounded if sup{ $m(sp(x)) \mid x \in D(m)$ } $< \infty$, where

 $D(m) := \{x \in \mathcal{H} \mid m(\operatorname{sp}(x)) < \infty\} \cup \{\mathbf{0}\},\$

(iii) satisfies *L-S* density property if $\overline{D(m)} = \mathcal{H}$ and there is a two-dimensional subspace Q of \mathcal{H} such that $m(Q) < \infty$.

Theorem

Let \mathcal{H} be an infinite-dimensional complex Hilbert space. Let $\operatorname{Reg}_f(\mathcal{H})$ be the set of regular finitely additive measures m on $L(\mathcal{H})$ with the L-S density property such that if m is $\mathcal{P}_1(\mathcal{H})$ -bounded, then $D(m) = \mathcal{H}$. Let us define a partial operation \oplus on $\operatorname{Reg}_f(\mathcal{H})$: For $m_1, m_2 \in \operatorname{Reg}_f(\mathcal{H})$, $m_1 \oplus m_2$ is defined if and only if m_1 or m_2 is $\mathcal{P}_1(\mathcal{H})$ -bounded or $D(m_1) = D(m_2)$ and then $m_1 \oplus m_2 := m_1 + m_2$. Then $(\operatorname{Reg}_f(\mathcal{H}); \oplus, o)$ is a generalized effect algebra.

Theorem (Dvurečenskij A.)

Let \mathcal{H} be a complex Hilbert space. (1) Let t be a positive bilinear form such that D(t) is dense in \mathcal{H} . Then the mapping $m_t : \mathcal{L}(\mathcal{H}) \to [0, \infty]$ given by

$$m_t(M) = \begin{cases} \operatorname{tr}(t \circ P_M) & \text{if } t \circ P_M \in \operatorname{Tr}(\mathcal{H}), \\ \infty & \text{otherwise,} \end{cases}$$
(6.2)

is a regular finitely additive measure with the L-S density property. (2) Let m be a regular finitely additive measure with the L-S density property on $L(\mathcal{H})$, dim $\mathcal{H} \neq 2$. Then there exists a unique bilinear form t with domain D(t) = D(m) such that (6.2) holds.

Theorem

Let \mathcal{H} be an infinite-dimensional complex Hilbert space and let $\overline{D} \in \mathcal{H}$ be a linear subspace of \mathcal{H} . Let $\operatorname{Reg}_{fD}(\mathcal{H})$ be the set of regular finitely additive measures m on $\mathcal{L}(\mathcal{H})$ with the L-S density property such that if mis $\mathcal{P}_1(\mathcal{H})$ -bounded, then $D(m) = \mathcal{H}$, in other case D(m) = D. Then $\operatorname{Reg}_{fD}(\mathcal{H})$ forms a sub-generalized effect algebra of $(\operatorname{Reg}_f(\mathcal{H}); \oplus, o)$. Moreover, there exists an order determining set M of generalized states on $\operatorname{Reg}_{fD}(\mathcal{H})$ and an embedding from the generalized effect algebra $(\operatorname{Reg}_{fD}(\mathcal{H}); +_{\operatorname{Reg}_{fD}(\mathcal{H})), o)$ into the generalized effect algebra of positive linear operators $(\operatorname{Pos}(Symm(M)); +_{|\operatorname{Pos}(Symm(M))}, \mathbf{0})$ on the dense subspace of the Hilbert space $l_2(M)$.

References

- Birkhoff, G., Von Neumann, J., The Logic of Quantum Mechanics, The Annals of Mathematics, 2nd Ser., 37 No. 4. (1936), 823–843.
- Dvurečenskij, A., "Gleason's Theorem and its Applications", Mathematics and its Applications, Vol. 60. Kluwer Acad. Publ, Dordrecht/Ister Science, Bratislava, 1993.
- Dvurečenskij, A., Janda, J. *On bilinear forms from the point of view of generalized effect algebras*, Found. Phys. **43** (2013), 1136–1152.
- Dvurečenskij, A., Janda, J. Regular Gleason Measures and Generalized Effect Algebras, Int. J. Theor. Phys., ISSN 0020-7748, DOI 10.1007/s10773-015-2509-2.
- Janda, J., Paseka, J., *A Hilbert Space Operator Representation of Abelian Po-Groups of Bilinear Forms*, Int. J. Theor. Phys., ISSN 0020-7748, DOI 10.1007/s10773-015-2547-9.

- Simon, B., A Canonical Decomposition for Quadratic Forms with Applications for Monotone Convergence Theorems, J. Funct. Analysis 28 (1978), 377–385.
- Riečanová, Z., Zajac, M., Hilbert space effect-representations of effect algebras, Rep. Math. Phys. 70 (2012), 283–290.

Thank you for your attention!

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへ⊙

25 / 25