On $\Sigma_2^0(\kappa)$ Relations and Elementary Embeddability at Uncountable Cardinals

Dorottya Sziráki (joint work with Jouko Väänänen)

Topology, Algebra and Categories in Logic 2015 Ischia, June 24, 2015

Model theoretic spectrum functions

Let T be a first order theory.

Classification problem: find a structure theorem for the models of ${\cal T}$ or show that such a theorem can not exist.

Spectrum functions

For each cardinal κ , let $I(T, \kappa)$ = the number of κ -sized models of T up to isomorphism.

For countable theories: Shelah; Hart, Hrushovski and Laskowski.

Variants of spectrum functions

- Replace the role of isomorphisms by that of other natural notions: embeddings, elementary embeddings, maps that preserve formulas in some infinitary logics . . .
- Restrict the set of allowed functions: let $H \subseteq {}^{\kappa}\kappa$.

Variants of spectrum functions

- Replace the role of isomorphisms by that of other natural notions: embeddings, elementary embeddings, maps that preserve formulas in some infinitary logics . . .
- Restrict the set of allowed functions: let $H \subseteq {}^{\kappa}\kappa$.

"How many" pairwise non H-elementarily embeddable models with domain κ does T have?

Similar questions for *H*-embeddability, *H*-isomorphism,...

• Consider classes of models not defined by a first order theory.

The domain of the κ -Baire space is $\kappa \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p: \alpha \longrightarrow \kappa$ for some $\alpha < \kappa$.

Generalized descriptive set theory: studies the $\kappa\text{-}\mathsf{Borel}$ structure of ${}^\kappa\kappa.$

The domain of the κ -Baire space is $\kappa \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p: \alpha \longrightarrow \kappa$ for some $\alpha < \kappa$.

Generalized descriptive set theory: studies the $\kappa\text{-}\mathsf{Borel}$ structure of ${}^\kappa\kappa.$

- κ-Borel sets: close the family of open subsets under intersections and unions of size ≤ κ and complementation;
- $\Sigma_2^0(\kappa)$ -sets: unions of at most κ many closed sets;
- $\Pi_2^0(\kappa)$ -sets: intersections of at most κ many open sets;
- κ -analytic sets: continuous images of κ -Borel sets.

The domain of the κ -Baire space is $\kappa \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p: \alpha \longrightarrow \kappa$ for some $\alpha < \kappa$.

Generalized descriptive set theory: studies the $\kappa\text{-}\mathsf{Borel}$ structure of ${}^\kappa\kappa.$

- κ-Borel sets: close the family of open subsets under intersections and unions of size ≤ κ and complementation;
- $\Sigma_2^0(\kappa)$ -sets: unions of at most κ many closed sets;
- ▶ $\Pi_2^0(\kappa)$ -sets: intersections of at most κ many open sets;
- κ -analytic sets: continuous images of κ -Borel sets.

Often very different from the countable case; many properties depend on which additional set theoretical hypotheses are assumed.

The domain of the κ -Baire space is $\kappa \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p: \alpha \longrightarrow \kappa$ for some $\alpha < \kappa$.

Generalized descriptive set theory: studies the $\kappa\text{-}\mathsf{Borel}$ structure of ${}^\kappa\kappa.$

- κ-Borel sets: close the family of open subsets under intersections and unions of size ≤ κ and complementation;
- $\Sigma_2^0(\kappa)$ -sets: unions of at most κ many closed sets;
- ▶ $\Pi_2^0(\kappa)$ -sets: intersections of at most κ many open sets;
- κ -analytic sets: continuous images of κ -Borel sets.

Often very different from the countable case; many properties depend on which additional set theoretical hypotheses are assumed. One motivation: topological study of uncountable structures, their

One motivation: topological study of uncountable structures, their classification.

A dichotomy for $\mathbf{\Sigma}_2^0(\kappa)$ binary relations

Theorem (Sz., Väänänen)

Assume the hypotheses $I^-(\kappa)$ and \Diamond_{κ} . Suppose R is a $\Sigma_2^0(\kappa)$ binary relation on a κ -analytic subset X of κ .

Either all independent sets are of size $\leq \kappa$, or there is a κ -perfect independent set,

i.e., there is a continuous embedding

 $f: {}^{\kappa}2 \to X$ such that $x \neq y$ implies $(f(x), f(y)) \notin R$.

A dichotomy for $\mathbf{\Sigma}_2^0(\kappa)$ binary relations

Theorem (Sz., Väänänen)

Assume the hypotheses $I^-(\kappa)$ and \Diamond_{κ} . Suppose R is a $\Sigma_2^0(\kappa)$ binary relation on a κ -analytic subset X of κ .

Either all independent sets are of size $\leq \kappa$, or there is a κ -perfect independent set.

- The theorem does not follow from ZFC alone (since other set theoretical hypotheses consistent with ZFC imply it can not hold).
- $I^-(\kappa)$ is a modification of the hypothesis $I(\kappa)$ found in literature and states:

there exists a κ^+ -complete normal ideal \mathcal{I} on κ^+ and a dense subset $K \subseteq \mathcal{I}^+$ such that every descending sequence of elements of K of length $< \kappa$ has a lower bound in K.

A dichotomy for $\mathbf{\Sigma}_2^0(\kappa)$ binary relations

Theorem (Sz., Väänänen)

Assume the hypotheses $I^-(\kappa)$ and \Diamond_{κ} . Suppose R is a $\Sigma_2^0(\kappa)$ binary relation on a κ -analytic subset X of κ .

Either all independent sets are of size $\leq \kappa$, or there is a κ -perfect independent set.

• \Diamond_{κ} is a combinatorial hypothesis well-known in set theory:

There exist sets $S_{\alpha} \subseteq \alpha$ ($\alpha < \kappa$) such that for all $S \subseteq \kappa$ the set { $\alpha < \kappa : S \cap \alpha = S_{\alpha}$ } is a stationary subset of κ .

- The consistency of "I[−](κ) and ◊_κ" follows from a well-known large cardinal axiom (the existence of a measurable cardinal λ > κ).
- \Diamond_{κ} does not have to be assumed when κ is inaccessible.

A cylindric algebra of dimension κ is an algebraic structure

$$\mathcal{A} = \langle A, \wedge, -, c_i, d_{ij} \rangle_{i,j < \kappa}$$

such that

- $\langle A, \wedge, \rangle$ is a Boolean algebra;
- c_i is a unary operation; corresponds to $\varphi \mapsto \exists v_i \varphi$;
- d_{ij} is a constant; corresponds to the formula $v_i = v_j$;
- certain axioms are satisfied.

Cylindric algebras and models

L a first order language with κ variables, T an L-theory. Let $\mathcal{L}(T)$ be the Lindenbaum-Tarski algebra of T; elements: equivalence classes of L-formulas of

$$\varphi(\bar{v}) \equiv_T \psi(\bar{v}) \iff T \models \forall \bar{v} \big[\varphi(\bar{v}) \leftrightarrow \psi(\bar{v}) \big]$$

operations: Boolean operations and

$$c_i(\varphi/\equiv_T) = (\exists v_i \varphi)/\equiv_T, \qquad d_{ij} = (v_i = v_j)/\equiv_T$$

Cylindric algebras and models

L a first order language with κ variables, T an L-theory. Let $\mathcal{L}(T)$ be the Lindenbaum-Tarski algebra of T; elements: equivalence classes of L-formulas of

$$\varphi(\bar{v}) \equiv_T \psi(\bar{v}) \iff T \models \forall \bar{v} \big[\varphi(\bar{v}) \leftrightarrow \psi(\bar{v}) \big]$$

operations: Boolean operations and

$$c_i(\varphi/\equiv_T) = (\exists v_i \varphi)/\equiv_T, \qquad d_{ij} = (v_i = v_j)/\equiv_T d_{ij}$$

There is a one-one correspondence between

- models of T;
- homomorphisms from $\mathcal{L}(T)$ onto certain cylindric set algebras.

Proposition (Sági, Sz.)

There is a one-one correspondence between

- the models of T with domain κ and
- ► certain ultrafilters of (the Boolean reduct of) L(T), i.e., a certain set H(T) of Boolean homomorphisms from L(T) to <u>2</u>.

Proposition (Sági, Sz.)

There is a one-one correspondence between

- the models of T with domain κ and
- ► certain ultrafilters of (the Boolean reduct of) L(T), i.e., a certain set H(T) of Boolean homomorphisms from L(T) to <u>2</u>.

 $\mathcal{H}(T)$ is a κ -Borel subset of Hom $(\mathcal{L}(T), \underline{2})$, and so of L(T)2.

Proposition (Sági, Sz.)

There is a one-one correspondence between

- the models of T with domain κ and
- ► certain ultrafilters of (the Boolean reduct of) L(T), i.e., a certain set H(T) of Boolean homomorphisms from L(T) to <u>2</u>.

 $\mathcal{H}(T)$ is a κ -Borel subset of $\text{Hom}(\mathcal{L}(T), \underline{2})$, and so of L(T)2. Therefore $\mathcal{H}(T)$ is homeomorphic to a κ -Borel subset of $\kappa \kappa$ (since $|L(T)| = \kappa$).

Proposition (Sági, Sz.)

There is a one-one correspondence between

- the models of T with domain κ and
- ► certain ultrafilters of (the Boolean reduct of) L(T), i.e., a certain set H(T) of Boolean homomorphisms from L(T) to <u>2</u>.

 $\mathcal{H}(T)$ is a κ -Borel subset of $\text{Hom}(\mathcal{L}(T), \underline{2})$, and so of L(T)2. Therefore $\mathcal{H}(T)$ is homeomorphic to a κ -Borel subset of $\kappa \kappa$ (since $|L(T)| = \kappa$).

 $\Sigma_1^1(L)$ consists of formulas of the form $\exists \overline{R}\psi(\overline{R})$ where \overline{R} is a set of "new" relation symbols.

In the case that $T \subseteq \Sigma_1^1(L)$, the set of models of T with domain κ will correspond to a κ -analytic subset of the κ -Baire space.

Characterization of elementary embeddings

Let $\rho \in {}^{\kappa}\kappa$. Suppose the models \mathcal{M}_0 and \mathcal{M}_1 of T with domain κ correspond to the homomorphisms $u_0, u_1 \in \mathcal{H}(T)$.

Proposition (Sági, Sz)

- (If ρ is injective, then) $\rho : \mathcal{M}_0 \preccurlyeq \mathcal{M}_1$ iff $u_0 = u_1 \circ s_{\rho}$.
- If ρ is bijective, then $\rho : \mathcal{M}_0 \cong \mathcal{M}_1$ iff $u_0 = u_1 \circ s_{\rho}$.

 s_{ρ} is the substitution operation correlated to ρ ;

$$s_{\rho}(\varphi(v_1,\ldots,v_n)/\equiv_T) = \varphi(v_{\rho(1)},\ldots,v_{\rho(n)})/\equiv_T$$

Characterization of elementary embeddings

Let $\rho \in {}^{\kappa}\kappa$. Suppose the models \mathcal{M}_0 and \mathcal{M}_1 of T with domain κ correspond to the homomorphisms $u_0, u_1 \in \mathcal{H}(T)$.

Proposition (Sági, Sz)

- (If ρ is injective, then) $\rho : \mathcal{M}_0 \preccurlyeq \mathcal{M}_1$ iff $u_0 = u_1 \circ s_{\rho}$.
- If ρ is bijective, then $\rho : \mathcal{M}_0 \cong \mathcal{M}_1$ iff $u_0 = u_1 \circ s_{\rho}$.

 s_{ρ} is the substitution operation correlated to ρ ;

$$s_{\rho}(\varphi(v_1,\ldots,v_n)/\equiv_T) = \varphi(v_{\rho(1)},\ldots,v_{\rho(n)})/\equiv_T$$

Corollary

For
$$H \subseteq {}^{\kappa}\kappa$$
, the set $\{\langle \rho, \mathcal{M}_0, \mathcal{M}_1 \rangle | H \ni \rho : \mathcal{M}_0 \preccurlyeq \mathcal{M}_1\}$
corresponds to a closed subset of $H \times \mathcal{H}(T) \times \mathcal{H}(T)$.

Fragments of the infinitary logic $L_{\kappa^+\kappa}$

 $L_{\kappa^+\kappa}$: we allow conjunction of $\leq \kappa$ many formulas and quantification with $< \kappa$ many variables.

Fragments of the infinitary logic $L_{\kappa^+\kappa}$

 $L_{\kappa^+\kappa}$: we allow conjunction of $\leq \kappa$ many formulas and quantification with $< \kappa$ many variables.

A set F of $L_{\kappa^+\kappa}\text{-}\mathsf{formulas}$ is a fragment if $|F|=\kappa$ and

- F contains all the atomic formulas,
- F is closed under negation, taking subformulas, and substitution of variables.

Examples: the infinitary logics $L_{\kappa\omega}$, $L_{\kappa\kappa}$, the set of quantifier-free formulas (\rightsquigarrow embeddability), the set L^n of formulas with at most n variables,...

By considering the algebras $\mathcal{F}(T) = \langle F/\equiv_T, \wedge, \neg, s_\tau, d_{ij} \rangle_{\tau \in \kappa, i, j \in \kappa}$ and similarly to previous arguments, we obtain:

Fragments of the infinitary logic $L_{\kappa^+\kappa}$

 $L_{\kappa^+\kappa}$: we allow conjunction of $\leq \kappa$ many formulas and quantification with $< \kappa$ many variables.

A set F of $L_{\kappa^+\kappa}\text{-}\mathsf{formulas}$ is a fragment if $|F|=\kappa$ and

- F contains all the atomic formulas,
- F is closed under negation, taking subformulas, and substitution of variables.

Examples: the infinitary logics $L_{\kappa\omega}$, $L_{\kappa\kappa}$, the set of quantifier-free formulas (\rightsquigarrow embeddability), the set L^n of formulas with at most n variables,...

By considering the algebras $\mathcal{F}(T) = \langle F | \equiv_T, \wedge, \neg, s_\tau, d_{ij} \rangle_{\tau \in \kappa, i, j \in \kappa}$ and similarly to previous arguments, we obtain:

- if T ⊆ F, then its set of models with domain κ corresponds to a κ-Borel subset H(T) of the ^κκ;
- ▶ when $\psi \in \Sigma_1^1(L_{\kappa^+\kappa})$ is arbitrary, $\mathcal{H}(\psi)$ is a κ -analytic subset of the κ -Baire space.
- $\rho: \mathcal{M}_0 \longrightarrow \mathcal{M}_1$ preserves the formulas in F iff $u_0 = u_1 \circ s_{\rho}$.

(F,H)-elementary embeddability

Let \mathcal{A},\mathcal{B} be models with domain $\kappa,$ let $H\subseteq {}^\kappa\kappa$ and let F be a fragment.

Definition

 \mathcal{A} is (F, H)-elementarily embeddable into \mathcal{B} if there exists $f \in H$ that preserves the formulas in F,

(i.e, for all $\varphi \in F$ and $\bar{a} \in {}^{<\kappa}\kappa$ we have $\mathcal{A} \models \varphi[\bar{a}]$ iff $\mathcal{B} \models \varphi[f(\bar{a})]$.)

(F,H)-elementary embeddability

Let \mathcal{A},\mathcal{B} be models with domain $\kappa,$ let $H\subseteq {}^\kappa\kappa$ and let F be a fragment.

Definition

 \mathcal{A} is (F, H)-elementarily embeddable into \mathcal{B} if there exists $f \in H$ that preserves the formulas in F,

(i.e, for all $\varphi \in F$ and $\bar{a} \in {}^{<\kappa}\kappa$ we have $\mathcal{A} \models \varphi[\bar{a}]$ iff $\mathcal{B} \models \varphi[f(\bar{a})]$.)

Special case: *H*-embeddability; *H*-elementary embeddability; ... *H*-isomorphism, when *H* is a subgroup of $Sym(\kappa)$.

(F, H)-elementary embeddability

For $H \subseteq {}^{\kappa}\kappa$, the set

 $\{\langle \rho, \mathcal{M}_0, \mathcal{M}_1 \rangle | H \ni \rho : \mathcal{M}_0 \to \mathcal{M}_1 \text{ preserves formulas in } F\}$ corresponds to a closed subset of $H \times \mathcal{H}(T) \times \mathcal{H}(T)$. (F, H)-elementary embeddability is a projection of this relation.

(F, H)-elementary embeddability

For $H \subseteq {}^{\kappa}\kappa$, the set

 $\{\langle \rho, \mathcal{M}_0, \mathcal{M}_1 \rangle \,|\, H \ni \rho : \mathcal{M}_0 \to \mathcal{M}_1 \text{ preserves formulas in } F\}$

corresponds to a closed subset of $H \times \mathcal{H}(T) \times \mathcal{H}(T)$.

(F, H)-elementary embeddability is a projection of this relation. Therefore it is a $\Sigma_2^0(\kappa)$ binary relation on $\mathcal{H}(T)$, when H is a K_{κ} subset of ${}^{\kappa}\kappa$.

Definition

A subset H of ${}^\kappa\kappa$ is

- κ -compact, if any open cover of H has a subcover of size $<\kappa$;
- K_{κ} , if it is the union of at most κ many κ -compact subsets.

Corollary (Sz., Väänänen)

Assume $I^{-}(\kappa)$ and either \Diamond_{κ} or that κ is inaccessible. Let H be a K_{κ} subset of κ -Baire space, F a fragment of $L_{\kappa^{+}\kappa}$ and ψ a sentence of $L_{\kappa^{+}\kappa}$.

If ψ has κ^+ many pairwise non (F, H)-elementarily embeddable models with domain κ , then there is a κ -perfect set of such models.

Thank you for your attention!