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Introduction

In 2014 M. A. Moshier and P. Jipsen published:

• Topological Duality and Lattice Expansions Part I: A Topological
Construction of Canonical Extensions, Algebra Universalis 71 (2014),
and its sequel
• Topological Duality and Lattice Expansions Part II: Lattice Expansions
with Quasioperators, Algebra Universalis 71 (2014).

In the first paper, a topological duality for the category of bounded
lattices (with morphisms the lattice homomorphisms) is introduced.

The duality for objects is used to provide a topological proof of the
existence of the canonical extension of a lattice, a notion introduced by
M. Gehrke and J. Harding in Bounded lattice expansions, Journal of
Algebra 238 (2001).
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To obtain the duality, M. A. Moshier and P. Jipsen develop first a
topological duality for the category of meet-semilattices with top
element (with meet-and-top-preserving maps as the morphisms).

The objects of the dual category are the HSM-spaces
(Hofmann-Mislove-Stralka spaces): sober spaces where the set of
compact open filters (w.r.t. the specialization order) is a basis and is
closed under finite intersections.

The morphisms are the continuous maps with the property that the
inverse image of a compact open filter is a compact open filter.

R. Jansana 3 / 20



Using inspiration on this duality we managed to provide:

a topological duality for a category with objects the posets.

use it to obtain a topological proof of the existence of the canonical
extension of a poset, as defined by M. Gehrke, M. Dunn and A.
Palmigiano in Canonical extensions and relational completeness of
some substructural logics, The Journal of Symbolic Logic 70 (2005).
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Outline of the talk

The duality for the objects.

The duality for the morphisms.

The duality for posets related to the HSM-spaces.

A topological proof of the existence of the canonical extension of a
poset.
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Towards the dual of a poset

Let P = 〈P,≤〉 be a poset.

A set F ⊆ P is a filter of P if it is a nonempty down-directed up-set.

F(P) will denote the set of filters of P and also the poset 〈F(P),⊆〉.

We define the topological space

XP := 〈F(P), τP〉

obtained by taking the Scott topology of the poset F(P).
(This topology consists of the up-sets of this poset which are
inaccessible w.r.t. joins of up-directed subsets of F(P)).
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• The spezialization order of XP is the inclusion relation on F(P).

• The space XP has as a basis the family {ϕP(a) : a ∈ P} of

ϕP(a) := {F ∈ F(P) : a ∈ F} = {F ∈ F(P) : ↑a ⊆ F}.

This holds because:

- If D is an up-directed family of filters, then its join exists and is
⋃
D.

- If U is a Scott-open set, and F ∈ U, then {↑a : a ∈ F} is up-directed
and F =

⋃
{↑a : a ∈ F}; therefore there exists a ∈ F such that ↑a ∈ U,

which implies F ∈ ϕP(a) ⊆ U.

• The space XP is T0.

R. Jansana 7 / 20



Given a T0-space X , a filter of X is a filter of the poset 〈X ,v〉,
where v is the specialization order.

An open filter of X is a filter of X which is open.

A compact open filter of X is an open filter of X which is a compact
set.

KOF(X ) denotes the family of all compact open filters of X .

Fact: KOF(X ) = {↑x : x ∈ Fin(X )},

where Fin(X ) is the set of finite points of X . A point x ∈ X is finite if
↑x is open.

Some more facts on XP :

• ϕP(a) is a compact open filter of XP .

• The compact open filters of XP are exactly the sets ϕP(a).

Thus,
KOF(XP) = {ϕP(a) : a ∈ P}.

• ϕP establishes an isomorphism between P and KOF(XP).
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Pst-spaces

Definition

A topological space X = 〈X , τ〉 is a Pst-space if

1 it is a sober space,

2 the set KOF(X ) is a basis for τ .

Theorem

Let X = 〈X , τ〉 be a topological space. Then, X is a Pst-space if and
only if

(i) X is a Scott space;

(ii) KOF(X ) is a base for τ ;

(iii) every up-directed subset of X (w.r.t. v) has a join.

Thus applying the theorem we have that:

Theorem
For every poset P, the space XP is a Pst-space.
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The dual poset of a Pst-space

Let X be a Pst-space.

The poset PX = 〈KOF(X ),⊆〉 will be the dual poset of X .

Theorem
If X is a Pst-space, then X is homeomorphic to XPX

. The
homomorphism is established by the map θX : X → XPX

defined by

θX (x) := {U ∈ KOF(X ) : x ∈ U}.
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Duals of morphisms
Let P,Q be posets. Let j : P → Q be an order-preserving map that in
addition satisfies that the inverse image of a filter of Q is a filter of P.

The map Γ(j) : XQ → XP defined by

Γ(j)(F ) := j−1[F ]

for every F ∈ F(Q)

- is continuous and

- Γ(j)−1[U] ∈ KOF(XQ), for every U ∈ KOF(XP).

Definition
Let X and Y Pst-spaces. A map f : X → Y is F -continuous if it is
continuous and for every U ∈ KOF(Y ), f −1[U] ∈ KOF(X ).

If f : X → Y is F -continuous, then the map ∆(f ) : PY → PX defined by

∆(f )(U) = f −1[U]

is order-preserving and the inverse image of a filter of PX is a filter of
PY .
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The categories

We consider the following categories.

The category of posets with morphisms the order-preserving maps
between them with the property that the inverse image of a filter is
a filter.

The category of Pst-spaces with morphisms the F -continuous maps.

These two categories are dually equivalent by the functors that arise
from the previous definitions.
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The natural transformations

They are the families

• {ϕP : P is a poset},

• {θX : X is a Pst-space}

because the diagrams

P Q

KOF(XP) KOF(XQ)

ϕP

j

∆(Γ(j))

ϕQ

X Y

XPX
XPY

θX

f

Γ(∆(f ))

θY

commute.
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Pst-spaces and HSM-spaces

Let P be a poset which is a meet-semilattice. Then XP satisfies the
additional condition that if U,V ∈ KOF(XP), then U ∩ V ∈ KOF(XP).

The meet-preserving maps between meet-semilattices are exactly the
order preserving maps such that the inverse image of a filter is a filter.

If P is a meet-semilattice with top element, then KOF(XP) is closed
under intersections of arbitrary finite subsets (in particular
XP ∈ KOF(XP)). Thus XP is an HSM-space. Conversely if X is an
HSM-space, then KOF(X ) is a meet-semilattice with top element.

HSM-spaces are spectral spaces.

Pst-spaces need not be spectral, even if we restrict to the compact ones.
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The canonical extension of a poset

Let P = 〈P,≤〉 be a poset. A completion of P is a pair (e,Q) where Q
is a poset that is a complete lattice and e is an order-embedding from P
to Q.

Let (e,Q) be a completion of P. An element a ∈ Q is closed if there
exists a filter F of P such that a =

∧
e[F ]. It is open if there exists and

ideal I of P (an up-directed down-set) such that a =
∨

[I ].

A completion (e,Q) of P is a canonical extension if

1 the set of open elements of Q is meet-dense in Q and the set of
closed elements is join-dense in Q.

2 for every filter F of P and every ideal I of P,

if
∧

e[F ] ≤
∨

e[I ], then F ∩ I 6= ∅.

Theorem

Every poset has a (unique) canonical extension.
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The topological duality for posets provides a proof of the existence of
the canonical extension of a poset.

Let X be a Pst-space. Let OF(X ) denote the family of all open filters of
X and let Fsat(X ) be the closure system on X generated by OF(X ).
The elements of Fsat(X ) are called F-saturated sets.

We have the complete lattice 〈Fsat(X ),
⋂
,
∨
〉,

where
∨
A = fsat(

⋃
A) for each A ⊆ Fsat(X ), taking fsat(.) to be the

closure operator associated with Fsat(X ), i.e. for every A ⊆ X ,

fsat(A) =
⋂
{F ∈ OF(X ) : A ⊆ F}.

It holds that KOF(X ) ⊆ OF(X ) ⊆ Fsat(X ).
So, the lattice Fsat(X ) is a completion of the poset PX = 〈KOF(X ),⊆〉.
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Theorem

Let P be a poset. The complete lattice Fsat(XP) is the canonical
extension of P, with embedding ϕP .
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How do the open and closed elements of Fsat(XP), as the canonical
extension of P, look like?

• U ∈ Fsat(XP) is a closed element iff there is a filter F of P such that

U = ↑F

in F(P).

• U ∈ Fsat(XP) is an open element iff there exists an ideal H of P such
that

U = {G ∈ F(P) : G ∩ H 6= ∅}.
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A question

In M. Gehrke, R.J., A. Palmigiano, ∆1-completions of a Poset, Order 1
(2013), different completions of a poset are studied in a systematic way,
each one corresponding to a choice of “filters” and “ideals”.

The choice of filters and ideals considered in this talk provides the
canonical extension, as defined, but other choices provide different
completions.

For which choice of “filter” the topological approach just presented can
be carried trough?
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Thank you!!

R. Jansana 20 / 20


