New properties of Sasaki projections

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara*

* Czech Technical University in Prague
** School of Mathematics, Johannesburg

TACL 2015, Ischia (Italy)

Outline

- What is quantum logic?

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection
- Our results

Outline

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection
- Our results
- Conclusion

What is quantum logic?

- 1936

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. Annals of Mathematics, 37 (1936), 823-843.

What is quantum logic?

- 1936

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. Annals of Mathematics, 37 (1936), 823-843.

- The structure of the lattice of projection operators $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H}.

What is quantum logic?

- 1936

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. Annals of Mathematics, 37 (1936), 823-843.

- The structure of the lattice of projection operators $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H}.
- The lattice of closed subspaces of a separable infinite dimensional Hilbert space.

What is quantum logic?

- 1936

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. Annals of Mathematics, 37 (1936), 823-843.

- The structure of the lattice of projection operators $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H}.
- The lattice of closed subspaces of a separable infinite dimensional Hilbert space.
- Quantum logic can be characterised as the logical structure based on orthomodular lattices.

What is an orthomodular lattice?

Orthocomplementation

Definition

An orthocomplementation on a bounded partially ordered set P is a unary operation with the properties

- x^{\prime} is the lattice-theoretical complement of x :

$$
\begin{aligned}
& x \wedge x^{\prime}=\mathbf{0} \\
& x \vee x^{\prime}=\mathbf{1}
\end{aligned}
$$

- ' is order reversing: $x \leqslant y \Rightarrow y^{\prime} \leqslant x^{\prime}$
\bullet^{\prime} is an involution: $x^{\prime \prime}=x$

What is an orthomodular lattice?

Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with an orthocomplementation in which the orthomodular law

$$
x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right)
$$

holds.

What is an orthomodular lattice?

Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with an orthocomplementation in which the orthomodular law

$$
x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right)
$$

holds.
Recall:
The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

What is an orthomodular lattice?

Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with an orthocomplementation in which the orthomodular law

$$
x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right)
$$

holds.
Recall:
The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

- is not distributive

What is an orthomodular lattice?

Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with an orthocomplementation in which the orthomodular law

$$
x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right)
$$

holds.
Recall:
The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

- is not distributive
- is modular in case \mathcal{H} has a finite dimension,

$$
x \leqslant z \Rightarrow x \vee(y \wedge z)=(x \vee y) \wedge z
$$

What is an orthomodular lattice?

Orthomodular Lattices

Definition

An orthomodular lattice L is a lattice with an orthocomplementation in which the orthomodular law

$$
x \leqslant y \Rightarrow y=x \vee\left(x^{\prime} \wedge y\right)
$$

holds.
Recall:
The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

- is not distributive
- is modular in case \mathcal{H} has a finite dimension,

$$
x \leqslant z \Rightarrow x \vee(y \wedge z)=(x \vee y) \wedge z
$$

- is orthomodular in case of an infinite dimension.

What are commuting elements?

What are commuting elements?

Definition

Let L be an OML and $x, y \in L$, we say x commutes with y and write x C y if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

What are commuting elements?

Definition

Let L be an OML and $x, y \in L$, we say x commutes with y and write x C y if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

- this relation is reflexive and symmetric.

What are commuting elements?

Definition

Let L be an OML and $x, y \in L$, we say x commutes with y and write x C y if

$$
x=(x \wedge y) \vee\left(x \wedge y^{\prime}\right)
$$

- this relation is reflexive and symmetric.
- transitive if and only if L is a Boolean algebra, in this case any pair of elements commutes.

Some properties of the commuting relation

Some properties of the commuting relation

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leqslant y$ or $x \leqslant y^{\prime}$ then x and y commute.

Some properties of the commuting relation

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leqslant y$ or $x \leqslant y^{\prime}$ then x and y commute.

Lemma

$$
x \mathrm{C} y \Leftrightarrow x \wedge\left(x^{\prime} \vee y\right)=x \wedge y
$$

Some properties of the commuting relation

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leqslant y$ or $x \leqslant y^{\prime}$ then x and y commute.

Lemma

$$
x \mathrm{C} y \Leftrightarrow x \wedge\left(x^{\prime} \vee y\right)=x \wedge y
$$

Proposition

In any orthomodular lattice, if x commutes with y and with z, then x commutes with y^{\prime}, with $y \vee z$ and with $y \wedge z$, as well as with any (ortho-)lattice polynomial in variables y and z.

Sasaki and his projection

Sasaki and his projection

Definition

Let p be an element of the orthomodular lattice L and let φ_{p} a mapping

$$
\begin{aligned}
\varphi_{p}: L & \rightarrow L \\
a & \mapsto p \wedge\left(p^{\prime} \vee a\right)
\end{aligned}
$$

then φ_{p} is called the Sasaki Projection of a into $[0, p] \subseteq L$.

Some "known" properties

- L is an $\mathrm{OML} \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$

Some "known" properties

- L is an OML $\Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$

Some "known" properties

- L is an $O M L \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$

Some "known" properties

- L is an $O M L \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.

Some "known" properties

- L is an $O M L \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.
- $p \mathrm{C} q \Leftrightarrow \varphi_{p}(q) \leqslant q$

Some "known" properties

- L is an $\mathrm{OML} \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.
- $p \mathrm{C} q \Leftrightarrow \varphi_{p}(q) \leqslant q$
- $\varphi_{q}(p)=\mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q^{\prime}$

Some "known" properties

- L is an $O M L \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.
- $p \mathrm{C} q \Leftrightarrow \varphi_{p}(q) \leqslant q$
- $\varphi_{q}(p)=\mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q^{\prime}$
- $\varphi_{q}(p)=q \Leftrightarrow p^{\prime} \wedge q=\mathbf{0}$

Some "known" properties

- L is an $\mathrm{OML} \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.
- $p \mathrm{C} q \Leftrightarrow \varphi_{p}(q) \leqslant q$
- $\varphi_{q}(p)=\mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q^{\prime}$
- $\varphi_{q}(p)=q \Leftrightarrow p^{\prime} \wedge q=\mathbf{0}$
- $\varphi_{p} \circ \varphi_{q}=\varphi_{q} \circ \varphi_{p}=\varphi_{p \wedge q} \Leftrightarrow \varphi_{p}(q)=p \wedge q \Leftrightarrow p \mathrm{C} q$

Some "known" properties

- L is an $\mathrm{OML} \Leftrightarrow \varphi_{p}(q)=q \quad \forall q \leqslant p$
- $p \wedge q \leqslant \varphi_{p}(q) \leqslant p$
- Let L be an OML and $p \mathrm{C} q$ then $\varphi_{p}(q)=p \wedge q$
- If $y \leqslant z$ then $\varphi_{p}(y) \leqslant \varphi_{p}(z)$.
- $p \mathrm{C} q \Leftrightarrow \varphi_{p}(q) \leqslant q$
- $\varphi_{q}(p)=\mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q^{\prime}$
- $\varphi_{q}(p)=q \Leftrightarrow p^{\prime} \wedge q=\mathbf{0}$
- $\varphi_{p} \circ \varphi_{q}=\varphi_{q} \circ \varphi_{p}=\varphi_{p \wedge q} \Leftrightarrow \varphi_{p}(q)=p \wedge q \Leftrightarrow p \mathrm{C} q$
- $p \leqslant q \Leftrightarrow \varphi_{p}=\varphi_{q} \circ \varphi_{p}=\varphi_{p} \circ \varphi_{q}$

Sasaki projection as binary operation

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation (sometimes called the Sasaki map)

$$
\begin{aligned}
& \text { * : } L \times L \rightarrow L \\
& (x, y) \mapsto x * y=x \wedge\left(x^{\prime} \vee y\right)
\end{aligned}
$$

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation (sometimes called the Sasaki map)

$$
\begin{aligned}
& \text { * : } L \times L \rightarrow L \\
& (x, y) \mapsto x * y=x \wedge\left(x^{\prime} \vee y\right)
\end{aligned}
$$

The Sasaki projection is neither commutative nor associative, it satisfies

$$
\begin{array}{ll}
\text { idempotence } & x * x=x \\
\text { neutral element } & 1 * x=x * 1=x \\
\text { absorption element } & 0 * x=x * 0=0
\end{array}
$$

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation (sometimes called the Sasaki map)

$$
\begin{aligned}
& \text { * : } L \times L \rightarrow L \\
& (x, y) \mapsto x * y=x \wedge\left(x^{\prime} \vee y\right)
\end{aligned}
$$

The Sasaki projection is neither commutative nor associative, it satisfies

idempotence	$x * x=x$
neutral element	$1 * x=x * 1=x$
absorption element	$0 * x=x * 0=0$

Further $x \mathrm{C}(x * y)$

Sasaki projection as binary operation

We will consider the Sasaki projection as a binary operation (sometimes called the Sasaki map)

$$
\begin{aligned}
& \text { * : } L \times L \rightarrow L \\
& (x, y) \mapsto x * y=x \wedge\left(x^{\prime} \vee y\right)
\end{aligned}
$$

The Sasaki projection is neither commutative nor associative, it satisfies

idempotence	$x * x=x$
neutral element	$1 * x=x * 1=x$
absorption element	$0 * x=x * 0=0$

Further $x \mathrm{C}(x * y)$, but not $y \mathrm{C}(x * y)$

Other tools

Other tools

Computer program (Marek Hyčko) http://www.mat.savba.sk/~hycko/oml

Other tools

Computer program (Marek Hyčko) http://www.mat.savba.sk/~hycko/oml
Counterexamples could all be found in the orthomodular lattice L_{22}

Our results

Our results

Lemma

Let L be an orthomodular lattice and let * be the Sasaki projection. It has the following properties:

$$
\begin{aligned}
& \text { If } x \leqslant y \text { then } x^{\prime} \vee(y * z)=x^{\prime} \vee z . \\
& \text { If } x \leqslant z \text { then } x^{\prime} \vee(y * z)=x^{\prime} \vee y . \\
& \text { If } x \leqslant z \text { then }(x * y) * z=x *(y * z)=x * y . \\
& \text { If } y \leqslant z \text { then } x * y \leqslant x * z . \\
& \text { If } y \leqslant z \text { then }(x * y) * z=x *(y * z)=x * y . \\
& \text { If } z \leqslant y \text { then } x *(y * z)=(x * y) * z=x * z .
\end{aligned}
$$

Our results

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Proof idea:
Calculate both sides and use the properties

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Proof idea:

Calculate both sides and use the properties

- $x \mathrm{C} y \Rightarrow x * y=x \wedge y$

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Proof idea:

Calculate both sides and use the properties

- $x \mathrm{C} y \Rightarrow x * y=x \wedge y$
- $x \leqslant y \Rightarrow x \mathrm{C} y$

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Proof idea:

Calculate both sides and use the properties

- $x \mathrm{C} y \Rightarrow x * y=x \wedge y$
- $x \leqslant y \Rightarrow x \mathrm{C} y$
- if x commutes with y and with z, then x commutes with any orthomodular lattice polynomial in variables y and z.

Our results

Theorem

Let L be an $O M L$ with x, y and z elements in L. If $x \mathrm{C} y$ then

$$
x *(y * z)=(x * y) * z
$$

Proof idea:
Calculate both sides and use the properties

- $x \mathrm{C} y \Rightarrow x * y=x \wedge y$
- $x \leqslant y \Rightarrow x \mathrm{C} y$
- if x commutes with y and with z, then x commutes with any orthomodular lattice polynomial in variables y and z.

Note: Neither $x \mathrm{C} z$ nor $y \mathrm{C} z$ are sufficient to fulfil the associativity equation; this is easy to find counterexamples in L_{22}.

Alternative algebras

Alternative algebras

Definition

An alternative algebra M is a non-empty set together with a binary operation, * which need not to be associative, but it has to be alternative, this means that $\forall x, y \in M$ the following equations hold

$$
\begin{array}{ll}
x *(x * y)=(x * x) * y & \text { left identity and } \\
(y * x) * x=y *(x * x) & \text { right identity }
\end{array}
$$

From the left and right identities the flexible identity follows

$$
x *(y * x)=(x * y) * x
$$

Alternative algebras

Definition

An alternative algebra M is a non-empty set together with a binary operation, $*$ which need not to be associative, but it has to be alternative, this means that $\forall x, y \in M$ the following equations hold

$$
\begin{array}{ll}
x *(x * y)=(x * x) * y & \text { left identity and } \\
(y * x) * x=y *(x * x) & \text { right identity }
\end{array}
$$

From the left and right identities the flexible identity follows

$$
x *(y * x)=(x * y) * x
$$

Theorem

The Sasaki projection fulfils all three identities of an alternative algebra.

Alternative algebras

Definition

An alternative algebra M is a non-empty set together with a binary operation, $*$ which need not to be associative, but it has to be alternative, this means that $\forall x, y \in M$ the following equations hold

$$
\begin{array}{ll}
x *(x * y)=(x * x) * y & \text { left identity and } \\
(y * x) * x=y *(x * x) & \text { right identity }
\end{array}
$$

From the left and right identities the flexible identity follows

$$
x *(y * x)=(x * y) * x
$$

Theorem

The Sasaki projection fulfils all three identities of an alternative algebra.

It fulfils also $\left(x * x^{\prime}\right) * y=x *\left(x^{\prime} * y\right)=\mathbf{0}$

Moufang-like identities

Moufang-like identities

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

for any $x, y, z \in L$.

Moufang-like identities

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

for any $x, y, z \in L$.
Proof idea:

Moufang-like identities

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

for any $x, y, z \in L$.
Proof idea:

- The Sasaki projection fulfils the left, right and flexible identities.

Moufang-like identities

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

for any $x, y, z \in L$.
Proof idea:

- The Sasaki projection fulfils the left, right and flexible identities.
- Further we use the properties $(x * y) \mathrm{C} x$ and

Moufang-like identities

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$
\begin{array}{ll}
(x * y * x) * z & =(x * y) *(x * z) \\
(z *(x * y)) * x & =z *(x * y * x) \\
((x * y) * z) * x & =(x * y) *(z * x)
\end{array}
$$

for any $x, y, z \in L$.
Proof idea:

- The Sasaki projection fulfils the left, right and flexible identities.
- Further we use the properties $(x * y) \mathrm{C} x$ and
- If $x \leqslant z$ or $y \leqslant z$ then

$$
(x * y) * z=x *(y * z)=x * y
$$

Conclusions

- Sasaki operations form a promising alternative to lattice operations (join and meet).

Conclusions

- Sasaki operations form a promising alternative to lattice operations (join and meet).
- Sasaki operations satisfy more equations than most orthomodular operations and therefore they are the best candidates for developing alternative algebraic tools for computations in orthomodular lattices.

Conclusions

- Sasaki operations form a promising alternative to lattice operations (join and meet).
- Sasaki operations satisfy more equations than most orthomodular operations and therefore they are the best candidates for developing alternative algebraic tools for computations in orthomodular lattices.
- The potential of using Sasaki operations in the algebraic foundations of orthomodular lattices is still not sufficiently exhausted.

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Thank you for your attention!

Thank you for your attention!

Questions?

