New properties of Sasaki projections

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara*

* Czech Technical University in Prague

** School of Mathematics, Johannesburg

TACL 2015, Ischia (Italy)

• What is quantum logic?

æ

∃ >

▲ 同 ▶ ▲ 国 ▶ ▲

- What is quantum logic?
- What is an orthomodular lattice (OML)?

- ● ● ●

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection
- Our results

- What is quantum logic?
- What is an orthomodular lattice (OML)?
- What are commuting elements and what are their properties?
- Sasaki and his projection
- Some "known" properties of the Sasaki projection
- Our results
- Conclusion

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. *Annals of Mathematics*, **37** (1936), 823–843.

/⊒ > < ∃ >

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. *Annals of Mathematics*, **37** (1936), 823–843.

• The structure of the *lattice of projection operators* $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H} .

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. *Annals of Mathematics*, **37** (1936), 823–843.

- The structure of the *lattice of projection operators* $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H} .
- The lattice of closed subspaces of a separable infinite dimensional Hilbert space.

Garrett Birkhoff and John von Neumann: The logic of quantum mechanics. *Annals of Mathematics*, **37** (1936), 823–843.

- The structure of the *lattice of projection operators* $\mathbb{P}(\mathcal{H})$ on a Hilbert space \mathcal{H} .
- The lattice of closed subspaces of a separable infinite dimensional Hilbert space.
- *Quantum logic* can be characterised as the logical structure based on orthomodular lattices.

An *orthocomplementation* on a bounded partially ordered set P is a unary operation with the properties

• x' is the lattice-theoretical complement of x:

$$\begin{array}{rcl} x \wedge x' &=& \mathbf{0} \\ x \vee x' &=& \mathbf{1} \end{array}$$

- ' is order reversing: $x \leqslant y \Rightarrow y' \leqslant x'$
- ' is an involution: x'' = x

Definition

An *orthomodular lattice L* is a lattice with an orthocomplementation in which the *orthomodular law*

$$x \leqslant y \Rightarrow y = x \lor (x' \land y)$$

holds.

Definition

An *orthomodular lattice L* is a lattice with an orthocomplementation in which the *orthomodular law*

$$x \leqslant y \Rightarrow y = x \lor (x' \land y)$$

holds.

Recall:

The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

Definition

An *orthomodular lattice L* is a lattice with an orthocomplementation in which the *orthomodular law*

$$x \leqslant y \Rightarrow y = x \lor (x' \land y)$$

holds.

Recall:

The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

• is not distributive

Definition

An *orthomodular lattice L* is a lattice with an orthocomplementation in which the *orthomodular law*

$$x \leqslant y \Rightarrow y = x \lor (x' \land y)$$

holds.

Recall:

The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

- is not distributive
- is *modular* in case \mathcal{H} has a finite dimension,

$$x \leqslant z \Rightarrow x \lor (y \land z) = (x \lor y) \land z$$
.

Definition

An *orthomodular lattice L* is a lattice with an orthocomplementation in which the *orthomodular law*

$$x \leqslant y \Rightarrow y = x \lor (x' \land y)$$

holds.

Recall:

The lattice of closed subspaces of a separable infinite dimensional Hilbert space $\mathbb{P}(\mathcal{H})$

- is not distributive
- is *modular* in case \mathcal{H} has a finite dimension,

$$x \leqslant z \Rightarrow x \lor (y \land z) = (x \lor y) \land z$$
.

• is orthomodular in case of an infinite dimension.

What are commuting elements?

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Let *L* be an OML and $x, y \in L$, we say *x* commutes with *y* and write x C y if

 $x = (x \land y) \lor (x \land y')$

Let *L* be an OML and $x, y \in L$, we say *x* commutes with *y* and write x C y if

$$x = (x \land y) \lor (x \land y')$$

• this relation is reflexive and symmetric.

Let *L* be an OML and $x, y \in L$, we say *x* commutes with *y* and write x C y if

$$x = (x \land y) \lor (x \land y')$$

- this relation is reflexive and symmetric.
- transitive if and only if *L* is a Boolean algebra, in this case any pair of elements commutes.

Some properties of the commuting relation

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leq y$ or $x \leq y'$ then x and y commute.

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leq y$ or $x \leq y'$ then x and y commute.

Lemma

$$x \to y \Leftrightarrow x \land (x' \lor y) = x \land y$$

Lemma

Let L be an ortholattice and $x, y \in L$. If either $x \leq y$ or $x \leq y'$ then x and y commute.

Lemma

$$x \to x \land (x' \lor y) = x \land y$$

Proposition

In any orthomodular lattice, if x commutes with y and with z, then x commutes with y', with $y \lor z$ and with $y \land z$, as well as with any (ortho–)lattice polynomial in variables y and z.

Sasaki and his projection

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Let p be an element of the orthomodular lattice L and let φ_p a mapping

$$\begin{array}{rcl} \varphi_p & : & L \to & L \\ & a & \mapsto & p \land (p' \lor a) \end{array}$$

· < E > < E >

then φ_p is called the *Sasaki Projection* of *a* into $[0, p] \subseteq L$.

• *L* is an OML
$$\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$$

э

æ

• L is an OML
$$\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$$

• $p \land q \leqslant \varphi_p(q) \leqslant p$

글 🖌 🔺 글 🕨

э

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \subset q$ then $\varphi_p(q) = p \wedge q$

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \subset q$ then $\varphi_p(q) = p \wedge q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \gets q$ then $\varphi_p(q) = p \land q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.
- $p C q \Leftrightarrow \varphi_p(q) \leqslant q$

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \gets q$ then $\varphi_p(q) = p \land q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.
- $p C q \Leftrightarrow \varphi_p(q) \leqslant q$
- $\varphi_q(p) = \mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q'$

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \gets q$ then $\varphi_p(q) = p \land q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.
- $p C q \Leftrightarrow \varphi_p(q) \leqslant q$
- $\varphi_q(p) = \mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q'$
- $\varphi_q(p) = q \Leftrightarrow p' \land q = \mathbf{0}$

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \gets q$ then $\varphi_p(q) = p \land q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.
- $p C q \Leftrightarrow \varphi_p(q) \leqslant q$
- $\varphi_q(p) = \mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q'$
- $\varphi_q(p) = q \Leftrightarrow p' \land q = \mathbf{0}$
- $\varphi_p \circ \varphi_q = \varphi_q \circ \varphi_p = \varphi_{p \wedge q} \Leftrightarrow \varphi_p(q) = p \wedge q \Leftrightarrow p \subset q$

Some "known" properties

- L is an OML $\Leftrightarrow \varphi_p(q) = q \qquad \forall q \leqslant p$
- $p \land q \leqslant \varphi_p(q) \leqslant p$
- Let L be an OML and $p \gets q$ then $\varphi_p(q) = p \land q$
- If $y \leq z$ then $\varphi_p(y) \leq \varphi_p(z)$.
- $p C q \Leftrightarrow \varphi_p(q) \leqslant q$
- $\varphi_q(p) = \mathbf{0} \Leftrightarrow p \perp q \Leftrightarrow p \leqslant q'$
- $\varphi_q(p) = q \Leftrightarrow p' \land q = \mathbf{0}$
- $\varphi_p \circ \varphi_q = \varphi_q \circ \varphi_p = \varphi_{p \wedge q} \Leftrightarrow \varphi_p(q) = p \wedge q \Leftrightarrow p \subset q$

•
$$p \leqslant q \Leftrightarrow \varphi_p = \varphi_q \circ \varphi_p = \varphi_p \circ \varphi_q$$

Sasaki projection as binary operation

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

* :
$$L \times L \rightarrow L$$

 $(x, y) \mapsto x * y = x \wedge (x' \lor y)$

* :
$$L \times L \rightarrow L$$

 $(x, y) \mapsto x * y = x \land (x' \lor y)$

The Sasaki projection is neither commutative nor associative, it satisfies

idempotence	X * X	=	X		
neutral element	1 * x	=	x * 1	=	x
absorption element	0 * <i>x</i>	=	<i>x</i> * 0	=	0

$$\begin{array}{rrrr} * & : & L \times L & \to & L \\ & & (x,y) & \mapsto & x * y = x \wedge (x' \vee y) \end{array}$$

The Sasaki projection is neither commutative nor associative, it satisfies

idempotence	X * X	=	X		
neutral element	1 * x	=	x * 1	=	x
absorption element	0 * <i>x</i>	=	<i>x</i> * 0	=	0

Further x C(x * y)

$$\begin{array}{rccc} * & : & L \times L & \to & L \\ & & (x,y) & \mapsto & x * y = x \wedge (x' \vee y) \end{array}$$

The Sasaki projection is neither commutative nor associative, it satisfies

idempotence	X * X	=	X		
neutral element	1 * x	=	x * 1	=	x
absorption element	0 * <i>x</i>	=	<i>x</i> * 0	=	0

Further $x \in (x * y)$, but not $y \in (x * y)$

Other tools

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

< /□ > < □ >

æ

- ₹ 🖬 🕨

Other tools

Computer program (Marek Hyčko) http://www.mat.savba.sk/~hycko/oml

∃ >

Other tools

Computer program (Marek Hyčko) http://www.mat.savba.sk/~hycko/oml Counterexamples could all be found in the orthomodular lattice L₂₂

Our results

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

< /□ > < □ >

æ

< Ξ

Lemma

Let L be an orthomodular lattice and let * be the Sasaki projection. It has the following properties: If $x \leq y$ then $x' \lor (y * z) = x' \lor z$. If $x \leq z$ then $x' \lor (y * z) = x' \lor y$. If $x \leq z$ then (x * y) * z = x * (y * z) = x * y. If $y \leq z$ then $x * y \leq x * z$. If $y \leq z$ then (x * y) * z = x * (y * z) = x * y. If $z \leq y$ then x * (y * z) = (x * y) * z = x * z.

Our results

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

< /□ > < □ >

æ

< Ξ

Our results

Theorem

Let L be an OML with x, y and z elements in L. If x C y then

$$x \ast (y \ast z) = (x \ast y) \ast z$$

∃ >

Let L be an OML with x, y and z elements in L. If x C y then

$$x * (y * z) = (x * y) * z$$

Proof idea:

Let L be an OML with x, y and z elements in L. If x C y then

$$x * (y * z) = (x * y) * z$$

Proof idea:

•
$$x C y \Rightarrow x * y = x \land y$$

Let L be an OML with x, y and z elements in L. If x C y then

$$x * (y * z) = (x * y) * z$$

Proof idea:

•
$$x C y \Rightarrow x * y = x \land y$$

•
$$x \leqslant y \Rightarrow x C y$$

Let L be an OML with x, y and z elements in L. If x C y then

$$x * (y * z) = (x * y) * z$$

Proof idea:

•
$$x C y \Rightarrow x * y = x \land y$$

- $x \leq y \Rightarrow x \subset y$
- if x commutes with y and with z, then x commutes with any orthomodular lattice polynomial in variables y and z.

Let L be an OML with x, y and z elements in L. If x C y then

$$x * (y * z) = (x * y) * z$$

Proof idea:

Calculate both sides and use the properties

•
$$x C y \Rightarrow x * y = x \land y$$

•
$$x \leqslant y \Rightarrow x \subset y$$

• if x commutes with y and with z, then x commutes with any orthomodular lattice polynomial in variables y and z.

Note: Neither x C z nor y C z are sufficient to fulfil the associativity equation; this is easy to find counterexamples in L_{22} .

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Definition

An *alternative algebra* M is a non-empty set together with a binary operation, * which need not to be associative, but it has to be *alternative*, this means that $\forall x, y \in M$ the following equations hold

$$x * (x * y) = (x * x) * y$$
 left identity and
 $(y * x) * x = y * (x * x)$ right identity

From the left and right identities the flexible identity follows

$$x*(y*x) = (x*y)*x$$

Definition

An *alternative algebra* M is a non-empty set together with a binary operation, * which need not to be associative, but it has to be *alternative*, this means that $\forall x, y \in M$ the following equations hold

$$x * (x * y) = (x * x) * y$$
 left identity and
 $(y * x) * x = y * (x * x)$ right identity

From the left and right identities the flexible identity follows

$$x*(y*x) = (x*y)*x$$

Theorem

The Sasaki projection fulfils all three identities of an alternative algebra.

Definition

An *alternative algebra* M is a non-empty set together with a binary operation, * which need not to be associative, but it has to be *alternative*, this means that $\forall x, y \in M$ the following equations hold

$$x * (x * y) = (x * x) * y$$
 left identity and
 $(y * x) * x = y * (x * x)$ right identity

From the left and right identities the flexible identity follows

$$x*(y*x) = (x*y)*x$$

Theorem

The Sasaki projection fulfils all three identities of an alternative algebra.

It fulfils also
$$(x * x') * y = x * (x' * y) = \mathbf{0}$$

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Jeannine Gabriëls*, Stephen Gagola III** and Mirko Navara* New properties of Sasaki projections

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$(x * y * x) * z = (x * y) * (x * z)$$

(z * (x * y)) * x = z * (x * y * x)
((x * y) * z) * x = (x * y) * (z * x)

< ∃ →

э

for any $x, y, z \in L$.

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$(x * y * x) * z = (x * y) * (x * z)$$

(z * (x * y)) * x = z * (x * y * x)
((x * y) * z) * x = (x * y) * (z * x)

< E.

for any $x, y, z \in L$.

Proof idea:

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$(x * y * x) * z = (x * y) * (x * z)$$

(z * (x * y)) * x = z * (x * y * x)
((x * y) * z) * x = (x * y) * (z * x)

for any $x, y, z \in L$.

Proof idea:

The Sasaki projection fulfils the left, right and flexible identities.

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$(x * y * x) * z = (x * y) * (x * z)$$

(z * (x * y)) * x = z * (x * y * x)
((x * y) * z) * x = (x * y) * (z * x)

for any $x, y, z \in L$.

Proof idea:

- The Sasaki projection fulfils the left, right and flexible identities.
- Further we use the properties (x * y) C x and

Theorem

Let L be an orthomodular lattice and let * be the Sasaki projection. Then

$$(x * y * x) * z = (x * y) * (x * z)$$

(z * (x * y)) * x = z * (x * y * x)
((x * y) * z) * x = (x * y) * (z * x)

for any $x, y, z \in L$.

Proof idea:

- The Sasaki projection fulfils the left, right and flexible identities.
- Further we use the properties (x * y) C x and
- If $x \leq z$ or $y \leq z$ then

$$(x * y) * z = x * (y * z) = x * y$$

• Sasaki operations form a promising alternative to lattice operations (join and meet).

- Sasaki operations form a promising alternative to lattice operations (join and meet).
- Sasaki operations satisfy more equations than most orthomodular operations and therefore they are the best candidates for developing alternative algebraic tools for computations in orthomodular lattices.

- Sasaki operations form a promising alternative to lattice operations (join and meet).
- Sasaki operations satisfy more equations than most orthomodular operations and therefore they are the best candidates for developing alternative algebraic tools for computations in orthomodular lattices.
- The potential of using Sasaki operations in the algebraic foundations of orthomodular lattices is still not sufficiently exhausted.

Thanks

・ロト ・日下・ ・ ヨト

æ

⊸∢ ≣ ≯

Thank you for your attention!

3.1

Thank you for your attention!

Questions?