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(P1) Describe effective codescent morphisms of distributive
lattices.

◮ DLat is dually equivalent to PSp.

◮ DLat are monoids in the monoidal category of semilattices.

Looking for a characterization for effectiveness of codescent can
be done in two different ways. Accordingly, this talk is organized
as follows:
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Introduction

(P1) Describe effective codescent morphisms of distributive
lattices.

◮ DLat is dually equivalent to PSp.

◮ DLat are monoids in the monoidal category of semilattices.

Looking for a characterization for effectiveness of codescent can
be done in two different ways. Accordingly, this talk is organized
as follows:

◮ Topological approach.

◮ Algebraic Approach.

◮ Do they give similar results?
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1. Topological approach

For every a continuous map of Priestley spaces p : E → B, the
pullback functor p∗ : PSp ↓ B → PSp ↓ E has a left adjoint
p! which is defined by composition with p on the left.
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1. Topological approach

For every a continuous map of Priestley spaces p : E → B, the
pullback functor p∗ : PSp ↓ B → PSp ↓ E has a left adjoint
p! which is defined by composition with p on the left.

Let T be the monad induced by this adjunction and

Φ : PSp ↓ B → (PSp ↓ E)T ∼= Des(p)

be the Eilenberg-Moore comparison functor.

A morphism p : E → B is a descent morphism if Φ is full and
faithful.

It is an effective descent morphism if Φ is an equivalence of
categories.
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The finite case: descent in Ord

FinPSp is equivalent to FinOrd.
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The finite case: descent in Ord

Proposition 1.1. For a morphism p : E → B in Ord (or in
FinOrd) TFAE:

(i) p is a descent morphism;

(ii) for every b0 ≤ b1 in B there exists e0 ≤ e1 in E such that
p(ei) = bi, for i=0,1.
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The finite case: descent in Ord

Theorem 1.2. For p : E → B in Ord (or in FinOrd) TFAE:

(a) p is an effective descent morphism;

(b) p is a pullback stable regular epimorphism and, for every
pullback in Rel

E ×B A
π2

//

π1

��

A

α

��

E
p

// B,

A ∈ Ord whenever E ×B A ∈ Ord.

(c) for every b0 ≤ b1 ≤ b2 in B there exists e0 ≤ e1 ≤ e2 in E

such that p(ei) = bi, for i=0,1,2.
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The finite case: descent in Ord

Theorem 1.2. For p : E → B in Ord (or in FinOrd) TFAE:

(a) p is an effective descent morphism;

(b) p is a pullback stable regular epimorphism and, for every
pullback in Rel

E ×B A
π2

//

π1

��

A

α

��

E
p

// B,

A ∈ Ord whenever E ×B A ∈ Ord.

(c) for every b0 ≤ b1 ≤ b2 in B there exists e0 ≤ e1 ≤ e2 in E

such that p(ei) = bi, for i=0,1,2.

(G.Janelidze and M.S., 2002)
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Important tool

Let C be a category with pullbacks and coequalizers and D a full
subcategory of C closed under pullbacks. For a morphism p in
D that is an effective descent morphism in C the following are
equivalent:

(i) p is an effective descent morphism in D;

(ii) for every pullback in C

E ×B A
π2

//

π1

��

A

α

��

E
p

// B

E ×B A ∈ D ⇒ A ∈ D.
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Ordered Stone spaces

Ordered Stone spaces = Stone spaces equipped with an order
relation.
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Ordered Stone spaces

Proposition 1.3. A morphism in OrdStone is a descent
morphism if and only if for every b0 ≤ b1 there exists e0 ≤ e1

such that p(ei) = bi, for i=0,1.
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Ordered Stone spaces

Theorem 1.4. For p : E → B in OrdStone TFAE:

(a) p is an effective descent morphism;

(b) p is a pullback stable regular epimorphism and, for every
pullback RelStone (= Stone spaces with a binary relation.)
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π2
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A

α
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E
p
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Descent for Priestley spaces

Proposition 1.5. A morphism p : E → B in PSp is a descent
morphism if and only if for every b0 ≤ b1 there exists e0 ≤ e1

such that p(ei) = bi, for i=0,1.
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Descent for Priestley spaces

Theorem 1.6. In the following (a) ⇔ (b) + (c):

(a) p is an effective descent morphism;

(b) p is a pullback stable regular epimorphism and, for every
pullback in OrdStone (or in RelStone)

E ×B A
π2

//

π1

��

A

α

��

E
p

// B

A ∈ PSp whenever E ×B A ∈ PSp;

(c) for every b0 ≤ b1 ≤ b2 in B there exists e0 ≤ e1 ≤ e2 in E

such that p(ei) = bi, for i=0,1,2.
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Descent for Priestley spaces

Theorem 1.6. In the following (a) ⇔ (b) + (c):

(a) p is an effective descent morphism;

(b) p is a pullback stable regular epimorphism and, for every
pullback in OrdStone (or in RelStone)

E ×B A
π2

//

π1

��

A

α

��

E
p

// B

A ∈ PSp whenever E ×B A ∈ PSp;

(c) for every b0 ≤ b1 ≤ b2 in B there exists e0 ≤ e1 ≤ e2 in E

such that p(ei) = bi, for i=0,1,2.

(M. Dias and M.S., 2006; G. Janelidze and M.S., 2014)
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Does (b) follow from (c)?
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Does (b) follow from (c)?

This is the case when B is finite, and so we have:
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Does (b) follow from (c)?

This is the case when B is finite, and so we have:

Theorem 1.7. A morphism p : E → B, with B finite, is an
effective descent morphism if and only if for every b0 ≤ b1 ≤ b2

in B there exists e0 ≤ e1 ≤ e2 in E such that p(ei) = bi, for
i=0,1,2.
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Does (b) follow from (c)?

This is the case when B is finite, and so we have:

Theorem 1.7. A morphism p : E → B, with B finite, is an
effective descent morphism if and only if for every b0 ≤ b1 ≤ b2

in B there exists e0 ≤ e1 ≤ e2 in E such that p(ei) = bi, for
i=0,1,2.

Also true for classes of morphisms that are

(i) surjective;

(ii) open and order-open (or order-closed),

providing wide classes of effective descent morphisms in PSp.
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Does (b) follow from (c)?

This is the case when B is finite, and so we have:

Theorem 1.7. A morphism p : E → B, with B finite, is an
effective descent morphism if and only if for every b0 ≤ b1 ≤ b2

in B there exists e0 ≤ e1 ≤ e2 in E such that p(ei) = bi, for
i=0,1,2.

Also true for classes of morphisms that are

(i) surjective;

(ii) open and order-open (or order-closed),

providing wide classes of effective descent morphisms in PSp.
(G.Janelidze and M.S., 2014)
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An open problem
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An open problem

◮ Describe morphisms p : E → B in PSp such that, for
every morphism α : A → B in OrdStone (or RelStone),
A belongs to PSp whenever E ×B A belongs to PSp.
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An open problem

◮ Describe morphisms p : E → B in PSp such that, for
every morphism α : A → B in OrdStone (or RelStone),
A belongs to PSp whenever E ×B A belongs to PSp.

This holds for morphisms p lifting three chains b0 ≤ b1 ≤ b2,
that is satisfying condition (c), in the finite case and also when
just B is finite.
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An open problem

◮ Describe morphisms p : E → B in PSp such that, for
every morphism α : A → B in OrdStone (or RelStone),
A belongs to PSp whenever E ×B A belongs to PSp.

This holds for morphisms p lifting three chains b0 ≤ b1 ≤ b2,
that is satisfying condition (c), in the finite case and also when
just B is finite.

Such morphisms necessarily lift three chains but this does not
seem to be a sufficient condition, in general.
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2. From PSp to DLat
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2. From PSp to DLat

Proposition 2.1. Let p : B → E be a homomorphism of
distributive lattices. Then p is a codescent morphism, that is a
pushout stable regular monomorphism, if and only if for for every
pair (b0, b1) of prime ideals of B with b0 ⊆ b1 there exist prime
ideals e0 ⊆ e1 in E with p−1(ei) = bi, i = 0, 1.
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2. From PSp to DLat

Theorem 2.2. Let p : B → E be a homomorphism of distributive
lattices with finite B. Then p is an effective codescent
morphism, that is it makes the induced pushout functor

B ↓ DLat → E ↓ DLat

comonadic, if and only if for for every triple (b0, b1, b2) of prime
ideals of B with b0 ⊆ b1 ⊆ b2 there exist prime ideals
e0 ⊆ e1 ⊆ e2 in E with p−1(ei) = bi, i = 0, 1, 2.
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3. Algebraic approach

(P2) Describe effective codescent morphisms of commutative
monoids in a monoidal category.
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3. Algebraic approach

(P2) Describe effective codescent morphisms of commutative
monoids in a monoidal category.

As easily follows from e.g. results of Janelidze and Tholen in
Facets of descent III(2004), we have:
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3. Algebraic approach

(P2) Describe effective codescent morphisms of commutative
monoids in a monoidal category.

As easily follows from e.g. results of Janelidze and Tholen in
Facets of descent III(2004), we have:

Theorem 3.1. Let p : B → E be a homomorphism of
commutative monoids in a monoidal category X for which there
exists a morphism q : E → B in the category X B, of
B-actions, with q · p = 1B. Then p is an effective descent
morphism of commutative monoids.
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Commutative monoids in semilattices
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Commutative monoids in semilattices

Then taking X the category of semilattices, and since a
subsemiring of a semiring of idempotents consists itself of
idempotents, we conclude:
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Commutative monoids in semilattices

Then taking X the category of semilattices, and since a
subsemiring of a semiring of idempotents consists itself of
idempotents, we conclude:

Corollary 3.2. Let p : B → E be a homomorphism of
distributive lattices, for which there exists a map q : E → B with
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idempotents, we conclude:

Corollary 3.2. Let p : B → E be a homomorphism of
distributive lattices, for which there exists a map q : E → B with
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Commutative monoids in semilattices

Then taking X the category of semilattices, and since a
subsemiring of a semiring of idempotents consists itself of
idempotents, we conclude:

Corollary 3.2. Let p : B → E be a homomorphism of
distributive lattices, for which there exists a map q : E → B with

q(0) = 0, q(e ∨ e′) = q(e) ∨ q(e′),

q(p(b) ∧ e) = b ∧ q(e),
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Commutative monoids in semilattices

Then taking X the category of semilattices, and since a
subsemiring of a semiring of idempotents consists itself of
idempotents, we conclude:

Corollary 3.2. Let p : B → E be a homomorphism of
distributive lattices, for which there exists a map q : E → B with

q(0) = 0, q(e ∨ e′) = q(e) ∨ q(e′),

q(p(b) ∧ e) = b ∧ q(e),

such that q · p = 1B.
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Commutative monoids in semilattices

Then taking X the category of semilattices, and since a
subsemiring of a semiring of idempotents consists itself of
idempotents, we conclude:

Corollary 3.2. Let p : B → E be a homomorphism of
distributive lattices, for which there exists a map q : E → B with

q(0) = 0, q(e ∨ e′) = q(e) ∨ q(e′),

q(p(b) ∧ e) = b ∧ q(e),

such that q · p = 1B.

Then p is an effective codescent morphism of distributive
lattices.
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4. Do they give similar results?
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The answer is far from being “ yes". However in the finite case:
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4. Do they give similar results?

The answer is far from being “ yes". However in the finite case:

◮ Theorem 1.2 tells us that being an effective descent map is
much weaker than being open and even much weaker than
being a triquotient.
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4. Do they give similar results?

The answer is far from being “ yes". However in the finite case:

◮ Theorem 1.2 tells us that being an effective descent map is
much weaker than being open and even much weaker than
being a triquotient.

Triquotients of finite topological spaces are exactly those maps
p : E → B such that for every
b0 ≤ b1 ≤ · · · ≤ bn in B there exists
e0 ≤ e1 ≤ · · · ≤ en in E with p(ei) = bi,
for every natural number n. (The necessity was proved by G.
Janelidze and M.S., 2002 and the sufficiency by
M.M.Clementino, 2002)
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4. Do they give similar results?

The answer is far from being “ yes". However in the finite case:

◮ Theorem 1.2 tells us that being an effective descent map is
much weaker than being open and even much weaker than
being a triquotient.

◮ Corollary 3.2 gives a sufficient condition that is between
“open" and “triquotient", comparing with the notions of open
and triquotient for locales which are monoids in the
monoidal category of complete semilattices.
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