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Introducing Ramsey Theorem
I Ramsey Theorem solves questions like: if you have ω people at a

party, is there some infinite subset whose members all know each
other or an infinite subset none of whose members know each other?

I We represent the infinite set of people by a complete graph, with
edges connecting two people blue if the two people know each
other, and red otherwise.

I Below an example with a color assignment for the nodes:
{0, 1, 2, 3, 4, 5}. 0 knows 2, 3, 5 and does not know 1, 4.
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I A set X with all blue edges or all red edges is said homogeneous.
I X = {0, 2, 3} is homogeneous and all-blue.
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1-colorings of a graph
I Ramsey Theorem says that infinite complete graphs with edges in

finitely many colors have infinite homogeneous subsets.

I An intermediate step in the quest for an homogeneous (all-red,
all-blue, . . . ) subset X is a subset Y with some 1-coloring.

I A subset Y has some 1-coloring if all edges from the same point of
Y to points of Y having a larger index have the same color.

I This color is called the color in Y of the point. Below a 1-colored
set Y .
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RT2
2: Ramsey Theorem in 2 colors for pairs

I In a formal statement of Ramsey we consider pairs {i , j} of natural
numbers with i 6= j .

I It is not restrictive to assume that i < j : we represent all pairs
exactly once.

I X is an homogeneous set w.r.t. the color assignment C and the
color c if all i < j in X have color c .

I RT2
2 (Ramsey for pairs and for 2 colors) says: if you have an

assignment C of two colors 1, 2 to all pairs i < j of natural numbers,
then there is some color c = 1, 2 and some infinite set X of natural
numbers which is homogeneous w.r.t. C and the color c .



Theorem (RT2
n: Ramsey Theorem in n colors for graphs)

If you have an assignment of n colors 1, . . . , n to all pairs of different
natural numbers, then there is some color c = 1, . . . , n and some infinite
set X homogeneous w.r.t. C and the color c .

Let PA be First Order Classical Arithmetic.

I If the coloring C is defined in the in the language of PA (for
instance, C is recursive), then RT2

n may be proved in PA, that is:
we may define some set X by some arithmetical predicate then prove
that X is homogeneous [2].

I Ramsey Theorem is not effective. There is no recursive map:

1. taking some recursive coloring C in input
2. providing as output some color c and an arithmetical formula

describing some homogeneous set X for C and c ([2]).

I As a corollary, RT2
2 and RT2

n are purely classical results: they
cannot be proved in HA, Intuitionistic First Order Arithmetic.
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How far is Ramsey’s Theorem from being constructive?

A non-intuitionistic theorem may still have some constructive feature.
Let HA be Intuitionistic Arithmetic. These results are taken from [4].

I If we use HA + Markov principle to derive ∃x .P(x , a), then the
proof contains a method recursive in a to find x , but no estimate of
the number of steps which are required.

I If we use HA + Σ0
1-LLPO (König’s Lemma for recursive trees) to

derive ∃x .P(x , a), then the proof contains a method recursive in a to
find some finite set I such that x ∈ I .

I If we use HA + EM-1 (Excluded Middle for semi-decidable
formulas) to derive to derive ∃x .P(x , a), then the proof contains
some limit computable map f (a) such that x = f (a).

Unfortunately, for RT2
2 we have a negative result: RT2

2 corresponds to
Σ0

3 -LLPO (König’s Lemma for Σ0
2-trees), a sub-classical principle

quite high in the hierarchy of sub-classical principles.
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RT2
2 is a sub-classical principle
We proved in [5] that RT2

2 for recursive coloring is König’s Lemma for
Σ0

2-trees, in the hierarchy of formulas provable in HA introduced in [4].
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RT2
2 and RT2

n for recursive coloring are the same
sub-classical principle

1. The goal of this talk is to prove:

(RT2
n for rec. col.) ⇐⇒ (RT2

2 for rec. col.) ⇐⇒ Σ0
3 -LLPO.

2. We cannot use the obvious proof of RT2
2 =⇒ RT2

n by induction
over the number of colors, because this proof requires non-recursive
colorings.

3. We already have intuitionistic proofs of (RT2
n for rec. coloring)

=⇒ (RT2
2 for rec. coloring) (immediate) and of (RT2

2 for rec.
coloring) =⇒ Σ0

3 -LLPO ([5]).

4. All we need is some intuitionistic proof of Σ0
3 -LLPO =⇒ (RT2

n for
rec. coloring).

5. To this aim, we translate Jockusch’s proof [2] of RT2
n in HA +

Σ0
3 -LLPO,

6. We modify Jockusch’s proof whenever this proof uses a
sub-classical principle stronger than Σ0

3 -LLPO
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Jockusch’s proof of RT2
n in PA

I Fix a coloring c of all pairs i < j of natural numbers.

I We say that a set Y of numbers has a 1-coloring if for all i < j < k
the coloring of {i , j} and {i , k} is the same. The common color of
all edges from i is called the 1-color of the number i in Y .

I Jockusch’s proof in PA is based on the existence of an infinite set Y
with 1-coloring.

I If we have an infinite set Y with some 1-coloring, then by the
infinite Pigeonhole Principle there is some infinite set X ⊆ Y of
numbers all of the same 1-color: that is, all edges from any
numbers in X to any number in X have the same color.

I By definition, X is homogeneous: RT2
n follows.

I Jockusch’s proof cannot be carried over in HA + Σ0
3 -LLPO: we now

explain why.
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Erdős’ trees

I From each assignment C of n colors to all pairs of natural numers,
Jockusch defines an infinite n-ary tree T , including all natural
numbers, and whose branches are 1-coloring.

I These tree are called Erdős’ trees.

I Example We assume be given a coloring c on {0, 1, 2, 3, 4, 5} and
we define some corresponding Erdős’ tree T . All branches of T are
some 1-coloring.
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we define some corresponding Erdős’ tree T . All branches of T are
some 1-coloring.

1

0

5

4

3

2

0

1 2

4 3



Erdős’ trees

I From each assignment C of n colors to all pairs of natural numers,
Jockusch defines an infinite n-ary tree T , including all natural
numbers, and whose branches are 1-coloring.

I These tree are called Erdős’ trees.
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Jockusch’s proof of RT2
n in HA

I From each recursive assignment C of n colors to all pairs of natural
numers, Jockusch defines an infinite Π0

1 Erdős’ tree: an n-ary tree
T , including all natural numbers, and whose branches are 1-coloring.

I Jockusch deduces, using König’s Lemma, that T has some infinite
Π0

2-branch Y .

I By definition of Erdős’ tree, the branch Y is an infinite 1-coloring.

I Jockusch concludes, using the Infinite Pigeonhole Principle for the
Π0

2-branch Y , that there is some infinite set of numbers X ⊆ Y , with
all numbers of the same 1-color. X is the homogeneous set required.

I Jockusch’s proof cannot be carried in HA out using Σ0
3 -LLPO,

because Σ0
3 -LLPO does not imply the Infinite Pigeonhole Principle

for the Π0
2-sets.



A proof in HA of:
Σ0

3 -LLPO =⇒ (RT2
n for recursive coloring)

Our contribution is to define, from any recursive color assignment C on
pairs of natural numbers, some particular infinite Erdős’ tree T , with one
extra property:

any 1-color occurring infinitely many times in T
occurs infinitely many times in any infinite branch Y

I Thus, in order to prove there is a 1-color occurring infinitely many
times in Y , we prove there is a color of numbers occurring infinitely
many times in T .

I This version of Jockusch’s proof may be carried in HA out using
Σ0

3 -LLPO

I Indeed, Σ0
3 -LLPO implies the Infinite Pigeonhole Principle for the

Π0
1-sets, and T is a Π0

1-set (while Y is not).
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