Ramsey's Theorem for pairs in k colors In the Hierarchy of Sub-Classical Principles
 For Intuitionistic Arithmetic

Stefano Berardi and Silvia Steila

Università degli studi di Torino

TACL 2015
Topology, Algebra, and Categories in Logic Ischia (Italy) 21-26 June 2015

Introducing Ramsey Theorem

- Ramsey Theorem solves questions like: if you have ω people at a party, is there some infinite subset whose members all know each other or an infinite subset none of whose members know each other?
- We represent the infinite set of people by a complete graph, with edges connecting two people blue if the two people know each other, and red otherwise.
- Below an example with a color assignment for the nodes:
$\{0,1,2,3,4,5\}$. 0 knows 2, 3, 5 and does not know 1, 4 .

- A set X with all blue edges or all red edges is said homogeneous.
$\mathbf{X}=\{0,2,3\}$ is homogeneous and all-blue.

Introducing Ramsey Theorem

- Ramsey Theorem solves questions like: if you have ω people at a party, is there some infinite subset whose members all know each other or an infinite subset none of whose members know each other?
- We represent the infinite set of people by a complete graph, with edges connecting two people blue if the two people know each other, and red otherwise.
- Below an example with a color assignment for the nodes: $\{0,1,2,3,4,5\}$. 0 knows $2,3,5$ and does not know 1,4 .

Introducing Ramsey Theorem

- Ramsey Theorem solves questions like: if you have ω people at a party, is there some infinite subset whose members all know each other or an infinite subset none of whose members know each other?
- We represent the infinite set of people by a complete graph, with edges connecting two people blue if the two people know each other, and red otherwise.
- Below an example with a color assignment for the nodes: $\{0,1,2,3,4,5\}$. 0 knows $2,3,5$ and does not know 1,4 .

- A set X with all blue edges or all red edges is said homogeneous.
- $\mathbf{X}=\{\mathbf{0}, \mathbf{2}, \mathbf{3}\}$ is homogeneous and all-blue.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

1-colorings of a graph

- Ramsey Theorem says that infinite complete graphs with edges in finitely many colors have infinite homogeneous subsets.
- An intermediate step in the quest for an homogeneous (all-red, all-blue, ...) subset X is a subset Y with some 1-coloring.
- A subset Y has some 1-coloring if all edges from the same point of Y to points of Y having a larger index have the same color.
- This color is called the color in Y of the point. Below a 1-colored set Y.

RT_{2}^{2} : Ramsey Theorem in 2 colors for pairs

- In a formal statement of Ramsey we consider pairs $\{i, j\}$ of natural numbers with $i \neq j$.
- It is not restrictive to assume that $i<j$: we represent all pairs exactly once.
- X is an homogeneous set w.r.t. the color assignment C and the color c if all $i<j$ in X have color c.
- RT_{2}^{2} (Ramsey for pairs and for 2 colors) says: if you have an assignment C of two colors 1,2 to all pairs $i<j$ of natural numbers, then there is some color $c=1,2$ and some infinite set X of natural numbers which is homogeneous w.r.t. C and the color c.

Theorem ($\mathrm{RT}_{\mathrm{n}}^{2}$: Ramsey Theorem in n colors for graphs) If you have an assignment of n colors $1, \ldots, n$ to all pairs of different natural numbers, then there is some color $c=1, \ldots, n$ and some infinite set X homogeneous w.r.t. C and the color c.
Let PA be First Order Classical Arithmetic.

- If the coloring C is defined in the in the language of PA (for instance, C is recursive), then RT_{n}^{2} may be proved in PA, that is: we may define some set X by some arithmetical predicate then prove that X is homogeneous [2].
- Ramsey Theorem is not effective. There is no recursive map:

1. taking some recursive coloring C in input
2. providing as output some color c and an arithmetical formula
describing some homogeneous set X for C and $c([2])$.

- As a corollary, RT_{2}^{2} and $\mathrm{RT}_{\text {n }}^{2}$ are purely classical results: they cannot be proved in HA, Intuitionistic First Order Arithmetic.

Theorem ($\mathrm{RT}_{\mathrm{n}}^{2}$: Ramsey Theorem in n colors for graphs) If you have an assignment of n colors $1, \ldots, n$ to all pairs of different natural numbers, then there is some color $c=1, \ldots, n$ and some infinite set X homogeneous w.r.t. C and the color c.
Let PA be First Order Classical Arithmetic.

- If the coloring C is defined in the in the language of PA (for instance, C is recursive), then RT_{n}^{2} may be proved in PA, that is: we may define some set X by some arithmetical predicate then prove that X is homogeneous [2].
- Ramsey Theorem is not effective. There is no recursive map:

1. taking some recursive coloring C in input
2. providing as output some color c and an arithmetical formula describing some homogeneous set X for C and c ([2]).

- As a corollary, RT_{2}^{2} and RT_{n}^{2} are purely classical results: they cannot be proved in HA, Intuitionistic First Order Arithmetic.

How far is Ramsey's Theorem from being constructive?

A non-intuitionistic theorem may still have some constructive feature. Let HA be Intuitionistic Arithmetic. These results are taken from [4].

- If we use HA + Markov principle to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find x, but no estimate of the number of steps which are required.
- If we use HA $+\Sigma_{1}^{0}$-LLPO (König's Lemma for recursive trees) to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find some finite set I such that $x \in I$
- If we use HA + EM-1 (Excluded Middle for semi-decidable formulas) to derive to derive $\exists x \cdot P(x, a)$, then the proof contains some limit computable map $f(a)$ such that $x=f(a)$.
Unfortunately, for RT_{2}^{2} we have a negative result: RT_{2}^{2} corresponds to Σ_{3}^{0}-LLPO (König's Lemma for $\boldsymbol{\Sigma}_{2}^{0}$-trees), a sub-classical principle quite high in the hierarchy of sub-classical principles.

How far is Ramsey's Theorem from being constructive?

A non-intuitionistic theorem may still have some constructive feature. Let HA be Intuitionistic Arithmetic. These results are taken from [4].

- If we use HA + Markov principle to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find x, but no estimate of the number of steps which are required.
- If we use HA $+\Sigma_{1}^{0}$-LLPO (König's Lemma for recursive trees) to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find some finite set I such that $x \in I$.
- If we use HA + EM-1 (Excluded Middle for semi-decidable formulas) to derive to derive $\exists x \cdot P(x, a)$, then the proof contains some limit computable map $f(a)$ such that $x=f(a)$.

Unfortunately, for RT_{2}^{2} we have a negative result: RT_{2}^{2} corresponds to Σ_{3}^{0}-LLPO (König's Lemma for Σ_{2}^{0}-trees) quite high in the hierarchy of sub-classical principles.

How far is Ramsey's Theorem from being constructive?

A non-intuitionistic theorem may still have some constructive feature. Let HA be Intuitionistic Arithmetic. These results are taken from [4].

- If we use HA + Markov principle to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find x, but no estimate of the number of steps which are required.
- If we use HA + Σ_{1}^{0}-LLPO (König's Lemma for recursive trees) to derive $\exists x . P(x, a)$, then the proof contains a method recursive in a to find some finite set I such that $x \in I$.
- If we use HA + EM-1 (Excluded Middle for semi-decidable formulas) to derive to derive $\exists x . P(x, a)$, then the proof contains some limit computable map $f(a)$ such that $x=f(a)$.
Unfortunately, for RT_{2}^{2} we have a negative result: RT_{2}^{2} corresponds to $\boldsymbol{\Sigma}_{3}^{0}$-LLPO (König's Lemma for $\boldsymbol{\Sigma}_{2}^{0}$-trees), a sub-classical principle quite high in the hierarchy of sub-classical principles.

RT_{2}^{2} is a sub-classical principle

We proved in [5] that RT_{2}^{2} for recursive coloring is König's Lemma for Σ_{2}^{0}-trees, in the hierarchy of formulas provable in HA introduced in [4].

PA (Classical)
rec. $\mathrm{RT}_{2}^{2} \Longleftrightarrow$

HA (Intuitionistic)
$E M_{0}$
$R T_{2}^{2}$ and $R T_{n}^{2}$ for recursive coloring are the same sub-classical principle

1. The goal of this talk is to prove:
($\mathrm{RT}_{\mathrm{n}}^{2}$ for rec. col. $) \Longleftrightarrow\left(\mathrm{RT}_{2}^{2}\right.$ for rec. col. $) \Longleftrightarrow \boldsymbol{\Sigma}_{3}^{0}$-LLPO.
2. We cannot use the obvious proof of $R T_{2}^{2} \Longrightarrow R T_{n}^{2}$ by induction over the number of colors, because this proof requires non-recursive colorings.
We already have intuitionistic proofs of $\left(R T_{n}^{2}\right.$ for rec. coloring)
$\Longrightarrow\left(R T_{2}^{2}\right.$ for rec. coloring) (immediate) and of $\left(R T_{2}^{2}\right.$ for rec. coloring) $\Longrightarrow \Sigma_{3}^{0}$-LLPO ([5]).
3. All we need is some intuitionistic proof of $\Sigma_{3}^{0}-$ LLPO $\Longrightarrow\left(R T_{n}^{2}\right.$ for rec. coloring).
To this aim, we translate Jockusch's proof [2] of RT_{n}^{2} in HA + Σ_{3}^{0}-LLPO,
4. We modify Jockusch's proof whenever this proof uses a sub-classical principle stronger than Σ_{3}^{0}-LLPO
$R T_{2}^{2}$ and $R T_{n}^{2}$ for recursive coloring are the same sub-classical principle
5. The goal of this talk is to prove:
$\left(R T_{n}^{2}\right.$ for rec. col. $) \Longleftrightarrow\left(R T_{2}^{2}\right.$ for rec. col. $) \Longleftrightarrow \boldsymbol{\Sigma}_{3}^{0}$-LLPO.
6. We cannot use the obvious proof of $R T_{2}^{2} \Longrightarrow R T_{n}^{2}$ by induction over the number of colors, because this proof requires non-recursive colorings.
7. We already have intuitionistic proofs of ($R T_{n}^{2}$ for rec. coloring) $\Longrightarrow\left(\mathrm{RT}_{2}^{2}\right.$ for rec. coloring) (immediate) and of $\left(\mathrm{RT}_{2}^{2}\right.$ for rec. coloring) $\Longrightarrow \Sigma_{3}^{0}$-LLPO ([5]).
8. All we need is some intuitionistic proof of $\Sigma_{3}^{0}-L L P O \Longrightarrow\left(R T_{n}^{2}\right.$ for rec. coloring).
9. To this aim, we translate Jockusch's proof [2] of $R T_{n}^{2}$ in $H A+$ Σ_{3}^{0}-LLPO,
10. We modify Jockusch's proof whenever this proof uses a sub-classical principle stronger than Σ_{3}^{0}-LLPO

Jockusch's proof of $R T_{n}^{2}$ in $P A$

- Fix a coloring c of all pairs $i<j$ of natural numbers.
- We say that a set Y of numbers has a 1-coloring if for all $i<j<k$ the coloring of $\{i, j\}$ and $\{i, k\}$ is the same. The common color of all edges from i is called the 1-color of the number i in Y.
- Jockusch's proof in PA is based on the existence of an infinite set Y with 1-coloring.
- If we have an infinite set Y with some 1-coloring, then by the infinite Pigeonhole Principle there is some infinite set $X \subseteq Y$ of numbers all of the same 1-color: that is, all edges from any numbers in X to any number in X have the same color.
- By definition, X is homogeneous: $\mathrm{RT}_{\mathrm{n}}^{2}$ follows.
- Jockusch's proof cannot be carried over in HA $+\Sigma_{3}^{0}$-LLPO: we now explain why.

Jockusch's proof of $R T_{n}^{2}$ in PA

- Fix a coloring c of all pairs $i<j$ of natural numbers.
- We say that a set Y of numbers has a 1-coloring if for all $i<j<k$ the coloring of $\{i, j\}$ and $\{i, k\}$ is the same. The common color of all edges from i is called the 1 -color of the number i in Y.
- Jockusch's proof in PA is based on the existence of an infinite set Y with 1-coloring.
- If we have an infinite set Y with some 1-coloring, then by the infinite Pigeonhole Principle there is some infinite set $X \subseteq Y$ of numbers all of the same 1 -color: that is, all edges from any numbers in X to any number in X have the same color.
- By definition, X is homogeneous: $\mathrm{RT}_{\mathrm{n}}^{2}$ follows.
- Jockusch's proof cannot be carried over in HA $+\Sigma_{3}^{0}$-LLPO: we now explain why.

Erdős' trees

- From each assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- These tree are called Erdös' trees.
- Example We assume be given a coloring c on $\{0,1,2,3,4,5\}$ and we define some corresponding Erdős' tree T. All branches of T are some 1-coloring.

Erdős' trees

- From each assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- These tree are called Erdös' trees.
- Example We assume be given a coloring c on $\{0,1,2,3,4,5\}$ and we define some corresponding Erdős' tree T. All branches of T are some 1-coloring.

Erdős' trees

- From each assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- These tree are called Erdös' trees.
- Example We assume be given a coloring c on $\{0,1,2,3,4,5\}$ and we define some corresponding Erdős' tree T. All branches of T are some 1-coloring.

Erdős' trees

- From each assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- These tree are called Erdös' trees.
- Example We assume be given a coloring c on $\{0,1,2,3,4,5\}$ and we define some corresponding Erdős' tree T. All branches of T are some 1-coloring.

Erdős' trees

- From each assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- These tree are called Erdös' trees.
- Example We assume be given a coloring c on $\{0,1,2,3,4,5\}$ and we define some corresponding Erdős' tree T. All branches of T are some 1-coloring.

Jockusch's proof of $R T_{n}^{2}$ in HA

- From each recursive assignment C of n colors to all pairs of natural numers, Jockusch defines an infinite Π_{1}^{0} Erdős' tree: an n-ary tree T, including all natural numbers, and whose branches are 1-coloring.
- Jockusch deduces, using König's Lemma, that T has some infinite Π_{2}^{0}-branch Y.
- By definition of Erdős' tree, the branch Y is an infinite 1-coloring.
- Jockusch concludes, using the Infinite Pigeonhole Principle for the Π_{2}^{0}-branch Y, that there is some infinite set of numbers $X \subseteq Y$, with all numbers of the same 1-color. X is the homogeneous set required.
- Jockusch's proof cannot be carried in HA out using Σ_{3}^{0}-LLPO, because Σ_{3}^{0}-LLPO does not imply the Infinite Pigeonhole Principle for the Π_{2}^{0}-sets.

A proof in HA of:

Σ_{3}^{0}-LLPO $\Longrightarrow\left(R T_{n}^{2}\right.$ for recursive coloring $)$

Our contribution is to define, from any recursive color assignment C on pairs of natural numbers, some particular infinite Erdős' tree T, with one extra property:
any 1-color occurring infinitely many times in T occurs infinitely many times in any infinite branch Y

A proof in HA of:
 Σ_{3}^{0}-LLPO $\Longrightarrow\left(R T_{n}^{2}\right.$ for recursive coloring $)$

Our contribution is to define, from any recursive color assignment C on pairs of natural numbers, some particular infinite Erdős' tree T, with one extra property:
any 1-color occurring infinitely many times in T occurs infinitely many times in any infinite branch Y

- Thus, in order to prove there is a 1-color occurring infinitely many times in Y, we prove there is a color of numbers occurring infinitely many times in T.
- This version of Jockusch's proof may be carried in HA out using Σ_{3}^{0}-LLPO
- Indeed, Σ_{3}^{0}-LLPO implies the Infinite Pigeonhole Principle for the Π_{1}^{0}-sets, and T is a Π_{1}^{0}-set (while Y is not).

References

E
Ramsey. On a problem of formal logic. Proceedings London Mathematical Society, 1930
\square Jockusch. Ramsey's Theorem and Recursion Theory. JSL, 1972
國 W. Veldman, M. Bezem. Ramsey's Theorem and the Pigeonhole principle in Intuitionistic Mathematics. Journal of the London Mathematical Society, 1993
㵢
Akama, Berardi, Hayashi, Kohlenbach. An Arithmetical Hierarchy of the Law of Excluded Middle and Related Principles. LICS, 2004

R S. Berardi, S. Steila. Ramsey Theorem for pairs as a classical principle in Intuitionistic Arithmetic. Types 2013 Post-proceedings

