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Stone Duality

StoneBAop

Stone duality (1936)

A Stone space is a compact Hausdorff and zero-dimensional space.
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Jónsson-Tarski Duality

MSMAop

Jónsson-Tarski duality

A modal algebra (B,◇) is a pair where B is a Boolean algebra and
◇ is a unary operation which satisfies:

(i)◇0 = 0
(ii) ◇(x ∨ y) =◇x ∨◇y .

A modal space is a Stone space X with a relation R which satisfies:

(i) R[x] is a closed set for each x ∈ X
(ii) R−1(U) is a clopen set for each clopen U ⊆ X .
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Jónsson-Tarski Duality

For a modal space (X ,R), the tuple (Clop(X ),◇) is a modal
algebra where ◇U = R−1U.

For a modal algebra (B,◇), the tuple (B∗,R) is a modal space
where B∗ is the space of ultrafilters and
pRq⇔ q ⊆◇−1p⇔◇q ⊆ p.

This leads to a dual equivalence between the category MS of
modal spaces and continuous p-morphisms (f ○R = R ○ f ), and the
category MA of modal algebras and their homomorphisms.
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de Vries duality for Compact Hausdorff Spaces

KHausDeVop

De Vries duality for KHaus
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de Vries algebras

de Vries algebras [de Vries (1962)]

A de Vries algebra is a pair (A,≺) consisting of a complete Boolean
algebra A and a binary relation ≺ on A satisfying the following

(S1) 0 ≺ 0 and 1 ≺ 1;

(S2) a ≺ b, c implies a ≺ b ∧ c ;

(S3) a,b ≺ c implies a ∨ b ≺ c ;

(S4) a ≤ b ≺ c ≤ d implies a ≺ d .

(S5) a ≺ b implies a ≤ b;

(S6) a ≺ b implies ¬b ≺ ¬a;

(S7) a ≺ b implies there is c ∈ B with a ≺ c ≺ b;

(S8) a ≠ 0 implies there is b ≠ 0 with b ≺ a.
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de Vries algebras

The set of regular open sets (U = ICU) of a compact Hausdorff
space X form a complete Boolean algebra.

For U,V ∈ RO(X ) define U ≺ V if CU ⊆ V . Then (RO(X ),≺) is a
de Vries algebra.

Each de Vries algebra is isomorphic to a de Vries algebra of the
form (RO(X ),≺) for some compact Hausdorff space X .

The goal of this talk is to obtain a “modal”-like duality for de
Vries algebras.
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Subordinations

Definition

A subordination on a Boolean algebra B is a binary relation ≺

satisfying:

(S1) 0 ≺ 0 and 1 ≺ 1;

(S2) a ≺ b, c implies a ≺ b ∧ c ;

(S3) a,b ≺ c implies a ∨ b ≺ c ;

(S4) a ≤ b ≺ c ≤ d implies a ≺ d .

Examples of subordinations (that satisfy additional conditions) are
modal operators ◻ and de Vries compingent relations.

Alternatively subordinations can be described by pre-contact
relations (Düntsch and Vakarelov) and quasi-modal operators
(Celani).
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Closed relations

Subordinations can be dually described by means of closed
relations.

A relation R on a Stone space X is closed if it is a closed subset of
the product space X ×X .

Lemma

Let X be a compact Hausdorff space and let R be a binary relation
on X . The following conditions are equivalent.

1 R is a closed relation.

2 For each closed subset F of X , both R[F ] and R−1[F ] are
closed.

3 If (x , y) ∉ R, then there is an open neighborhood U of x and
an open neighborhood V of y such that R[U] ∩V = ∅.

Sumit Sourabh Subordinations, closed relations and KHaus



Closed relations

Subordinations can be dually described by means of closed
relations.

A relation R on a Stone space X is closed if it is a closed subset of
the product space X ×X .

Lemma

Let X be a compact Hausdorff space and let R be a binary relation
on X . The following conditions are equivalent.

1 R is a closed relation.

2 For each closed subset F of X , both R[F ] and R−1[F ] are
closed.

3 If (x , y) ∉ R, then there is an open neighborhood U of x and
an open neighborhood V of y such that R[U] ∩V = ∅.

Sumit Sourabh Subordinations, closed relations and KHaus



Duality for Subordinations

Let Sub be the category whose objects are pairs (B,≺), where B is
a BA and ≺ is a subordination on B, and whose morphisms are
Boolean homomorphisms h satisfying a ≺ b implies h(a) ≺ h(b).

Let StR be the category whose objects are pairs (X ,R), where X
is a Stone space and R is a closed relation on X , and whose
morphisms are continuous stable morphisms1.

1We say f ∶ X1 → X2 is stable if xR1y implies f (x)R2f (y)
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Duality for Subordinations

For (B,≺) ∈ Sub, let (B,≺)∗ = (X ,R), where X is the Stone space
of B and xRy iff ↟ x ⊆ y , where
↟ x = {b ∈ B ∶ ∃a ∈ x such that a ≺ b}. Then (X ,R) ∈ StR

For (X ,R) ∈ StR, let (X ,R)∗ = (Clop(X ),≺), where U ≺ V iff
R[U] ⊆ V . Then (Clop(X ),≺) ∈ Sub.

Theorem

The categories Sub and StR are dually equivalent.
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A “modal” de Vries duality?

KHausDeVop

DeVop ?

Subop StR

DeVop ?
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Elementary conditions

Let (B,≺) be a subordination, which satisfies the following axioms.

(S5) a ≺ b implies a ≤ b;

(S6) a ≺ b implies ¬b ≺ ¬a;

(S7) a ≺ b implies there is c ∈ B with a ≺ c ≺ b;

Lemma

Let (X ,R) ∈ StR be the dual space of (B,≺).

1 R is reflexive iff ≺ satisfies (S5).

2 R is symmetric iff ≺ satisfies (S6).

3 R is transitive iff ≺ satisfies (S7).
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Irreducible equivalence relations

A continuous map f ∶ X → Y between compact Hausdorff spaces is
irreducible provided the f -image of each proper closed subset of X
is a proper subset of Y .

We call a closed equivalence relation R on a compact Hausdorff
space X irreducible if the factor-map π ∶ X → X /R is irreducible.

A closed equivalence relation R is irreducible iff for each proper
closed subset F of X , we have R[F ] is a proper subset of X .
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Gleason spaces

(S8) a ≠ 0 implies there is b ≠ 0 with b ≺ a.

Lemma

Let (B,≺) satisfy (S1-S7), and let (X ,R) be the dual of (B,≺).
Then the closed equivalence relation R is irreducible iff ≺ satisfies
(S8).

We call a pair (X ,R) a Gleason space if X is an extremally
disconnected space (each regular open is clopen) and R is an
irreducible equivalence relation on X .

Theorem

Gle is dually equivalent to DeV, hence Gle is equivalent to KHaus.
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Future work

For details see:

Subordinations, closed relations and compact Hausdorff spaces.
Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde
Venema, available at
http://www.illc.uva.nl/Research/Publications/Reports/

PP-2014-23.text.pdf, December 2014.

Develop a finitary calculus for compact Hausdorff spaces.

Characterize the class of axioms on a subordination which
corresponds to elementary conditions on the dual Stone space.

Thank you!
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