Subordinations, closed relations and compact Hausdorff spaces

Sumit Sourabh Joint work with Guram Bezhanishvili, Nick Bezhanishvili, and Yde Venema.

ILLC, University of Amsterdam

TACL 2015



Stone duality (1936)

A Stone space is a compact Hausdorff and zero-dimensional space.

Jónsson-Tarski Duality

Jónsson-Tarski duality

Jónsson-Tarski duality

A modal algebra (B, \diamondsuit) is a pair where B is a Boolean algebra and \diamondsuit is a unary operation which satisfies:

 $(i) \diamondsuit 0 = 0$ $(ii) \diamondsuit (x \lor y) = \diamondsuit x \lor \diamondsuit y.$

Jónsson-Tarski duality

A modal algebra (B, \diamondsuit) is a pair where B is a Boolean algebra and \diamondsuit is a unary operation which satisfies:

$$(i) \diamondsuit 0 = 0 (ii) \diamondsuit (x \lor y) = \diamondsuit x \lor \diamondsuit y.$$

A modal space is a Stone space X with a relation R which satisfies:

(i) R[x] is a closed set for each $x \in X$ (ii) $R^{-1}(U)$ is a clopen set for each clopen $U \subseteq X$. For a modal space (X, R), the tuple $(Clop(X), \diamondsuit)$ is a modal algebra where $\diamondsuit U = R^{-1}U$.

A 3 1

For a modal space (X, R), the tuple $(Clop(X), \diamondsuit)$ is a modal algebra where $\diamondsuit U = R^{-1}U$.

For a modal algebra (B, \diamondsuit) , the tuple (B_*, R) is a modal space where B_* is the space of ultrafilters and $pRq \Leftrightarrow q \subseteq \diamondsuit^{-1}p \Leftrightarrow \diamondsuit q \subseteq p$. For a modal space (X, R), the tuple $(Clop(X), \diamondsuit)$ is a modal algebra where $\diamondsuit U = R^{-1}U$.

For a modal algebra (B, \diamondsuit) , the tuple (B_*, R) is a modal space where B_* is the space of ultrafilters and $pRq \Leftrightarrow q \subseteq \diamondsuit^{-1}p \Leftrightarrow \diamondsuit q \subseteq p$.

This leads to a dual equivalence between the category MS of modal spaces and continuous p-morphisms ($f \circ R = R \circ f$), and the category MA of modal algebras and their homomorphisms.

de Vries duality for Compact Hausdorff Spaces



De Vries duality for KHaus

de Vries algebras [de Vries (1962)]

A de Vries algebra is a pair (A, \prec) consisting of a complete Boolean algebra A and a binary relation \prec on A satisfying the following

- (S1) 0 < 0 and 1 < 1;
- (S2) a < b, c implies $a < b \land c$;
- (S3) a, b < c implies $a \lor b < c$;
- (S4) $a \le b < c \le d$ implies a < d.
- (S5) a < b implies $a \le b$;
- (S6) a < b implies $\neg b < \neg a$;
- (S7) a < b implies there is $c \in B$ with a < c < b;
- (S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

The set of regular open sets (U = ICU) of a compact Hausdorff space X form a complete Boolean algebra.

For $U, V \in RO(X)$ define $U \prec V$ if $CU \subseteq V$. Then $(RO(X), \prec)$ is a de Vries algebra.

The set of regular open sets (U = ICU) of a compact Hausdorff space X form a complete Boolean algebra.

For $U, V \in RO(X)$ define $U \prec V$ if $CU \subseteq V$. Then $(RO(X), \prec)$ is a de Vries algebra.

Each de Vries algebra is isomorphic to a de Vries algebra of the form $(RO(X), \prec)$ for some compact Hausdorff space X.

The set of regular open sets (U = ICU) of a compact Hausdorff space X form a complete Boolean algebra.

For $U, V \in RO(X)$ define $U \prec V$ if $CU \subseteq V$. Then $(RO(X), \prec)$ is a de Vries algebra.

Each de Vries algebra is isomorphic to a de Vries algebra of the form $(RO(X), \prec)$ for some compact Hausdorff space X.

The goal of this talk is to obtain a "modal"-like duality for de Vries algebras.

Definition

A subordination on a Boolean algebra B is a binary relation \prec satisfying:

- (S1) 0 < 0 and 1 < 1;
- (S2) a < b, c implies $a < b \land c$;
- (S3) a, b < c implies $a \lor b < c$;
- (S4) $a \le b < c \le d$ implies a < d.

Definition

A subordination on a Boolean algebra B is a binary relation \prec satisfying:

(S1) 0 < 0 and 1 < 1;

(S2) a < b, c implies $a < b \land c$;

```
(S3) a, b < c implies a \lor b < c;
```

```
(S4) a \le b < c \le d implies a < d.
```

Examples of subordinations (that satisfy additional conditions) are modal operators \Box and de Vries compingent relations.

Alternatively subordinations can be described by pre-contact relations (Düntsch and Vakarelov) and quasi-modal operators (Celani).

Closed relations

Subordinations can be dually described by means of closed relations.

A relation R on a Stone space X is closed if it is a closed subset of the product space $X \times X$.

Subordinations can be dually described by means of closed relations.

A relation R on a Stone space X is closed if it is a closed subset of the product space $X \times X$.

Lemma

Let X be a compact Hausdorff space and let R be a binary relation on X. The following conditions are equivalent.

- \bigcirc R is a closed relation.
- For each closed subset F of X, both R[F] and R⁻¹[F] are closed.
- ③ If $(x, y) \notin R$, then there is an open neighborhood *U* of *x* and an open neighborhood *V* of *y* such that $R[U] \cap V = \emptyset$.

Let Sub be the category whose objects are pairs (B, <), where B is a BA and < is a subordination on B, and whose morphisms are Boolean homomorphisms h satisfying a < b implies h(a) < h(b).

Let StR be the category whose objects are pairs (X, R), where X is a Stone space and R is a closed relation on X, and whose morphisms are continuous stable morphisms¹.

¹We say $f: X_1 \to X_2$ is stable if xR_1y implies $f(x)R_2f(y) = A = A = A$

For $(B, \prec) \in$ Sub, let $(B, \prec)_* = (X, R)$, where X is the Stone space of B and xRy iff $\uparrow x \subseteq y$, where $\uparrow x = \{b \in B : \exists a \in x \text{ such that } a \prec b\}$. Then $(X, R) \in$ StR For $(B, \prec) \in$ Sub, let $(B, \prec)_* = (X, R)$, where X is the Stone space of B and xRy iff $\uparrow x \subseteq y$, where $\uparrow x = \{b \in B : \exists a \in x \text{ such that } a \prec b\}$. Then $(X, R) \in$ StR

For $(X, R) \in StR$, let $(X, R)^* = (Clop(X), \prec)$, where $U \prec V$ iff $R[U] \subseteq V$. Then $(Clop(X), \prec) \in Sub$.

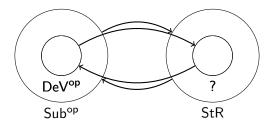
For $(B, \prec) \in$ Sub, let $(B, \prec)_* = (X, R)$, where X is the Stone space of B and xRy iff $\uparrow x \subseteq y$, where $\uparrow x = \{b \in B : \exists a \in x \text{ such that } a \prec b\}$. Then $(X, R) \in$ StR

For $(X, R) \in StR$, let $(X, R)^* = (Clop(X), \prec)$, where $U \prec V$ iff $R[U] \subseteq V$. Then $(Clop(X), \prec) \in Sub$.

Theorem

The categories Sub and StR are dually equivalent.

A "modal" de Vries duality?



-

Elementary conditions

Let (B, \prec) be a subordination, which satisfies the following axioms.

```
(S5) a < b implies a \le b;
```

```
(S6) a < b implies \neg b < \neg a;
```

(S7) a < b implies there is $c \in B$ with a < c < b;

Lemma

Let $(X, R) \in StR$ be the dual space of (B, \prec) .

- **1** *R* is reflexive iff < satisfies (S5).
- R is symmetric iff < satisfies (S6).</p>
- **③** *R* is transitive iff < satisfies (S7).

A continuous map $f: X \to Y$ between compact Hausdorff spaces is irreducible provided the *f*-image of each proper closed subset of *X* is a proper subset of *Y*. A continuous map $f: X \rightarrow Y$ between compact Hausdorff spaces is irreducible provided the *f*-image of each proper closed subset of *X* is a proper subset of *Y*.

We call a closed equivalence relation R on a compact Hausdorff space X irreducible if the factor-map $\pi: X \to X/R$ is irreducible.

A closed equivalence relation R is irreducible iff for each proper closed subset F of X, we have R[F] is a proper subset of X.

(S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

Lemma

Let (B, <) satisfy (S1-S7), and let (X, R) be the dual of (B, <). Then the closed equivalence relation R is irreducible iff < satisfies (S8).

(S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

Lemma

Let (B, <) satisfy (S1-S7), and let (X, R) be the dual of (B, <). Then the closed equivalence relation R is irreducible iff < satisfies (S8).

We call a pair (X, R) a Gleason space if X is an extremally disconnected space (each regular open is clopen) and R is an irreducible equivalence relation on X.

(S8) $a \neq 0$ implies there is $b \neq 0$ with b < a.

Lemma

Let (B, <) satisfy (S1-S7), and let (X, R) be the dual of (B, <). Then the closed equivalence relation R is irreducible iff < satisfies (S8).

We call a pair (X, R) a Gleason space if X is an extremally disconnected space (each regular open is clopen) and R is an irreducible equivalence relation on X.

Theorem

Gle is dually equivalent to DeV, hence Gle is equivalent to KHaus.

For details see:

Subordinations, closed relations and compact Hausdorff spaces. Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde Venema, available at

http://www.illc.uva.nl/Research/Publications/Reports/
PP-2014-23.text.pdf, December 2014.

For details see:

Subordinations, closed relations and compact Hausdorff spaces. Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde Venema, available at http://www.illc.uva.nl/Research/Publications/Reports/ PP-2014-23.text.pdf, December 2014.

- Develop a finitary calculus for compact Hausdorff spaces.
- Characterize the class of axioms on a subordination which corresponds to elementary conditions on the dual Stone space.

For details see:

Subordinations, closed relations and compact Hausdorff spaces. Guram Bezhanishvili, Nick Bezhanishvili, Sumit Sourabh, Yde Venema, available at http://www.illc.uva.nl/Research/Publications/Reports/ PP-2014-23.text.pdf, December 2014.

- Develop a finitary calculus for compact Hausdorff spaces.
- Characterize the class of axioms on a subordination which corresponds to elementary conditions on the dual Stone space.

Thank you!