Using topological systems to create a framework for institutions

Jeffrey T. Denniston1
Stephen E. Rodabaugh2
Austin Melton1
Sergejs Solovjovs3

1Kent State University, Kent, Ohio, USA
2Youngstown State University, Youngstown, Ohio, USA
3Brno University of Technology, Brno, Czech Republic

Topology, Algebra, and Categories in Logic 2015

Ischia, Italy
June 21 – 26, 2015
Sergejs Solovjovs acknowledges the support of Czech Science Foundation (GAČR) and Austrian Science Fund (FWF) through bilateral project No. I 1923-N25 “New Perspectives on Residuated Posets”.

GAČR

Der Wissenschaftsfonds.

FWF
Outline

1. Introduction
2. Affine systems
3. Affine theories
4. Affine institutions
5. Conclusion
Institutions

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., “truth is invariant under change of notation”.
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.
Institutions

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.

- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., “truth is invariant under change of notation”.

- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.

- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.
Institutions

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., “truth is invariant under change of notation”.
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.
Institutions

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., “truth is invariant under change of notation”.
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.
Topological systems

- Based in the ideas of geometric logic, *topological systems* of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.

- S. Vickers showed system spatialization and localication procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.

- Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has
 - introduced and studied lattice-valued topological systems;
 - provided lattice-valued system spatialization procedure.
Based in the ideas of geometric logic, *topological systems* of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.

S. Vickers showed system spatialization and localification procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.

Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has

- introduced and studied lattice-valued topological systems;
- provided lattice-valued system spatialization procedure.
Institutions and topological systems

Topological systems

- Based in the ideas of geometric logic, topological systems of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.

- S. Vickers showed system spatialization and localification procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.

- Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has
 - introduced and studied lattice-valued topological systems;
 - provided lattice-valued system spatialization procedure.
Institutions and topological systems

Institutions versus systems

To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.

A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp *topological institutions* based in topological systems, the slogan being that “the central concept is the theory, not the formula”.

The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.
Institutions and topological systems

Institutions versus systems

- To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.

- A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp *topological institutions* based in topological systems, the slogan being that “the central concept is the theory, not the formula”.

- The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.
Institutions and topological systems

Institutions versus systems

- To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.

- A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp *topological institutions* based in topological systems, the slogan being that “the central concept is the theory, not the formula”.

- The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.
Definition 1

Let \(\Omega = (n_{\lambda})_{\lambda \in \Lambda} \) be a family of cardinal numbers, which is indexed by a (possibly proper or empty) class \(\Lambda \).

- An **\(\Omega \)-algebra** is a pair \((A, (\omega^A_{\lambda})_{\lambda \in \Lambda}) \), comprising a set \(A \) and a family of maps \(A^{n_{\lambda}} \xrightarrow{\omega^A_{\lambda}} A \) (\(n_{\lambda} \)-ary primitive operations on \(A \)).

- An **\(\Omega \)-homomorphism** \((A_1, (\omega^{A_1}_{\lambda})_{\lambda \in \Lambda}) \xrightarrow{\varphi} (A_2, (\omega^{A_2}_{\lambda})_{\lambda \in \Lambda}) \) is a map \(A_1 \xrightarrow{\varphi} A_2 \) such that \(\varphi \circ \omega^{A_1}_{\lambda} = \omega^{A_2}_{\lambda} \circ \varphi^{n_{\lambda}} \) for every \(\lambda \in \Lambda \).

\(\text{Alg}(\Omega) \) is the construct of \(\Omega \)-algebras and \(\Omega \)-homomorphisms.
Definition 2

Let \mathcal{M} (resp. \mathcal{E}) be the class of Ω-homo-morphisms with injective (resp. surjective) underlying maps. A variety of Ω-algebras is a full subcategory of $\text{Alg}(\Omega)$, which is closed under the formation of products, \mathcal{M}-subobjects and \mathcal{E}-quotients, and whose objects (resp. morphisms) are called algebras (resp. homomorphisms).
Algebraic preliminaries

Examples of varieties

Example 3

1. \(\text{CSLat}(\lor) \) is the variety of \(\lor \)-semilattices, and \(\text{CSLat}(\land) \) is the variety of \(\land \)-semilattices.

2. \(\text{Frm} \) is the variety of frames.

3. \(\text{CBA} \text{Alg} \) is the variety of complete Boolean algebras.

4. \(\text{CSL} \) is the variety of closure semilattices, i.e., \(\land \)-semilattices, with the singled out bottom element.
The following extends the notion of *affine set* of Y. Diers.

Definition 4

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{\text{op}}$, where \mathbf{B} is a variety of algebras, $\text{AfSpc}(T)$ is the concrete category over \mathbf{X}, whose objects (T-affine spaces or T-spaces) are pairs (X, τ), where X is an \mathbf{X}-object and τ is a subalgebra of TX; morphisms (T-affine morphisms or T-morphisms) $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are \mathbf{X}-morphisms $X_1 \xrightarrow{f} X_2$ with the property that $(Tf)^{\text{op}}(\alpha) \in \tau_1$ for every $\alpha \in \tau_2$.

The concrete category $(\text{AfSpc}(T), \dashv | |)$ is topological over \mathbf{X}.
The following extends the notion of *affine set* of Y. Diers.

Definition 4

Given a functor \(X \xrightarrow{T} B^{\text{op}} \), where \(B \) is a variety of algebras, \(\text{AfSpc}(T) \) is the concrete category over \(X \), whose

objects (\(T \)-affine spaces or \(T \)-spaces) are pairs \((X, \tau)\), where \(X \) is an \(X \)-object and \(\tau \) is a subalgebra of \(TX \);

morphisms (\(T \)-affine morphisms or \(T \)-morphisms) \((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)\) are \(X \)-morphisms \(X_1 \xrightarrow{f} X_2 \) with the property that \((Tf)^{\text{op}}(\alpha) \in \tau_1\) for every \(\alpha \in \tau_2 \).

The concrete category \((\text{AfSpc}(T), | - |)\) is topological over \(X \).
The following extends the notion of *affine set* of Y. Diers.

Definition 4

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{\text{op}}$, where \mathbf{B} is a variety of algebras, $\text{AfSpc}(T)$ is the concrete category over \mathbf{X}, whose

objects (T-affine spaces or T-spaces) are pairs (X, τ), where X is an \mathbf{X}-object and τ is a subalgebra of TX;

morphisms (T-affine morphisms or T-morphisms) $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are \mathbf{X}-morphisms $X_1 \xrightarrow{f} X_2$ with the property that $(Tf)^{\text{op}}(\alpha) \in \tau_1$ for every $\alpha \in \tau_2$.

The concrete category $(\text{AfSpc}(T), | - |)$ is topological over \mathbf{X}.
Examples

Example 5

Given a variety \mathbf{B}, every subcategory \mathbf{S} of \mathbf{B}^{op} induces a functor $\mathbf{Set} \times \mathbf{S} \xrightarrow{\mathcal{P}_S} \mathbf{B}^{op}$, $\mathcal{P}_S((X_1, B_1) \xrightarrow{(f, \varphi)} (X_2, B_2)) = B_1^{X_1} \xrightarrow{\mathcal{P}_S(f, \varphi)} B_2^{X_2}$, where $(\mathcal{P}_S(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f$.

Example 6

1. If $\mathbf{B} = \text{Frm}$, then $\text{AfSpc}(\mathcal{P}_2) = \text{Top}$ (topological spaces).
2. If $\mathbf{B} = \text{CSL}$, then $\text{AfSpc}(\mathcal{P}_2) = \text{Cls}$ (closure spaces).
3. $\text{AfSpc}(\mathcal{P}_B)$ is the category $\text{AfSet}(B)$ of affine sets of Y. Diers.
4. If $\mathbf{B} = \text{Frm}$, then $\text{AfSpc}(\mathcal{P}_S) = S\text{-Top}$ (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).
Affine spaces

Examples

Example 5

Given a variety \(B \), every subcategory \(S \) of \(B^{op} \) induces a functor

\[
\text{Set} \times S \xrightarrow{\mathcal{P}_S} B^{op}, \quad \mathcal{P}_S((X_1, B_1) \xrightarrow{(f, \varphi)} (X_2, B_2)) = B_1^{X_1} \xrightarrow{\mathcal{P}_S(f, \varphi)} B_2^{X_2},
\]

where \((\mathcal{P}_S(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f\).

Example 6

1. If \(B = \text{Frm} \), then \(\text{AfSpc}(\mathcal{P}_2) = \text{Top} \) (topological spaces).
2. If \(B = \text{CSL} \), then \(\text{AfSpc}(\mathcal{P}_2) = \text{Cls} \) (closure spaces).
3. \(\text{AfSpc}(\mathcal{P}_B) \) is the category \(\text{AfSet}(B) \) of affine sets of Y. Diers.
4. If \(B = \text{Frm} \), then \(\text{AfSpc}(\mathcal{P}_S) = \text{S-Top} \) (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).
Affine systems

Definition 7

Given a functor $X \xrightarrow{T} B^{op}$, $\text{AfSys}(T)$ is the comma category $(T \downarrow 1_{B^{op}})$, concrete over the product category $X \times B^{op}$, whose objects (T-affine systems or T-systems) are triples (X, κ, B), made by B^{op}-morphisms $TX \xrightarrow{\kappa} B$; morphisms ($T$-affine morphisms or T-morphisms) $(X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)$ are $X \times B^{op}$-morphisms $(X_1, B_1) \xrightarrow{(f, \varphi)} (X_2, B_2)$, making the next diagram commute:

\[
\begin{array}{ccc}
TX_1 & \xrightarrow{Tf} & TX_2 \\
\kappa_1 \downarrow & & \kappa_2 \downarrow \\
B_1 & \xrightarrow{\varphi} & B_2.
\end{array}
\]
Example 8

1. If $B = \text{Frm}$, then $\text{AfSys}(\mathcal{P}_2) = \text{TopSys}$ (topological systems of S. Vickers).

2. If $B = \text{Set}$, then $\text{AfSys}(\mathcal{P}_B) = \text{Chu}_B$ (Chu spaces over a set B of P.-H. Chu).

Definition 9

A T-system (X, κ, B) is called *separated* provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in B^{op}. $\text{AfSys}_s(T)$ is the full subcategory of $\text{AfSys}(T)$ of separated T-systems.

Example 10

For $B = \text{CSL}$, $\text{AfSys}_s(\mathcal{P}_2) = \text{SP}$ (state property systems of D. Aerts).
Affine systems

Examples

Example 8

1. If $B = \text{Frm}$, then $\text{AfSys}(\mathcal{P}_2) = \text{TopSys}$ (topological systems of S. Vickers).

2. If $B = \text{Set}$, then $\text{AfSys}(\mathcal{P}_B) = \text{Chu}_B$ (Chu spaces over a set B of P.-H. Chu).

Definition 9

A T-system (X, κ, B) is called separated provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in B^{op}. $\text{AfSys}_s(T)$ is the full subcategory of $\text{AfSys}(T)$ of separated T-systems.

Example 10

For $B = \text{CSL}$, $\text{AfSys}_s(\mathcal{P}_2) = \text{SP}$ (state property systems of D. Aerts).
Examples

Example 8

1. If $B = \text{Frm}$, then $\text{AfSys}(\mathcal{P}_2) = \text{TopSys}$ (topological systems of S. Vickers).
2. If $B = \text{Set}$, then $\text{AfSys}(\mathcal{P}_B) = \text{Chu}_B$ (Chu spaces over a set B of P.-H. Chu).

Definition 9

A T-system (X, κ, B) is called separated provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in B^{op}. $\text{AfSys}_s(T)$ is the full subcategory of $\text{AfSys}(T)$ of separated T-systems.

Example 10

For $B = \text{CSL}$, $\text{AfSys}_s(\mathcal{P}_2) = \text{SP}$ (state property systems of D. Aerts).
Theorem 11

1. \(\text{AfSpc}(T) \xleftarrow{E} \text{AfSys}(T) \), \(E((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) = (X_1, e^{\tau_1}_{\tau_1}, \tau_1) \xrightarrow{(f, \varphi)} (X_2, e^{\tau_1}_{\tau_2}, \tau_2) \) is a full embedding, with \(e_{\tau_i} \) the inclusion \(\tau_i \hookrightarrow TX_i \) and \(\varphi^{\tau_1}_{\tau_2} \) the restriction \(\tau_2 \xrightarrow{(Tf)^{\tau_1}_{\tau_2}} \tau_1 \).

2. \(E \) has a right-adjoint-left-inverse \(\text{AfSys}(T) \xrightarrow{\text{Spat}} \text{AfSpc}(T) \), \(\text{Spat}((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = (X_1, \kappa_1^{\text{op}}(B_1)) \xrightarrow{f} (X_2, \kappa_2^{\text{op}}(B_2)) \).

3. \(\text{AfSpc}(T) \) is isomorphic to a full (regular mono)-coreflective subcategory of \(\text{AfSys}(T) \).
Theorem 12

\[E \quad \text{and} \quad \text{Spat} \quad \text{restrict to} \quad \text{AfSpc}(T) \xleftarrow{\text{E}} \text{AfSys}_s(T) \quad \text{and} \quad \text{AfSys}_s(T) \xrightarrow{\text{Spat}} \text{AfSpc}(T), \text{providing an equivalence between the categories} \ \text{AfSpc}(T) \quad \text{and} \quad \text{AfSys}_s(T) \quad \text{such that} \quad \text{Spat} \ E = 1_{\text{AfSpc}(T)}. \]

Corollary 13

\[\text{AfSpc}(T) \quad \text{is the amnestic modification of} \quad \text{AfSys}_s(T). \]

Example 14

1. \text{Top} \quad \text{is isomorphic to a full (regular mono)-coreflective subcategory of} \quad \text{TopSys (system spatialization procedure of S. Vickers).}
2. \text{The categories CIs and SP are equivalent.}
Consequences

Theorem 12

\[E \text{ and } \text{Spat} \text{ restrict to } \text{AfSpc}(T) \xleftarrow{E} \text{AfSys}_s(T) \text{ and } \text{AfSys}_s(T) \xrightarrow{\text{Spat}} \text{AfSpc}(T), \text{ providing an equivalence between the categories } \text{AfSpc}(T) \text{ and } \text{AfSys}_s(T) \text{ such that } \text{Spat} \overline{E} = 1_{\text{AfSpc}(T)}. \]

Corollary 13

\[\text{AfSpc}(T) \text{ is the amnestic modification of } \text{AfSys}_s(T). \]

Example 14

1. \text{Top} is isomorphic to a full (regular mono)-coreflective subcategory of \text{TopSys} (system spatialization procedure of S. Vickers).
2. The categories CIs and SP are equivalent.
Consequences

Theorem 12

\[E \text{ and } \text{Spat} \text{ restrict to } \text{AfSpc}(T) \xleftarrow{E} \text{AfSys}_s(T) \text{ and } \text{AfSys}_s(T) \xrightarrow{\text{Spat}} \text{AfSpc}(T), \text{ providing an equivalence between the categories } \text{AfSpc}(T) \text{ and } \text{AfSys}_s(T) \text{ such that } \text{Spat} \bar{E} = 1_{\text{AfSpc}(T)}. \]

Corollary 13

\text{AfSpc}(T) \text{ is the amnestic modification of } \text{AfSys}_s(T).

Example 14

1. \text{Top} \text{ is isomorphic to a full (regular mono)-coreflective subcategory of } \text{TopSys} \text{ (system spatialization procedure of S. Vickers).}
2. The categories \text{Cls} \text{ and } \text{SP} \text{ are equivalent.}
Proposition 15

\[
AfSys(T) \xrightarrow{\text{Loc}} B^{\text{op}}, \quad \text{Loc}((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2
\]

B_2 is a functor.

Theorem 16

Given a functor \(X \xrightarrow{T} B^{\text{op}}\), the following are equivalent.

1. There exists an adjoint situation \((\eta, \varepsilon) : T \dashv \text{Pt} : B^{\text{op}} \to X\).
2. There exists a full embedding \(B^{\text{op}} \xhookrightarrow{E} \text{AfSys}(T)\) such that \(\text{Loc}\) is a left-adjoint-left-inverse to \(E\). \(B^{\text{op}}\) is then isomorphic to a full reflective subcategory of \(\text{AfSys}(T)\).
Proposition 15

\[\text{AfSys}(T) \xrightarrow{\text{Loc}} \mathcal{B}^{\text{op}}, \text{Loc}((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2 \]

B_2 \text{ is a functor.}

Theorem 16

Given a functor \(X \xrightarrow{T} \mathcal{B}^{\text{op}} \), the following are equivalent.

1. There exists an adjoint situation \((\eta, \varepsilon) : T \dashv \text{Pt} : \mathcal{B}^{\text{op}} \rightarrow X\).

2. There exists a full embedding \(\mathcal{B}^{\text{op}} \xhookrightarrow{E} \text{AfSys}(T) \) such that \(\text{Loc} \) is a left-adjoint-left-inverse to \(E \). \(\mathcal{B}^{\text{op}} \) is then isomorphic to a full reflective subcategory of \(\text{AfSys}(T) \).
Remark 17

Every functor $\textbf{Set} \xrightarrow{\mathcal{P}_B} \mathcal{B}^{\text{op}}$ has a right adjoint $\mathcal{B}^{\text{op}} \xrightarrow{\text{Pt}_B} \textbf{Set}$, $\text{Pt}_B(B_1 \xrightarrow{\varphi} B_2) = \mathcal{B}(B_1, B) \xrightarrow{\text{Pt}_B \varphi} \mathcal{B}(B_2, B)$, $(\text{Pt}_B \varphi)(p) = p \circ \varphi^{\text{op}}$.

Example 18

- Loc is isomorphic to a full reflective subcategory of TopSys, which gives the system localisation procedure of S. Vickers.
- \mathcal{B}^{op} is isomorphic to a full reflective subcategory of $\text{AfSys}(\mathcal{P}_B)$.
Remark 17

Every functor \(\textbf{Set} \xrightarrow{\mathcal{P}_B} \textbf{B}^{\text{op}} \) has a right adjoint \(\textbf{B}^{\text{op}} \xrightarrow{\text{Pt}_B} \textbf{Set} \),

\[
\text{Pt}_B(B_1 \xrightarrow{\varphi} B_2) = \textbf{B}(B_1, B) \xrightarrow{\text{Pt}_B \varphi} \textbf{B}(B_2, B), \quad (\text{Pt}_B \varphi)(p) = p \circ \varphi^{\text{op}}.
\]

Example 18

- \(\textbf{Loc} \) is isomorphic to a full reflective subcategory of \(\textbf{TopSys} \), which gives the system localisation procedure of S. Vickers.
- \(\textbf{B}^{\text{op}} \) is isomorphic to a full reflective subcategory of \(\textbf{AfSys}(\mathcal{P}_B) \).
One could like to study the properties of the categories $\text{AfSys}(T)$ and $\text{AfSpc}(T)$ through the properties of the functor $X^T \to B^{op}$.

Definition 19

An *affine theory* is a functor $X^T \to B^{op}$ with B a variety of algebras.
Affine theories

One could like to study the properties of the categories $\text{AfSys}(T)$ and $\text{AfSpc}(T)$ through the properties of the functor $X \xrightarrow{T} B^{\text{op}}$.

Definition 19

An *affine theory* is a functor $X \xrightarrow{T} B^{\text{op}}$ with B a variety of algebras.
Affine theories

Definition 20

\textbf{AfTh} is the category given by the following data:

- **objects** are affine theories \(X \xrightarrow{T} B^{\text{op}}; \)

- **morphisms** \(T_1 \xrightarrow{(F, \Phi, \eta)} T_2 \) (shortened to \(\eta \)) comprise two functors \(X_1 \xrightarrow{F} X_2, \ B_1 \xrightarrow{\Phi} B_2 \) and a natural transformation \(T_2 F \xrightarrow{\eta} \Phi^{\text{op}} T_1, \)

\[
\begin{array}{ccc}
X_1 & \xrightarrow{F} & X_2 \\
T_1 & \downarrow & T_2 \\
B_1^{\text{op}} & \xrightarrow{\Phi^{\text{op}}} & B_2^{\text{op}}
\end{array}
\]

- **composition** of two affine theories \(T_1 \xrightarrow{\eta_1} T_2, \ T_2 \xrightarrow{\eta_2} T_3 \) is \(T_3 F_2 F_1 \xrightarrow{\eta_2 \circ \eta_1} \Phi_2^{\text{op}} \Phi_1^{\text{op}} T_1 = T_3 F_2 F_1 \xrightarrow{\eta_2 F_1} \Phi_2^{\text{op}} T_2 F_1 \xrightarrow{\Phi_2^{\text{op}} \eta_1} \Phi_2^{\text{op}} \Phi_1^{\text{op}} T_1; \)

- **identity** on a theory \(T \) is the identity natural transformation \(T \xrightarrow{1_T} T. \)
Models of affine theories

Definition 21

\(\text{AfStm} \) is the category, whose objects are categories of the form \(\text{AfSys}(T) \) and whose morphisms are functors between them.

Theorem 22

\[
\begin{align*}
\text{AfTh} & \xrightarrow{\text{AfSys}} \text{AfStm}, \quad \text{AfSys}(T_1 \xrightarrow{\eta} T_2) = \text{AfSys}(T_1) \\
\text{AfSys}(T_2), \quad \text{AfSys}\eta((X, \kappa, B) \xrightarrow{(f, \phi)} (X', \kappa', B')) = (FX, \Phi^{\text{op}}\kappa \circ \eta_X, \Phi^{\text{op}}B) \xrightarrow{(Ff, \Phi^{\text{op}}\phi)} (FX', \Phi^{\text{op}}\kappa' \circ \eta_{X'}, \Phi^{\text{op}}B')
\end{align*}
\]

is a functor.

The respective functor for affine spaces requires more effort.
Models of affine theories

Definition 21

\(\text{AfStm} \) is the category, whose objects are categories of the form \(\text{AfSys}(T) \) and whose morphisms are functors between them.

Theorem 22

\[
\text{AfTh} \xrightarrow{\text{AfSys}} \text{AfStm}, \quad \text{AfSys}(T_1 \xrightarrow{\eta} T_2) = \text{AfSys}(T_1) \xrightarrow{\text{AfSys}\eta} \text{AfSys}(T_2), \quad \text{AfSys}\eta((X, \kappa, B) \xrightarrow{(f, \varphi)} (X', \kappa', B')) = (FX, \Phi^{\text{op}}\kappa \circ \eta_X, \Phi^{\text{op}}B) \xrightarrow{(Ff, \Phi^{\text{op}}\varphi)} (FX', \Phi^{\text{op}}\kappa' \circ \eta_{X'}, \Phi^{\text{op}}B') \text{ is a functor.}
\]

The respective functor for affine spaces requires more effort.
Models of affine theories

Definition 21

AfStm is the category, whose objects are categories of the form $\text{AfSys}(T)$ and whose morphisms are functors between them.

Theorem 22

$\text{AfTh} \xrightarrow{\text{AfSys}} \text{AfStm}$, $\text{AfSys}(T_1 \xrightarrow{\eta} T_2) = \text{AfSys}(T_1) \xrightarrow{\text{AfSys}\eta} \text{AfSys}(T_2)$, $\text{AfSys}\eta((X,\kappa,B) \xrightarrow{(f,\varphi)} (X',\kappa',B')) = (FX,\Phi^{op}\kappa \circ \eta X,\Phi^{op}B)$ is a functor.

The respective functor for affine spaces requires more effort.
Institutions

Definition 23

An institution \(\mathcal{I} \) consists of:

- a category \(\text{Sign} \) of signatures, \(\Sigma \) denoting an arbitrary object,
- a functor \(\text{Sign} \xrightarrow{\text{Mod}} \text{Cat}^{\text{op}} \) giving \(\Sigma \)-models and \(\Sigma \)-morphisms,
- a functor \(\text{Sign} \xrightarrow{\text{Sen}} \text{Cat} \) giving \(\Sigma \)-sentences and \(\Sigma \)-proofs,
- a satisfaction relation \(\models_{\Sigma} \subseteq \text{Ob}(\text{Mod}\Sigma) \times \text{Ob}(\text{Sen}\Sigma) \) for every \(\Sigma \in \text{Ob}(\text{Sign}) \)

such that

satisfaction: \(m' \models_{\Sigma} \text{Sen}\phi(s) \iff \text{Mod}\phi(m') \models_{\Sigma} s \) for every \(m' \in \text{Ob}(\text{Mod}\Sigma') \), \(s \in \text{Ob}(\text{Sen}\Sigma) \), \(\Sigma \xrightarrow{\phi} \Sigma' \) in \(\text{Sign} \),

soundness: \(m \models_{\Sigma} s \) and \(s \rightarrow s' \) in \(\text{Sen}\Sigma \) imply \(m \models_{\Sigma} s' \) for \(m \in \text{Ob}(\text{Mod}\Sigma) \).
Definition 24

An *institution morphism* \(\mathcal{I} \xrightarrow{(\Phi, \alpha, \beta)} \mathcal{I}' \) comprises

- a functor \(\text{Sign} \xrightarrow{\Phi} \text{Sign}' \),
- natural transformations \(\text{Sen}' \Phi \xrightarrow{\alpha} \text{Sen} \) and \(\text{Mod} \xrightarrow{\beta} \text{Mod}' \Phi \),

such that the following *satisfaction condition* holds

\[
m \models \Sigma (s') \iff \beta_{\Sigma} (m) \models'_{\Phi_{\Sigma}} s'
\]

for every \(\Sigma \)-model \(m \) from \(\mathcal{I} \) and every \(\Phi_{\Sigma} \)-sentence \(s' \) from \(\mathcal{I}' \).
Elementary institutions

Definition 25

- An institution is called *elementary* provided that the category \(\text{Cat} \) is replaced with the category \(\text{Set} \).
- \(\text{Inst} \) (resp. \(\text{EllInst} \)) is the category of (resp. elementary) institutions and their morphisms.
Topological institutions and their morphisms

Definition 26

- A *topological institution* is a functor $\text{Sign} \xrightarrow{T} \text{TopSys}^{op}$, where Sign is a category of (abstract) signatures.

- A *topological institution morphism* $(\text{Sign}, T) \xrightarrow{(\Phi, \alpha)} (\text{Sign}', T')$ consists of a functor $\text{Sign} \xrightarrow{\Phi} \text{Sign}'$ and a natural transformation $T \xrightarrow{\alpha} T'\Phi$.

- TpInst is the category of topological institutions and their morphisms.
Affine institutions and their morphisms

Definition 27

- An **affine institution** is a functor $S \xrightarrow{l} \text{AfSys}(T)$, where S is a category of (abstract) signatures.

- An **affine institution morphism** $(S_1, l_1, T_1) \xrightarrow{(\Phi, \alpha, \eta)} (S_2, l_2, T_2)$ comprises a functor $S_1 \xrightarrow{\Phi} S_2$, an affine theory morphism $T_1 \xrightarrow{\eta} T_2$, and a natural transformation $\text{AfSys} \eta l_1 \xrightarrow{\alpha} l_2 \Phi$.

$$
\begin{array}{ccc}
S_1 & \xrightarrow{\Phi} & S_2 \\
\downarrow{l_1} & & \downarrow{l_2} \\
\text{AfSys}(T_1) & \xrightarrow{\text{AfSys} \eta} & \text{AfSys}(T_2).
\end{array}
$$

- **AflInst** is the category of affine institutions and their morphisms.
Affine institutions and their morphisms

Examples of affine institutions

Definition 28

Given an affine theory T, $\text{AflInst}(T)$ stands for the subcategory of AflInst consisting of affine institutions (S, I, T) (shortened to (S, I)) and their respective morphisms $(\Phi, \alpha, 1_T)$ (shortened to (Φ, α)).

Example 29

1. For $B = \text{Frm}$, $\text{AflInst}(\mathcal{P}_2)$ is a modification of TpInst.

2. $\text{Set} \xrightarrow{|\mathcal{P}_2|} \text{Set}^{op} := \text{Set} \xrightarrow{\mathcal{P}_3} \text{CBAlg}^{op} \xrightarrow{|I|^{op}} \text{Set}^{op}$ gives the category $\text{AflInst}(|\mathcal{P}_2|)$, which is a modification of EllInst.
Examples of affine institutions

Definition 28

Given an affine theory T, $\text{AflInst}(T)$ stands for the subcategory of AflInst consisting of affine institutions (S, I, T) (shortened to (S, I)) and their respective morphisms $(\Phi, \alpha, 1_T)$ (shortened to (Φ, α)).

Example 29

1. For $B = \text{Frm}$, $\text{AflInst}(\mathcal{P}_2)$ is a modification of TplInst.
2. $\text{Set} \xrightarrow{|\mathcal{P}_2|} \text{Set}^{op} := \text{Set} \xrightarrow{\mathcal{P}_2} \text{CBAlg}^{op} \xrightarrow{|-|^{op}} \text{Set}^{op}$ gives the category $\text{AflInst}(|\mathcal{P}_2|)$, which is a modification of EllInst.
Spatial affine institutions

Definition 30

Let T be an affine theory.

- A *spatial affine T-institution* is a functor $S \xrightarrow{I} \text{AfSpc}(T)$, where S is a category of (abstract) signatures.

- A *spatial affine T-institution morphism* $(S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)$ comprises a functor $S_1 \xrightarrow{\Phi} S_2$ and a natural transformation $I_1 \xrightarrow{\alpha} I_2 \Phi$.

- $\text{SAfInst}(T)$ is the category of spatial affine T-institutions and their morphisms.
Theorem 31

1. \(\text{SAfInst}(T) \xleftarrow{IE} \text{AfInst}(T), \quad IE((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (S_2, EI_2) \) is a full embedding.

2. \(\text{AfInst}(T) \xrightarrow{ISpat} \text{SAfInst}(T), \quad ISpat((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, SpatI_1) \xrightarrow{(\Phi, Spat\alpha)} (S_2, SpatI_2) \) is a right-adjoint-left-inverse to \(IE \).

3. \(\text{SAfInst}(T) \) is isomorphic to a full coreflective subcategory of \(\text{AfInst}(T) \).

This answers the question on spatialization construction for topological institutions of A. Sernadas, C. Sernadas, and J. M. Valença.
Theorem 31

1. \(\text{SAfInst}(T) \xleftarrow{IE} \text{AfInst}(T), \quad IE \left((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2) \right) = (S_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (S_2, EI_2) \) is a full embedding.

2. \(\text{AfInst}(T) \xrightarrow{ISpat} \text{SAfInst}(T), \quad ISpat \left((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2) \right) = (S_1, Spatl_1) \xrightarrow{(\Phi, Spat\alpha)} (S_2, Spatl_2) \) is a right-adjoint-left-inverse to \(IE \).

3. \(\text{SAfInst}(T) \) is isomorphic to a full coreflective subcategory of \(\text{AfInst}(T) \).

This answers the question on spatialization construction for topological institutions of A. Sernadas, C. Sernadas, and J. M. Valença.
Definition 32

Let $X \xrightarrow{T} B^{\text{op}}$ be an affine theory.

- A **localic affine T-institution** is a functor $S \xrightarrow{I} B^{\text{op}}$, where S is a category of (abstract) signatures.

- A **localic affine T-institution morphism** $(S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)$ comprises a functor $S_1 \xrightarrow{\Phi} S_2$ and a natural transformation $I_1 \xrightarrow{\alpha} I_2 \Phi$.

- $\text{LAfInst}(T)$ is the category of localic affine T-institutions and their morphisms.
Theorem 33

Let T be an affine theory such that there exists an adjoint situation $(\eta, \varepsilon) : T \vdash Pt : \mathcal{B}^{op} \rightarrow \mathbf{X}$.

1. $\text{LAfInst}(T) \xleftarrow{IE} \text{AflInst}(T),\ IE((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (S_2, EI_2)$ is a full embedding.

2. IE has a left-adjoint-left-inverse $\text{AflInst}(T) \xrightarrow{ILoc} \text{LAfInst}(T),\ ILoc((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, Locl_1) \xrightarrow{(\Phi, Loc\alpha)} (S_2, Locl_2)$.

3. $\text{LAfInst}(T)$ is isomorphic to a full reflective subcategory of $\text{AflInst}(T)$.
Conclusion

- Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localification procedures.
- Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.
- While A. Sernadas, C. Sernadas, and J. M. Valença impose the frame structure on the set of theories (certain “closed” subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.
Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localization procedures.

Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.

While A. Sernadas, C. Sernadas, and J. M. Valença. impose the frame structure on the set of theories (certain “closed” subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.
Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localisation procedures.

Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.

While A. Sernadas, C. Sernadas, and J. M. Valença. impose the frame structure on the set of theories (certain “closed” subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.

References II

Thank you for your attention!