Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00

Jeffrey T. Denniston¹ Austin Melton¹ Stephen E. Rodabaugh² Sergejs Solovjovs³

¹Kent State University, Kent, Ohio, USA

²Youngstown State University, Youngstown, Ohio, USA

³Brno University of Technology, Brno, Czech Republic

Topology, Algebra, and Categories in Logic 2015

lschia, Italy June 21 – 26, 2015

Using topological systems to create a framework for institutions

Sergejs Solovjovs

lovjovs 🛛 Brno Unive

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Acknow	ledgements				

Sergejs Solovjovs acknowledges the support of Czech Science Foundation (GAČR) and Austrian Science Fund (FWF) through bilateral project No. I 1923-N25 "New Perspectives on Residuated Posets".

Der Wissenschaftsfonds.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Teo

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Outline					

- 2 Affine systems
- 3 Affine theories
- 4 Affine institutions

Sergejs Solovjovs

Brno University of Technolog

Introduction ●○○	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00				
Institutions and to	Institutions and topological systems								
Institutio	ons								

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., "truth is invariant under change of notation".
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.

Introduction ●00	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00				
Institutions and to	Institutions and topological systems								
Institutic	ons								

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., "truth is invariant under change of notation".
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.

Sergejs Solovjo

ovjovs 🛛 Brno Univ

Introduction ●00	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00				
Institutions and to	Institutions and topological systems								
Institutic	ons								

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., "truth is invariant under change of notation".
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.

Sergejs Solovjovs

vs Brno University

Introduction ●00	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00				
Institutions and to	Institutions and topological systems								
Institutic	ons								

- There is a convenient approach to logical systems in computer science based in *institutions* of J. A. Goguen and R. M. Burstall.
- An institution comprises a category of (abstract) signatures, where every signature has its associated sentences, models, and a relation of satisfaction, which is invariant under change of signature, i.e., "truth is invariant under change of notation".
- Institutions include unsorted universal algebra, many-sorted algebra, order-sorted algebra, first-order logic, partial algebra.
- A number of authors proposed generalizations of institutions in various forms, e.g., using a purely category-theoretic approach.

Introduction ○●○	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Institutions and to	opological systems				
Topolog	ical systems	5			

- Based in the ideas of geometric logic, *topological systems* of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.
- S. Vickers showed system spatialization and localification procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.
- Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has
 - introduced and studied lattice-valued topological systems;
 - provided lattice-valued system spatialization procedure.

Sergejs Solovjovs

Brno University of Techr

Introduction 0●0	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00				
Institutions and to	Institutions and topological systems								
Topolog	ical systems	5							

- Based in the ideas of geometric logic, *topological systems* of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.
- S. Vickers showed system spatialization and localification procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.
- Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has
 - introduced and studied lattice-valued topological systems;
 - provided lattice-valued system spatialization procedure.

Sergejs Solovjovs

Brno University of Techn

Introduction ○●○	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00			
Institutions and topological systems								
Topolog	ical systems	5						

- Based in the ideas of geometric logic, *topological systems* of S. Vickers provide a common setting for both topological spaces and their underlying algebraic structures—locales.
- S. Vickers showed system spatialization and localification procedures, i.e., ways to move back and forth between the categories of topological spaces (resp., locales) and topological systems.
- Recently, topological systems have gained in interest in connection with lattice-valued topology, e.g., one has
 - introduced and studied lattice-valued topological systems;
 - provided lattice-valued system spatialization procedure.

Introduction 00●	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Institutions and t	opological systems				
Instituti	ons versus s	vstems			

- To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.
- A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp topological institutions based in topological systems, the slogan being that "the central concept is the theory, not the formula".
- The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.

Sergejs Solovjovs

Brno University of Te

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Institutions and t	topological systems				
Instituti	ons versus s	systems			

- To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.
- A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp topological institutions based in topological systems, the slogan being that "the central concept is the theory, not the formula".
- The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.

Sergejs Solovjovs

Institutio	ons versus s	vstems			
Institutions and to	opological systems				
Introduction 00●	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00

- To find relationships between institutions and topological systems, J. T. Denniston, A. Melton, and S. E. Rodabaugh introduced *lattice-valued institutions*, and showed that lattice-valued topological systems provide their particular instance.
- A. Sernadas, C. Sernadas, and J. M. Valença introduced crisp topological institutions based in topological systems, the slogan being that "the central concept is the theory, not the formula".
- The purpose of this talk is to show that a suitably generalized concept of topological system provides a setting for *elementary institutions* of A. Sernadas, C. Sernadas, and J. M. Valença.

Sergejs Solovjovs

 Introduction
 Affine systems
 Affine theories
 Affine institutions
 Conclusion
 References

 000
 000000000
 000
 000000000
 0
 000

 Algebraic preliminaries
 000
 000000000
 0
 000
 000

Ω -algebras and Ω -homomorphisms

Definition 1

Let $\Omega = (n_{\lambda})_{\lambda \in \Lambda}$ be a family of cardinal numbers, which is indexed by a (possibly proper or empty) class Λ .

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$, comprising a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$ $(n_{\lambda}$ -ary primitive operations on A).
- An Ω -homomorphism $(A_1, (\omega_{\lambda}^{A_1})_{\lambda \in \Lambda}) \xrightarrow{\varphi} (A_2, (\omega_{\lambda}^{A_2})_{\lambda \in \Lambda})$ is a map $A_1 \xrightarrow{\varphi} A_2$ such that $\varphi \circ \omega_{\lambda}^{A_1} = \omega_{\lambda}^{A_2} \circ \varphi^{n_{\lambda}}$ for every $\lambda \in \Lambda$.
- $Alg(\Omega)$ is the construct of Ω -algebras and Ω -homomorphisms.

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Algebraic prelimi	naries				
Varietie	s and algebr	as			

Definition 2

Let \mathcal{M} (resp. \mathcal{E}) be the class of Ω -homomorphisms with injective (resp. surjective) underlying maps. A variety of Ω -algebras is a full subcategory of **Alg**(Ω), which is closed under the formation of products, \mathcal{M} -subobjects and \mathcal{E} -quotients, and whose objects (resp. morphisms) are called algebras (resp. homomorphisms).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Algebraic prelimi	naries				
Example	es of varietie	es			

- CSLat(∨) is the variety of ∨-semilattices, and CSLat(∧) is the variety of ∧-semilattices.
- **2** Frm is the variety of *frames*.
- **© CBAIg** is the variety of *complete Boolean algebras*.
- Solution CSL is the variety of *closure semilattices*, i.e., ∧-semilattices, with the singled out bottom element.

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine spaces					
Affine sp	baces				

The following extends the notion of *affine set* of Y. Diers.

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, where **B** is a variety of algebras, AfSpc(T) is the concrete category over X, whose

The concrete category (**AfSpc**(T), |-|) is topological over **X**.

Using topological systems to create a framework for institutions

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Affine spaces					
Affine s	paces				

The following extends the notion of *affine set* of Y. Diers.

Definition 4

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, where \mathbf{B} is a variety of algebras, **AfSpc**(T) is the concrete category over \mathbf{X} , whose objects (T-affine spaces or T-spaces) are pairs (X, τ), where X is an \mathbf{X} -object and τ is a subalgebra of TX; morphisms (T-affine morphisms or T-morphisms) (X_1, τ_1) \xrightarrow{f} (X_2, τ_2) are \mathbf{X} -morphisms $X_1 \xrightarrow{f} X_2$ with the property that (Tf)^{op}(α) $\in \tau_1$ for every $\alpha \in \tau_2$.

The concrete category (AfSpc(T), |-|) is topological over **X**.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Affine spaces					
Affine s	paces				

The following extends the notion of *affine set* of Y. Diers.

Definition 4

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, where \mathbf{B} is a variety of algebras, **AfSpc**(T) is the concrete category over \mathbf{X} , whose objects (T-affine spaces or T-spaces) are pairs (X, τ), where X is an \mathbf{X} -object and τ is a subalgebra of TX; morphisms (T-affine morphisms or T-morphisms) (X_1, τ_1) \xrightarrow{f} (X_2, τ_2) are \mathbf{X} -morphisms $X_1 \xrightarrow{f} X_2$ with the property that (Tf)^{op}(α) $\in \tau_1$ for every $\alpha \in \tau_2$.

The concrete category (AfSpc(T), |-|) is topological over **X**.

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine spaces					
Examples	5				

Given a variety **B**, every subcategory **S** of **B**^{op} induces a functor **Set** × **S** $\xrightarrow{\mathcal{P}_{S}}$ **B**^{op}, $\mathcal{P}_{S}((X_{1}, B_{1}) \xrightarrow{(f, \varphi)} (X_{2}, B_{2})) = B_{1}^{X_{1}} \xrightarrow{\mathcal{P}_{S}(f, \varphi)} B_{2}^{X_{2}}$, where $(\mathcal{P}_{S}(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f$.

Example 6

- If $\mathbf{B} = \mathbf{Frm}$, then $\mathbf{AfSpc}(\mathcal{P}_2) = \mathbf{Top}$ (topological spaces).
- If $\mathbf{B} = \mathbf{CSL}$, then $\mathbf{AfSpc}(\mathcal{P}_2) = \mathbf{Cls}$ (closure spaces).
- AfSpc(\mathcal{P}_B) is the category AfSet(B) of affine sets of Y. Diers.
- If B = Frm, then AfSpc(P_S) = S-Top (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Tech

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine spaces					
Examples	5				

Given a variety **B**, every subcategory **S** of **B**^{op} induces a functor **Set** × **S** $\xrightarrow{\mathcal{P}_{S}}$ **B**^{op}, $\mathcal{P}_{S}((X_{1}, B_{1}) \xrightarrow{(f, \varphi)} (X_{2}, B_{2})) = B_{1}^{X_{1}} \xrightarrow{\mathcal{P}_{S}(f, \varphi)} B_{2}^{X_{2}}$, where $(\mathcal{P}_{S}(f, \varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f$.

Example 6

- If B = Frm, then $AfSpc(\mathcal{P}_2) = Top$ (topological spaces).
- **2** If $\mathbf{B} = \mathbf{CSL}$, then $\mathbf{AfSpc}(\mathcal{P}_2) = \mathbf{Cls}$ (closure spaces).
- AfSpc(\mathcal{P}_B) is the category AfSet(B) of affine sets of Y. Diers.
- If B = Frm, then $AfSpc(\mathcal{P}_S) = S$ -Top (variable-basis lattice-valued topological spaces of S. E. Rodabaugh).

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Affine systems					
A CC:					

Definition 7

Affine systems

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, $\mathbf{AfSys}(T)$ is the comma category $(T \downarrow 1_{\mathbf{B}^{op}})$, concrete over the product category $\mathbf{X} \times \mathbf{B}^{op}$, whose objects (*T*-affine systems or *T*-systems) are triples (X, κ, B) , made by **B**^{op}-morphisms $TX \xrightarrow{\kappa} B$; morphisms (*T*-affine morphisms or *T*-morphisms) $(X_1, \kappa_1, B_1) \xrightarrow{(f,\varphi)} (X_2, \kappa_2, B_2)$ are $\mathbf{X} \times \mathbf{B}^{op}$ -morphisms $(X_1, B_1) \xrightarrow{(f,\varphi)} (X_2, B_2)$, making the next diagram commute $TX_1 \xrightarrow{Tf} TX_2$ $\rightarrow B_2$

Using topological systems to create a framework for institutions

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Affine systems					
Fxample	29				

- If B = Frm, then AfSys(P₂) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys(P_B) = Chu_B (Chu spaces over a set B of P.-H. Chu).

Definition 9

A *T*-system (X, κ, B) is called *separated* provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in \mathbf{B}^{op} . **AfSys**_s(T) is the full subcategory of **AfSys**(T) of separated *T*-systems.

Example 10

For $\mathbf{B} = \mathbf{CSL}$, $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$ (state property systems of D. Aerts).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine systems					
Fxample	29				

- If B = Frm, then AfSys(P₂) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys(P_B) = Chu_B (Chu spaces over a set B of P.-H. Chu).

Definition 9

A *T*-system (X, κ, B) is called *separated* provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in \mathbf{B}^{op} . AfSys_s(T) is the full subcategory of AfSys(T) of separated *T*-systems.

Example 10

For $\mathbf{B} = \mathbf{CSL}$, $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$ (state property systems of D. Aerts).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine systems					
Fxample	29				

- If B = Frm, then AfSys(P₂) = TopSys (topological systems of S. Vickers).
- If B = Set, then AfSys(P_B) = Chu_B (Chu spaces over a set B of P.-H. Chu).

Definition 9

A *T*-system (X, κ, B) is called *separated* provided that $TX \xrightarrow{\kappa} B$ is an epimorphism in \mathbf{B}^{op} . AfSys_s(T) is the full subcategory of AfSys(T) of separated *T*-systems.

Example 10

For $\mathbf{B} = \mathbf{CSL}$, $\mathbf{AfSys}_s(\mathcal{P}_2) = \mathbf{SP}$ (state property systems of D. Aerts).

Using topological systems to create a framework for institutions

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References	
	000000000000					
Affine spatialization procedure						

Affine spatialization procedure

Theorem 11

• AfSpc(T) \xrightarrow{E} AfSys(T), $E((X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)) =$ $(X_1, e_{\tau_1}^{op}, \tau_1) \xrightarrow{(f, \varphi)} (X_2, e_{\tau_2}^{op}, \tau_2)$ is a full embedding, with e_{τ_i} the inclusion $\tau_i \hookrightarrow TX_i$ and φ^{op} the restriction $\tau_2 \xrightarrow{(Tf)^{op}|_{\tau_2}^{\tau_1}} \tau_1$. **2** E has a right-adjoint-left-inverse $AfSys(T) \xrightarrow{Spat} AfSpc(T)$. $Spat((X_1, \kappa_1, B_1) \xrightarrow{(f,\varphi)} (X_2, \kappa_2, B_2)) = (X_1, \kappa_1^{op}(B_1)) \xrightarrow{f}$ $(X_2, \kappa_2^{op}(B_2)).$ **3** AfSpc(T) is isomorphic to a full (regular mono)-coreflective subcategory of AfSys(T).

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References
000	000000000000000000000000000000000000000	000	0000000000		00
Affine spatializati	ion procedure				
~					

Consequences

Theorem 12

E and *Spat* restrict to $AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$ and $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$, providing an equivalence between the categories AfSpc(T) and $AfSys_s(T)$ such that $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$.

Corollary 13

AfSpc(T) is the amnestic modification of $AfSys_s(T)$.

Example 14

 Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).
 The categories Cls and SP are equivalent.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Affine spatializati	ion procedure				
~					

Consequences

Theorem 12

E and Spat restrict to $AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$ and $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$, providing an equivalence between the categories AfSpc(T) and $AfSys_s(T)$ such that $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$.

Corollary 13

AfSpc(T) is the amnestic modification of $AfSys_s(T)$.

Example 14

 Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).
 The categories Cls and SP are equivalent.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine spatializati	ion procedure				
~					

Consequences

Theorem 12

E and Spat restrict to $AfSpc(T) \xrightarrow{\overline{E}} AfSys_s(T)$ and $AfSys_s(T) \xrightarrow{\overline{Spat}} AfSpc(T)$, providing an equivalence between the categories AfSpc(T) and $AfSys_s(T)$ such that $\overline{Spat} \overline{E} = 1_{AfSpc(T)}$.

Corollary 13

AfSpc(T) is the amnestic modification of $AfSys_s(T)$.

Example 14

Top is isomorphic to a full (regular mono)-coreflective subcategory of TopSys (system spatialization procedure of S. Vickers).
 The categories Cls and SP are equivalent.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technol

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References	
	000000000000					
Affine localification procedure						

Affine localification procedure

Proposition 15

AfSys(*T*)
$$\xrightarrow{Loc}$$
 B^{op}, $Loc((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2$ is a functor.

Theorem 16

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, the following are equivalent.

) There exists an adjoint situation (η, ε) : T \dashv Pt : ${f B}^{op} o {f X}.$

● There exists a full embedding B^{op} → AfSys(T) such that Loc is a left-adjoint-left-inverse to E. B^{op} is then isomorphic to a full reflective subcategory of AfSys(T).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References	
	00000000000					
Affine localification procedure						

Affine localification procedure

Proposition 15

AfSys(*T*)
$$\xrightarrow{Loc}$$
 B^{op}, $Loc((X_1, \kappa_1, B_1) \xrightarrow{(f, \varphi)} (X_2, \kappa_2, B_2)) = B_1 \xrightarrow{\varphi} B_2$ is a functor.

Theorem 16

Given a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$, the following are equivalent.

- **1** There exists an adjoint situation (η, ε) : $T \dashv Pt : \mathbf{B}^{op} \to \mathbf{X}$.
- Or There exists a full embedding B^{op} ⊂ E → AfSys(T) such that Loc is a left-adjoint-left-inverse to E. B^{op} is then isomorphic to a full reflective subcategory of AfSys(T).

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine localificati	on procedure				
Fxample	es				

Remark 17

Every functor **Set** $\xrightarrow{\mathcal{P}_B}$ **B**^{op} has a right adjoint **B**^{op} $\xrightarrow{Pt_B}$ **Set**, $Pt_B(B_1 \xrightarrow{\varphi} B_2) = \mathbf{B}(B_1, B) \xrightarrow{Pt_B \varphi} \mathbf{B}(B_2, B), (Pt_B \varphi)(p) = p \circ \varphi^{op}.$

Example 18

Loc is isomorphic to a full reflective subcategory of TopSys, which gives the system localification procedure of S. Vickers.
 B^{op} is isomorphic to a full reflective subcategory of AfSys(P_B).

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine localificati	on procedure				
Fxample	ec				

Remark 17

Every functor Set $\xrightarrow{\mathcal{P}_B} \mathbf{B}^{op}$ has a right adjoint $\mathbf{B}^{op} \xrightarrow{Pt_B}$ Set, $Pt_B(B_1 \xrightarrow{\varphi} B_2) = \mathbf{B}(B_1, B) \xrightarrow{Pt_B \varphi} \mathbf{B}(B_2, B), (Pt_B \varphi)(p) = p \circ \varphi^{op}.$

Example 18

- Loc is isomorphic to a full reflective subcategory of TopSys, which gives the system localification procedure of S. Vickers.
- \mathbf{B}^{op} is isomorphic to a full reflective subcategory of $\mathbf{AfSys}(\mathcal{P}_B)$.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Introduction 000	Affine systems	Affine theories ●00	Affine institutions	Conclusion O	References 00
Affine theories					
Affine th	neories				

One could like to study the properties of the categories AfSys(T)and AfSpc(T) through the properties of the functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$.

Definition 19

An *affine theory* is a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ with **B** a variety of algebras.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction 000	Affine systems	Affine theories ●00	Affine institutions	Conclusion 0	References 00
Affine theories					
Affine th	neories				

One could like to study the properties of the categories AfSys(T)and AfSpc(T) through the properties of the functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$.

Definition 19

An *affine theory* is a functor $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ with **B** a variety of algebras.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References
		000			
Affine theories					

Category of affine theories

Definition 20

AfTh is the category given by the following data:

objects are affine theories
$$\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$$

morphisms $T_1 \xrightarrow{(F,\Phi,\eta)} T_2$ (shortened to η) comprise two functors $\mathbf{X}_1 \xrightarrow{F} \mathbf{X}_2$, $\mathbf{B}_1 \xrightarrow{\Phi} \mathbf{B}_2$ and a natural transformation $T_2F \xrightarrow{\eta} \Phi^{op}T_1$,

composition of two affine theories $T_1 \xrightarrow{\eta_1} T_2$, $T_2 \xrightarrow{\eta_2} T_3$ is $T_3F_2F_1 \xrightarrow{\eta_2 \odot \eta_1} \Phi_2^{op} \Phi_1^{op} T_1 = T_3F_2F_1 \xrightarrow{\eta_2F_1} \Phi_2^{op} T_2F_1 \xrightarrow{\Phi_2^{op} \eta_1} \Phi_2^{op} \Phi_1^{op} T_1$; identity on a theory T is the identity natural transformation $T \xrightarrow{1_T} T$.

Introduction 000	Affine systems	Affine theories 00●	Affine institutions	Conclusion O	References 00
Affine theories					
	C CC 1				

Models of affine theories

Definition 21

AfStm is the category, whose objects are categories of the form AfSys(T) and whose morphisms are functors between them.

Theorem 22

AfTh \xrightarrow{AfSys} **AfStm**, $AfSys(T_1 \xrightarrow{\eta} T_2) =$ **AfSys** $(T_1) \xrightarrow{AfSys\eta}$ **AfSys** (T_2) , $AfSys\eta((X, \kappa, B) \xrightarrow{(f, \varphi)} (X', \kappa', B')) = (FX, \Phi^{op}\kappa \circ \eta_X, \Phi^{op}B) \xrightarrow{(Ff, \Phi^{op}\varphi)} (FX', \Phi^{op}\kappa' \circ \eta_{X'}, \Phi^{op}B')$ is a functor.

The respective functor for affine spaces requires more effort.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of

ology 20/34

Introduction 000	Affine systems	Affine theories 00●	Affine institutions	Conclusion O	References 00
Affine theories					
	C CC 1				

Models of affine theories

Definition 21

AfStm is the category, whose objects are categories of the form AfSys(T) and whose morphisms are functors between them.

Theorem 22

 $\begin{array}{lll} \mathbf{AfTh} & \xrightarrow{AfSys} & \mathbf{AfStm}, & AfSys(T_1 \xrightarrow{\eta} T_2) = & \mathbf{AfSys}(T_1) \xrightarrow{AfSys\eta} \\ \mathbf{AfSys}(T_2), & AfSys\eta((X,\kappa,B) \xrightarrow{(f,\varphi)} (X',\kappa',B')) = (FX, \Phi^{op}\kappa \circ \\ \eta_X, \Phi^{op}B) \xrightarrow{(Ff, \Phi^{op}\varphi)} (FX', \Phi^{op}\kappa' \circ \eta_{X'}, \Phi^{op}B') \text{ is a functor.} \end{array}$

The respective functor for affine spaces requires more effort.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of T

Technology 20/34

Introduction 000	Affine systems	Affine theories 00●	Affine institutions	Conclusion O	References 00
Affine theories					
	C CC 1				

Models of affine theories

Definition 21

AfStm is the category, whose objects are categories of the form AfSys(T) and whose morphisms are functors between them.

Theorem 22

 $\begin{array}{lll} \mathbf{AfTh} & \xrightarrow{AfSys} & \mathbf{AfStm}, & AfSys(T_1 \xrightarrow{\eta} T_2) = & \mathbf{AfSys}(T_1) \xrightarrow{AfSys\eta} \\ \mathbf{AfSys}(T_2), & AfSys\eta((X,\kappa,B) \xrightarrow{(f,\varphi)} (X',\kappa',B')) = (FX, \Phi^{op}\kappa \circ \\ \eta_X, \Phi^{op}B) \xrightarrow{(Ff, \Phi^{op}\varphi)} (FX', \Phi^{op}\kappa' \circ \eta_{X'}, \Phi^{op}B') \text{ is a functor.} \end{array}$

The respective functor for affine spaces requires more effort.

Using topological systems to create a framework for institutions

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00
Institutions and t	heir morphisms				
described and					

Definition 23

Institutions

An *institution* I consists of:

- a category **Sign** of *signatures*, Σ denoting an arbitrary object,
- a functor Sign \xrightarrow{Mod} Cat^{op} giving Σ -models and Σ -morphisms,
- a functor Sign \xrightarrow{Sen} Cat giving Σ -sentences and Σ -proofs,
- a *satisfaction* relation $\models_{\Sigma} \subseteq Ob(Mod\Sigma) \times Ob(Sen\Sigma)$ for every $\Sigma \in Ob(Sign)$

such that

satisfaction: $m' \models_{\Sigma'} Sen\phi(s)$ iff $Mod\phi(m') \models_{\Sigma} s$ for every $m' \in$ $Ob(Mod\Sigma'), s \in Ob(Sen\Sigma), \Sigma \xrightarrow{\phi} \Sigma'$ in Sign, soundness: $m \models_{\Sigma} s$ and $s \rightarrow s'$ in $Sen\Sigma$ imply $m \models_{\Sigma} s'$ for $m \in$ $Ob(Mod\Sigma)$.

Institutions and t	heir morphisms				
			000000000		
Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References

Institution morphisms

Definition 24

An *institution morphism* $\mathbb{I} \xrightarrow{(\Phi,\alpha,\beta)} \mathbb{I}'$ comprises

• a functor Sign $\xrightarrow{\Phi}$ Sign',

• natural transformations $Sen'\Phi \xrightarrow{\alpha} Sen$ and $Mod \xrightarrow{\beta} Mod'\Phi$,

such that the following satisfaction condition holds

$$m \models_{\Sigma} \alpha_{\Sigma}(s')$$
 iff $\beta_{\Sigma}(m) \models'_{\Phi\Sigma} s'$

for every Σ -model *m* from \mathbb{I} and every $\Phi\Sigma$ -sentence *s'* from \mathbb{I}' .

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion 0	References 00
Institutions and t	heir morphisms				
Flement	arv instituti	ons			

Definition 25

- An institution is called *elementary* provided that the category **Cat** is replaced with the category **Set**.
- Inst (resp. Ellnst) is the category of (resp. elementary) institutions and their morphisms.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Technology

3/34

Introduction 000 Affine systems

Affine theories

Affine institutions

Conclusion 0 References 00

Topological institutions and their morphisms

Topological institutions and their morphisms

Definition 26

- A topological institution is a functor Sign → TopSys^{op}, where Sign is a category of (abstract) signatures.
- A topological institution morphism (Sign, \mathcal{T}) $\xrightarrow{(\Phi,\alpha)}$ (Sign', \mathcal{T}') consists of a functor Sign $\xrightarrow{\Phi}$ Sign' and a natural transformation $\mathcal{T} \xrightarrow{\alpha} \mathcal{T}' \Phi$.
- **TpInst** is the category of topological institutions and their morphisms.

Using topological systems to create a framework for institutions

Affine institution	s and their morphisms				
			00000000		
Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References

Affine institutions and their morphisms

Definition 27

- An affine institution is a functor S → AfSys(T), where S is a category of (abstract) signatures.
- An affine institution morphism $(\mathbf{S}_1, I_1, T_1) \xrightarrow{(\Phi, \alpha, \eta)} (\mathbf{S}_2, I_2, T_2)$ comprises a functor $\mathbf{S}_1 \xrightarrow{\Phi} \mathbf{S}_2$, an affine theory morphism $T_1 \xrightarrow{\eta} T_2$, and a natural transformation $AfSys\eta I_1 \xrightarrow{\alpha} I_2\Phi$,

• AfInst is the category of affine institutions and their morphisms.

Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References
			000000000		
Affine institutions a	and their morphisms				

Examples of affine institutions

Definition 28

Given an affine theory T, **AfInst**(T) stands for the subcategory of **AfInst** consisting of affine institutions (**S**, I, T) (shortened to (**S**, I)) and their respective morphisms (Φ , α , 1_T) (shortened to (Φ , α)).

Example 29

For B = Frm, AfInst(P₂) is a modification of TpInst.
 Set ^{|P₂|}→ Set^{op} := Set ^{P₂}→ CBAlg^{op} ^{|-|^{op}}→ Set^{op} gives the category AfInst(|P₂|), which is a modification of ElInst.

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Te

Introduction 000	Affine systems 00000000000	Affine theories	Affine institutions	Conclusion O	References 00
Affine institutions ar	nd their morphisms				

Examples of affine institutions

Definition 28

Given an affine theory T, **AfInst**(T) stands for the subcategory of **AfInst** consisting of affine institutions (**S**, I, T) (shortened to (**S**, I)) and their respective morphisms (Φ , α , 1_T) (shortened to (Φ , α)).

Example 29

• For $\mathbf{B} = \mathbf{Frm}$, $\mathbf{AfInst}(\mathcal{P}_2)$ is a modification of \mathbf{TpInst} .

2 Set
$$\xrightarrow{|\mathcal{P}_2|}$$
 Set \xrightarrow{op} := Set $\xrightarrow{\mathcal{P}_2}$ CBAlg \xrightarrow{op} $\xrightarrow{|-|^{op}}$ Set \xrightarrow{op} gives the category AfInst($|\mathcal{P}_2|$), which is a modification of ElInst.

Using topological systems to create a framework for institutions

Introduction 000	Affine systems 00000000000	Affine theories	Affine institutions	Conclusion 0	References 00
Affine institution	spatialization procedure				
Spatial	affine institu	utions			

Definition 30

Let T be an affine theory.

- A spatial affine *T*-institution is a functor S ¹→ AfSpc(*T*), where S is a category of (abstract) signatures.
- A spatial affine *T*-institution morphism $(\mathbf{S}_1, I_1) \xrightarrow{(\Phi, \alpha)} (\mathbf{S}_2, I_2)$ comprises a functor $\mathbf{S}_1 \xrightarrow{\Phi} \mathbf{S}_2$ and a natural transformation $I_1 \xrightarrow{\alpha} I_2 \Phi$.
- **SAfInst**(*T*) is the category of spatial affine *T*-institutions and their morphisms.

Using topological systems to create a framework for institutions

Affine institution	spatialization procedure				
			00000000000		
Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References

Affine institution spatialization procedure

Theorem 31

- SAfInst(T) \xrightarrow{IE} AfInst(T), $IE((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (S_2, EI_2)$ is a full embedding.
- AfInst(*T*) \xrightarrow{ISpat} SAfInst(*T*), $ISpat((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, SpatI_1) \xrightarrow{(\Phi, Spat\alpha)} (S_2, SpatI_2)$ is a right-adjoint-left-inverse to *IE*.
- SAfInst(T) is isomorphic to a full coreflective subcategory of AfInst(T).

This answers the question on spatialization construction for topological institutions of A. Sernadas, C. Sernadas, and J. M. Valença.

Using topological systems to create a framework for institutions

Affine institution	spatialization procedure				
			00000000000		
Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References

Affine institution spatialization procedure

Theorem 31

- SAfInst(T) \xrightarrow{IE} AfInst(T), $IE((S_1, I_1) \xrightarrow{(\Phi, \alpha)} (S_2, I_2)) = (S_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (S_2, EI_2)$ is a full embedding.
- AfInst(*T*) \xrightarrow{ISpat} SAfInst(*T*), *ISpat*((S₁, *l*₁) $\xrightarrow{(\Phi,\alpha)}$ (S₂, *l*₂)) =
 (S₁, Spat*l*₁) $\xrightarrow{(\Phi,Spat\alpha)}$ (S₂, Spat*l*₂) is a right-adjoint-left-inverse to *IE*.

SAfInst(T) is isomorphic to a full coreflective subcategory of AfInst(T).

This answers the question on spatialization construction for topological institutions of A. Sernadas, C. Sernadas, and J. M. Valença.

Introduction 000		e systems	Affine theories	Affine institutions	Conclusion O	References 00
Affine institution	localificat	on proced	ure			
	CC 1					

Localic affine institutions

Definition 32

Let $\mathbf{X} \xrightarrow{T} \mathbf{B}^{op}$ be an affine theory.

- A localic affine *T*-institution is a functor S → B^{op}, where S is a category of (abstract) signatures.
- A localic affine *T*-institution morphism $(\mathbf{S}_1, I_1) \xrightarrow{(\Phi, \alpha)} (\mathbf{S}_2, I_2)$ comprises a functor $\mathbf{S}_1 \xrightarrow{\Phi} \mathbf{S}_2$ and a natural transformation $I_1 \xrightarrow{\alpha} I_2 \Phi$.
- LAfInst(*T*) is the category of localic affine *T*-institutions and their morphisms.

Affine institution	localification procedure				
			000000000		
Introduction	Affine systems	Affine theories	Affine institutions	Conclusion	References

Affine institution localification procedure

Theorem 33

Let T be an affine theory such that there exists an adjoint situation $(\eta, \varepsilon) : T \dashv Pt : \mathbf{B}^{op} \to \mathbf{X}.$

- LAfInst(T) \xrightarrow{IE} AfInst(T), $IE((\mathbf{S}_1, I_1) \xrightarrow{(\Phi, \alpha)} (\mathbf{S}_2, I_2)) = (\mathbf{S}_1, EI_1) \xrightarrow{(\Phi, E\alpha)} (\mathbf{S}_2, EI_2)$ is a full embedding.
- **3** IE has a left-adjoint-left-inverse $\mathbf{AfInst}(T) \xrightarrow{lLoc} \mathbf{LAfInst}(T)$, $lLoc((\mathbf{S}_1, l_1) \xrightarrow{(\Phi, \alpha)} (\mathbf{S}_2, l_2)) = (\mathbf{S}_1, Locl_1) \xrightarrow{(\Phi, Loc\alpha)} (\mathbf{S}_2, Locl_2)$.
- Solution LAfInst(T) is isomorphic to a full reflective subcategory of AfInst(T).

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion •	References 00
Final remarks					
Conclusi	on				

- Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localification procedures.
- Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.
- While A. Sernadas, C. Sernadas, and J. M. Valença. impose the frame structure on the set of theories (certain "closed" subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.

utions Sergejs Sol

olovjovs Brno Univer

ersity of Technology 31/34

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion •	References 00		
Final remarks							
Conclus	ion						

- Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localification procedures.
- Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.
- While A. Sernadas, C. Sernadas, and J. M. Valença. impose the frame structure on the set of theories (certain "closed" subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.

Sergejs Solovjov

Brno University of Technology

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion •	References 00		
Final remarks							
Conclus	ion						

- Following the concept of topological institution, we introduced the notion of affine institution and showed its respective spatialization and localification procedures.
- Affine institutions seem to provide a good framework for elementary institutions and topological institutions, since they do not require the employed algebraic structures to be frames.
- While A. Sernadas, C. Sernadas, and J. M. Valença. impose the frame structure on the set of theories (certain "closed" subsets of the set of sentences) of a given signature, which results in technical difficulties, we suggest the use of an arbitrary algebraic structure, which could be determined in each concrete case.

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References ●0
References					
Reference	ces l				

- L. Adámek, H. Herrlich, and G. E. Strecker, *Abstract and Concrete Categories: The Joy of Cats*, Dover Publications, 2009.
- D. Aerts, E. Colebunders, A. van der Voorde, and B. van Steirteghem, State property systems and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys. **38** (1999), no. 1, 359–385.
- J. T. Denniston, A. Melton, and S. E. Rodabaugh, *Lattice-valued institutions*, Abstracts of the 35th Linz Seminar on Fuzzy Set Theory (T. Flaminio, L. Godo, S. Gottwald, and E. P. Klement, eds.), Johannes Kepler Universität, Linz, 2014, pp. 44–46.
 - Y. Diers, *Categories of algebraic sets*, Appl. Categ. Struct. **4** (1996), no. 2-3, 329–341.

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 0●
References					
Reference	ces II				

- J. A. Goguen and R. M. Burstall, Introducing institutions, Logics of Programs (Pittsburgh, Pa., 1983), Lecture Notes in Comput. Sci., vol. 164, Springer, Berlin, 1984, pp. 221-256.
- A. Sernadas, C. Sernadas, and J. M. Valença, A topological view on institutions, Tech. report, CLC, Department of Mathematics, Instituto Superior Técnico, Lisboa, Portugal, 1994.
- A. Sernadas, C. Sernadas, and J. M. Valenca, A theory-based topological notion of institution, Recent Trends in Data Type Specification (E. Astesiano, G. Reggio, and A. Tarlecki, eds.), Springer Berlin Heidelberg, 1995, pp. 420-436.

S. Vickers, *Topology via Logic*, Cambridge University Press, 1989.

Using topological systems to create a framework for institutions

Introduction 000	Affine systems	Affine theories	Affine institutions	Conclusion O	References 00

Thank you for your attention!

Using topological systems to create a framework for institutions

Sergejs Solovjovs

Brno University of Techno

34/34