On weak constant domain principle in the Kripke sheaf semantics

Dmitrij Skvortsov

All-Russian Institute of Scientific and Technical Information, VINITI

June 22, 2015

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We consider superintuitionistic predicate logics understood in the usual way, as sets of predicate formulas (without equality and function symbols) containing all axioms of Heyting predicate logic \mathbf{Q} - \mathbf{H} and closed under modus ponens, generalization, and substitution of arbitrary formulas for atomic ones.

1 We consider the semantics of predicate Kripke frames with equality (called e-frames, for short), which is equivalent to the semantics of Kripke sheaves (see e.g. [1] or [2]). Namely, an e-frame is a triple M = (W, U, I) formed by a poset W with the least element 0_W , a domain map U defined on W such that $\emptyset \neq U(u) \subseteq U(v)$ for $u \leq v$, and a family I of equivalence relations I_u on U(u) for $u \in W$ such that $I_u \subseteq I_v$ for $u \leq v$. A usual (predicate) Kripke frame is an e-frame with equalities I_u (i.e., $aI_u b \Leftrightarrow a = b$ for $u \in W$, $a, b \in U(u)$).

A valuation $u \vDash A$ (for $u \in W$ and formulas A with parameters replaced by elements of U(u)) satisfies the monotonicity:

 $u \leq v, \ u \models A \Rightarrow v \models A$, the usual inductive clauses for connectives and quantifiers, e.g.

$$u \models (B \to C) \Leftrightarrow \forall v \ge u [(v \models B) \Rightarrow (v \models C)],$$

$$u \models \forall x B(x) \Leftrightarrow \forall v \ge u \forall c \in U(v) [v \models B(c)], \text{ etc.},$$

and preserves I_u (on every $U(u), u \in W$), i.e.,

preserves I_u (on every $O(u), u \in vv$), i.e., $\bigwedge_i (a_i I_u b_i) \Rightarrow (u \models A(a_1, \dots, a_n) \Leftrightarrow u \models A(b_1, \dots, b_n)).$

A formula $A(\mathbf{x})$ (where $\mathbf{x} = (x_1, \ldots, x_n)$) is valid in M if it is true under any valuation in M, i.e., if $u \models A(\mathbf{a})$ for any $u \in W$ and $\mathbf{a} \in (D_u)^n$. The predicate logic $\mathbf{L}(M)$ of an (e-)frame M is the set of all formulas valid in M.

2 We consider the constant domain principle

$$D = \forall x (P(x) \lor Q) \to \forall x P(x) \lor Q$$

(where P and Q are unary and 0-ary symbols, respectively), and its weak ('negative') version

$$D^- = orall x \left(\neg P(x) \lor Q
ight) o orall x \neg P(x) \lor Q$$
.

The formula D states (in an e-frame) that $\forall a \in U(u) \exists b \in U(0_W) [aI_ub]$, and similarly, D^- states that $\forall a \in U(u) \exists b \in U(0_W) [\exists v \ge u (aI_vb)]$. Let D^- -frames be e-frame validating D^- . Clearly, $D \vdash D^-$ (we write $A \vdash B$ for $[\mathbf{Q} \cdot \mathbf{H} + A] \vdash B$). Also: D is valid in M iff D^- is valid in M iff $U(u) = U(0_W)$ for every $u \in W$ for a usual Kripke frame M. Hence the Kripke-completion of $[\mathbf{Q} \cdot \mathbf{H} + D^-]$ is $[\mathbf{Q} \cdot \mathbf{H} + D]$. Now we describe the Kripke sheaf completion of $[\mathbf{Q} \cdot \mathbf{H} + D^-]$. **3** We consider the following formulas (for n > 0, $m \ge 0$):

$$\begin{array}{ll} D_{n,m}^{-} = & \forall z (Q_0 \lor P_0(z)) \& \forall x R(x,x) \rightarrow \\ & \rightarrow & Q_0 \lor \forall \mathbf{x}_0 \left[\forall z (P_0(z) \rightarrow Q_1(\mathbf{x}_0) \lor P_1(\mathbf{x}_0,z)) \rightarrow \\ & \rightarrow & Q_1(\mathbf{x}_0) \lor \forall \mathbf{x}_1 \left[\forall z (P_1(\mathbf{x}_0,z) \rightarrow Q_2(\mathbf{x}_0,\mathbf{x}_1) \lor P_2(\mathbf{x}_0,\mathbf{x}_1,z)) \rightarrow \\ & \rightarrow & \dots \\ & \rightarrow & \dots \\ & \rightarrow & Q_{n-2}(\mathbf{x}_0,\dots,\mathbf{x}_{n-3}) \lor \forall \mathbf{x}_{n-2} \left[\forall z (P_{n-2}(\mathbf{x}_0,\dots,\mathbf{x}_{n-3},z) \rightarrow \\ & \rightarrow & Q_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2}) \lor P_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2},z) \rightarrow \\ & \rightarrow & Q_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2}) \lor \forall \mathbf{x}_{n-1}, y \left[\forall z (P_{n-1}(\mathbf{x}_0,\dots,\mathbf{x}_{n-2},z) \rightarrow \\ & \rightarrow & Q_n(\mathbf{x}_0,\dots,\mathbf{x}_{n-1},y) \lor \neg R(y,z) \right) \rightarrow Q_n(\mathbf{x}_0,\dots,\mathbf{x}_{n-1},y) \right] \end{array}$$

Here P_i are $(1+m \cdot i)$ -ary predicate symbols (for $0 \le i < n$), Q_i are $(m \cdot i)$ -ary symbols (for $0 \le i < n$), Q_n is a $(1+m \cdot n)$ -ary symbol, R is a binary symbol; also $\mathbf{x}_i = (x_{i,1}, \ldots, x_{i,m})$ (for $0 \le i < n$) are disjoint lists of different variables, and x, y, z are different variables non-occurring in $\mathbf{x}_0, \ldots, \mathbf{x}_{n-1}$.

It can be easily shown that $D^-_{n,m} \vdash D^-_{n',m'}$ for $n \ge n', m \ge m'$ and $D^-_{1,0} \vdash D^-$. Moreover,

 $(\mathbf{Q}-\mathbf{H}+D^{-}) \subset (\mathbf{Q}-\mathbf{H}+\{D^{-}_{n,m}:n>0,m\geq 0\}) = (\mathbf{Q}-\mathbf{H}+\{D^{-}_{n,n}:n>0\}).$

Also one can show that the formulas $D_{n,m}^-$ are valid in all D^- -frames. Thus: $D_{n,m}^-$ is valid in an *e*-frame *M* iff D^- is valid in an *e*-frame *M*, i.e., iff *M* is a D^- -frame (for any *n*, *m*).

Theorem. The logic $(\mathbf{Q}-\mathbf{H} + \{D_{n,m}^-: n > 0, m \ge 0\})$ is complete w.r.t. D^- -frames.

Hence this logic is the Kripke sheaf completion of $(\mathbf{Q}\cdot\mathbf{H}+D^{-})$. We believe that this completion is not finitely axiomatizable.

Similar completeness results hold for extensions with:

1. Kuroda's formula $K = \neg \neg \forall x (P(x) \lor \neg P(x));$

2. predicate axioms of finite heights P_m^+ (here $P_0^+ = \bot$ and $P_{n+1}^+ = \forall x [R_n(x) \lor (R_n(x) \to P_n^+)]$ for $n \ge 0$; R_n being different unary predicate symbols).

ション ふゆ く 山 マ チャット しょうくしゃ

Bibliography

- SHEHTMAN, V. and D. SKVORTSOV, Semantics of non-classical first order predicate logics. In: Mathematical Logic (ed. P.Petkov), Plenum Press, N.Y., 105–116, 1990 (Proc. of Summer school and conference in mathematical logic 'Heyting'88').
- GABBAY, D., V. SHEHTMAN, and D. SKVORTSOV, *Quantification in nonclassical logic*, Vol. 1, Sections 2.6, 3.6, Studies in Logic and the Foundations of Mathematics 153: Elsevier, 2009.

ション ふゆ く 山 マ チャット しょうくしゃ