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We consider superintuitionistic predicate logics understood in the
usual way, as sets of predicate formulas (without equality and
function symbols) containing all axioms of Heyting predicate logic
Q-H and closed under modus ponens, generalization, and
substitution of arbitrary formulas for atomic ones.



1 We consider the semantics of predicate Kripke frames with
equality (called e-frames, for short), which is equivalent to the
semantics of Kripke sheaves (see e.g. [1] or [2]). Namely, an
e-frame is a triple M = (W ,U, I ) formed by a poset W with the
least element 0W , a domain map U de�ned on W such that
∅ 6= U(u)⊆U(v) for u≤v , and a family I of equivalence relations
Iu on U(u) for u∈W such that Iu⊆ Iv for u≤v . A usual
(predicate) Kripke frame is an e-frame with equalities Iu (i.e.,
aIub ⇔ a=b for u∈W , a, b∈U(u) ).



A valuation u�A (for u∈W and formulas A with parameters
replaced by elements of U(u)) satis�es the monotonicity:
u ≤ v , u � A ⇒ v � A, the usual inductive clauses for connectives
and quanti�ers, e.g.
u � (B → C ) ⇔ ∀v≥u [(v � B)⇒ (v � C )],
u � ∀x B(x) ⇔ ∀v≥u ∀c∈U(v) [v � B(c)], etc.,

and preserves Iu (on every U(u), u∈W ), i.e.,∧
i
(ai Iu bi ) ⇒ ( u � A(a1, . . . , an) ⇔ u � A(b1, . . . , bn) ).

A formula A(x) (where x=(x1, . . . , xn) ) is valid in M if it is true
under any valuation in M, i.e., if u � A(a) for any u∈W and
a∈(Du)

n. The predicate logic L(M) of an (e-)frame M is the set
of all formulas valid in M.



2 We consider the constant domain principle

D = ∀x(P(x)∨Q)→ ∀xP(x) ∨ Q

(where P and Q are unary and 0-ary symbols, respectively), and its
weak (`negative') version

D− = ∀x (¬P(x)∨Q)→ ∀x¬P(x) ∨ Q .

The formula D states (in an e-frame) that
∀a∈U(u) ∃b∈U(0W ) [ aIub ], and similarly, D− states that
∀a∈U(u)∃b∈U(0W ) [∃v≥u ( aIvb ) ].
Let D−-frames be e-frame validating D−.
Clearly, D `D− (we write A`B for [Q-H+A]`B). Also:
D is valid in M i� D− is valid in M i�
U(u)=U(0W ) for every u∈W for a usual Kripke frame M.
Hence the Kripke-completion of [Q-H+ D−] is [Q-H+ D].
Now we describe the Kripke sheaf completion of [Q-H+ D−].



3 We consider the following formulas (for n>0, m≥0):

D−n,m = ∀z(Q0 ∨ P0(z))&∀xR(x , x) →
→ Q0 ∨ ∀x0 [ ∀z(P0(z)→ Q1(x0) ∨ P1(x0, z))→
→ Q1(x0) ∨ ∀x1 [ ∀z(P1(x0, z)→ Q2(x0, x1) ∨ P2(x0, x1, z))→
→ . . .
→ Qn−2(x0, . . . , xn−3) ∨ ∀xn−2 [ ∀z(Pn−2(x0, . . . , xn−3, z)→
→ Qn−1(x0, . . . , xn−2) ∨ Pn−1(x0, . . . , xn−2, z))→

→ Qn−1(x0, . . . , xn−2) ∨ ∀xn−1, y [ ∀z(Pn−1(x0, . . . , xn−2, z)→
→ Qn(x0, . . . , xn−1, y) ∨ ¬R(y , z))→ Qn(x0, . . . , xn−1, y)]] . . .]].

Here Pi are (1+m·i)-ary predicate symbols (for 0≤ i<n), Qi are
(m·i)-ary symbols (for 0≤ i<n), Qn is a (1+m·n)-ary symbol, R is
a binary symbol; also xi = (xi ,1, . . . , xi ,m) (for 0≤ i<n) are disjoint
lists of di�erent variables, and x , y , z are di�erent variables
non-occurring in x0, . . . , xn−1.



It can be easily shown that D−n,m ` D−n′,m′ for n≥n′,m≥m′ and

D−1,0 ` D−. Moreover,

(Q-H+D−) ⊂ (Q-H+{D−n,m : n>0,m≥0}) = (Q-H+{D−n,n : n>0}).

Also one can show that the formulas D−n,m are valid in all
D−-frames. Thus:
D−n,m is valid in an e-frame M i� D− is valid in an e-frame M,
i.e., i� M is a D−-frame (for any n,m).

Theorem. The logic (Q-H+ {D−n,m : n>0,m≥0})
is complete w.r.t. D−-frames.

Hence this logic is the Kripke sheaf completion of (Q-H+ D−).
We believe that this completion is not �nitely axiomatizable.



Similar completeness results hold for extensions with:
1. Kuroda's formula K = ¬¬∀x (P(x) ∨ ¬P(x)) ;
2. predicate axioms of �nite heights P+

m

(here P+
0 = ⊥ and P+

n+1 = ∀x [Rn(x) ∨ (Rn(x)→ P+
n ) ] for n≥0;

Rn being di�erent unary predicate symbols).
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