Bisimulation games and locally tabular modal logics

Valentin Shehtman

Institute for Information Transmission Problems
Moscow, Russia

TACL 2015
Ischia

Modal propositional language

N-modal formulas are built from a countable set of proposition letters $\mathrm{PL}=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots\right\}$ using boolean connectives and unary modal connectives $\square_{1}, \ldots, \square_{N}$;as usual $\diamond_{i}=\neg \square_{i}$ If $N=1$ we denote the modalities just by \square and \diamond.

The modal depth $\mathrm{md}(\mathrm{A})$ is defined by induction:
$m d\left(p_{i}\right)=0, m d(7 A)=m d(A)$,
$\operatorname{md}(A \vee B)=\operatorname{md}(A \wedge B)=\max (m d(A), \operatorname{md}(B))$,
$\operatorname{md}(\square, \mathrm{A})=\operatorname{md}(\mathrm{A})+1$

Kripke frames and models-1

An N-modal Kripke frame is a nonempty set with N binary relations $F=\left(W, R_{1}, \ldots, R_{N}\right)$.

A valuation in F is a function $\theta: P L \rightarrow 2^{W}\left(\operatorname{so} \theta\left(p_{i}\right) \subseteq W\right)$.
(F, θ) is a Kripke model over F .
In k-weak Kripke models only the letters $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ are evaluated.

Kripke frames and models-2

The inductive truth definition $(M, x \vDash A)$ is standard.

- $M, x \vDash p_{i}$ iff $x \in \theta\left(p_{i}\right)$
- $M, x \vDash \square_{i} A$ iff $\forall y\left(x R_{i} y \Rightarrow M, y \vDash A\right)$
- $M, x \vDash \diamond_{i} A$ iff $\exists y\left(x R_{i} y \& M, y \vDash A\right)$

A formula A is valid in a frame F (in symbols, $F \vDash A$) if A is true at all points in every Kripke model over F.

Bisimulation games-1

Def For a k-weak Kripke model $M=\left(W, R_{1}, \ldots, R_{N}, \theta\right)$ consider the 0 -equivalence relation between points

$$
x \equiv_{0} y:=\forall j \leq k\left(M, x \vDash p_{j} \Leftrightarrow M, y \vDash p_{j}\right)
$$

Given M and two points $x_{0} \equiv_{0} y_{0}$ we can play the r-round bisimulation game $\mathrm{BG}_{\mathrm{r}}\left(\mathrm{M}, \mathrm{x}_{0}, \mathrm{Y}_{0}\right)$.

Players: Spoiler (Abelard) vs Duplicator (Eloïse).

Bisimulation games-2

The initial position in $B G_{r}\left(M, x_{0}, M^{\prime}, y_{0}\right)$ is $\left(x_{0}, y_{0}\right)$.

Round ($\mathrm{n}+1$)

- Spoiler chooses $i, x_{n+1}\left[\right.$ or $\left.y_{n+1}\right]$ such that $x_{n} R_{i} x_{n+1}\left[y_{n} R_{i} y_{n+1}\right]$
- Duplicator chooses $y_{n+1}\left[x_{n+1}\right]$ such that $y_{n} R_{i} y_{n+1}\left[x_{n} R_{i} x_{n+1}\right]$ and $\mathrm{x}_{\mathrm{n}+1} \equiv_{0} \mathrm{y}_{\mathrm{n}+1}$
- A player loses if he/she cannot move.
- Duplicator wins after r rounds.

Bisimulation games-3

Def Formula and game n-equivalence relations (on M)

- $\mathrm{X} \equiv_{\mathrm{n}} \mathrm{y}$:= for any $\mathrm{A}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}\right)$ of modal depth $\leq \mathrm{n}$

$$
M, x \vDash A \Leftrightarrow M^{\prime}, y \vDash A
$$

- $x \sim_{n} y:=$ Duplicator has a winning strategy in $B G_{n}(M, x, y)$

Main Theorem on finite bisimulation games

$$
\equiv_{\mathrm{n}}=\sim_{\mathrm{n}}
$$

Logics-1

We consider normal modal logics. An N-modal logic is a set of N -modal formulas

- containing all boolean tautologies,
$\square_{\mathrm{i}}(\mathrm{A} \rightarrow \mathrm{B}) \rightarrow\left(\square_{\mathrm{i}} \mathrm{A} \rightarrow \square_{\mathrm{i}} \mathrm{B}\right)$
- closed under Modus Ponens, Substitution, \square-introduction
($\mathrm{A} / \square_{\mathrm{i}} \mathrm{A}$).

The minimal logic $\mathbf{K}_{\mathrm{N}} ; \mathbf{K}=\mathbf{K}_{1}$.

Logics-2

Kripke complete logics
$\mathbf{L}(F):=\{A \mid F \vDash A\}$ (the logic of a frame F).
$\mathbf{L}(C):=\bigcap\{\mathbf{L}(\mathrm{F}) \mid \mathrm{F} \in C\}$ (the logic of a class of frames C).

- If F is finite, $\mathbf{L}(\mathrm{F})$ is called tabular (or finite)
- If C consists of finite frames, $\mathbf{L}(C)$ has the finite model property (FMP). Or:
L has the FMP iff L is an intersection of tabular logics.
Proposition ('Harrop's theorem') If L is finitely axiomatizable and has the FMP, then L is decidable.

Modal algebras

An N-modal algebra is a Boolean algebra with an extra unary operations $\square_{1}, \ldots, \square_{N}$ satisfying the equality

$$
\square_{\mathrm{i}}(\mathrm{x} \cap \mathrm{y})=\square_{\mathrm{i}} \mathrm{x} \cap \square_{\mathrm{i}} \mathrm{y}
$$

Every modal formula A corresponds to an equality
$A^{*}=1$, where A^{*} is obtained by translating A into a term with Boolean operations and \square_{i}.

A is called valid in an algebra \mathfrak{A} if $A^{*}=1$ holds in \mathfrak{A}.
For a modal logic L, an L-algebra is a modal algebra validating L.

Formula depth-1

The modal depth of a formula A in a modal logic L

$$
\operatorname{md}_{L}(A):=\min \{\operatorname{md}(B) \mid L \vdash A \leftrightarrow B\}
$$

The modal depth of a logic L

$$
\operatorname{md}(L):=\min \left\{\operatorname{md}_{L}(A) \mid A \text { is in the language of } L\right\}
$$

Formula depth-2

Canonical model theorem For any modal logic L (weak or not) one can construct the canonical model M_{L} such that for any A in the language of L

$$
M_{L} \vDash A \text { iff } L \vdash A
$$

In every model we have a decreasing sequence $\equiv_{0} \supseteq \equiv_{1} \ldots$

$$
\equiv_{\infty}:=\bigcap_{n} \equiv_{n}
$$

Formula depth-3

Lemma 1 Every set $W / \equiv_{n}\left(=W / \sim_{n}\right)$ is finite.
Lemma $2 x \equiv_{\infty} y$ iff for any $A\left(p_{1}, \ldots, p_{k}\right)(M, x \vDash A \Leftrightarrow M, y \vDash A)$
Lemma 3 In canonical models: $x \equiv_{\infty} y$ iff $x=y$.
Stabilization theorem If $\equiv_{n}=\equiv_{n+1}$ in every $M_{L[k}$ (bisimulation games stabilize at n), then $m d(L) \leq n$.

Local tabularity-1

$\mathrm{L}\lceil\mathrm{k}$ denotes the restriction of a logic L to formulas in
variables $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$. The sets $\mathrm{L}\lceil\mathrm{k}$ are called weak modal logics
Def A modal logic L is locally tabular (or locally finite)
if for any k there are finitely many formulas in p_{1}, \ldots, p_{k} up to equivalence in L.

Equivalently: A modal logic L is locally tabular if all its weak fragments L「k are tabular.

Local tabularity-2

Equivalent definitions of local tabularity for a modal logic L:

- The variety of L-algebras is locally finite : every finitely generated L-algebra is finite
- For every finite k, the free k-generated L-algebra (the Lindenbaum algebra of $\mathrm{L}\lceil\mathrm{k}$) is finite
- Every weak canonical model $M_{\mathrm{L}\lceil\mathrm{k}}$ is finite.

Proposition Every modal logic of finite modal depth is locally tabular.

Lemma on repeating positions

Let M be a Kripke model, $x, y \in M$. Suppose $x \equiv_{n} y$ and moreover, the Duplicator has a winning strategy s in $\mathrm{BG}_{\mathrm{n}}(\mathrm{x} ; \mathrm{y})$ such that every play controlled by s has at least two repeating positions. Then $\mathrm{x} \equiv_{\mathrm{n}+1} \mathrm{y}$.

Correlation between properties of logics

TABULARITY \Rightarrow FMD \Rightarrow LOCAL TABULARITY \Rightarrow FMP

1. Theorem If F is finite, then $m d(L(F)) \leq|F|^{2}+1$.

Proof: The Pigeonhole principle gives repeating positions.
3. Well-known
2. Easy: there are finitely many k-formulas of bounded modal depth up to equivalence in the basic modal logic. PROBLEM 1 Does every locally tabular logic have the finite modal depth? (Conjecture:no)
PROBLEM 2 Is there a better upper bound for modal depth of tabular logics? (Conjecture:yes)

Examples of FMD-logics-1
 $$
\mathrm{md}\left(\mathbf{K}+\square^{\mathrm{n}} \perp\right)=\mathrm{n}-1
$$

and more generally,

$$
\operatorname{md}\left(\mathbf{K}_{\mathrm{N}}+\square^{\mathrm{n}} \perp\right)=\mathrm{n}-1
$$

where

$$
\square A:=\square_{1} A \wedge \ldots \wedge \square_{N} A
$$

The axiom $\square^{n} \perp$ forbids paths of length n in Kripke frames:
$x_{1} R x_{2} \ldots R x_{n}$, where $R=R_{1} \cup \ldots \cup R_{N}$
Proof for the upper bound: every play of a bisimulation game contains at most ($\mathrm{n}-1$) rounds.
An earlier result: $\mathbf{K}_{\mathrm{N}}+\square^{\mathrm{n}} \perp$ is locally tabular (Gabbay \& Sh, 1998; a routine proof by induction).

Examples of FMD-logics-2

$\operatorname{md}(\mathbf{S 5})=1$ (a well-known fact)

Proof. If Duplicator can win the 1-game, she can win the 2game

Examples of FMD-logics-3 $m d(D L)=2$

DL is the difference logic

$$
\mathrm{DL}=\mathrm{K}+\diamond \square \mathrm{p} \rightarrow \mathrm{p}+\diamond \diamond \mathrm{p} \rightarrow \mathrm{p} \vee \diamond \mathrm{p}
$$

- DL is complete w.r.t inequality frames $(\mathrm{W}, \neq \mathrm{w})$.
- Arbitary DL-frames are obtained from S5-frames (equivalence frames) by making some points irreflexive.
- Proof (for the lower bound):

$$
x \vDash \diamond^{2} p
$$

$$
\mathrm{X} \equiv{ }_{1} \mathrm{y}
$$

Examples of FMD-logics-4

$$
\begin{aligned}
& \operatorname{md}\left(\text { Grz }^{2} \mathrm{bd}_{\mathrm{n}}\right) \leq 2 \mathrm{n}-1 \\
& \operatorname{md}\left(\mathrm{Grz3}^{2}+\mathrm{bd}_{\mathrm{n}}\right)=\mathrm{n}-1
\end{aligned}
$$

Grz is the logic of finite partial orders,
Grz3 is the logic of finite chains
In transitive Kripke frames bd_{n} forbids chains of
clusters of length $n+1: x_{1} R x_{2} \ldots R x_{n+1}$, where
$\urcorner x_{i} R x_{i+1}$ for each i.

$$
\begin{gathered}
b d_{n}=7 \diamond\left(Q_{1} \wedge \diamond\left(Q_{2} \wedge \ldots \wedge \diamond Q_{n+1}\right)\right), \\
Q_{i}=p_{i} \wedge \wedge\left\{7 \diamond p_{j} \mid 1 \leq j<i\right\} .
\end{gathered}
$$

Grz3 $+\mathrm{bd}_{\mathrm{n}}=\mathbf{L}(\mathrm{n}$-element chain)

Examples of FMD-logics-5

$$
\operatorname{md}\left(\mathbf{G r z} 3+\mathrm{bd}_{2}\right)=1 \text {, while } 1<\operatorname{md}\left(\mathbf{G r z}+\mathrm{bd}_{2}\right) \leq 3(\text { probably, }=2) .
$$

(0,1 show the truth values of p)
Here $x \equiv 1 \mathrm{y}$, but $\mathrm{x} \not \equiv 2 \mathrm{y}$:
Duplicator wins after 1 round.
Spoiler wins after 2 rounds.

Examples of FMD-logics-6

$$
m d\left(K 4+b d_{n}\right) \leq 4 n-3
$$

Theorem (Segerberg 1971;Maksimova 1975) For L \supseteq K4
L is locally tabular iff L is of finite transitive depth.
Def L is of finite transitive depth if $L \vdash b d_{n}$ for some n.
Thus

- Every locally tabular extension of K4 has the FMD. PROBLEM Is there a similar criterion for extensions of \mathbf{K} ?

Examples of FMD-logics-7

If $m d(L)=m$, then $m d\left(\left[K+\square^{n} \perp, L\right]\right) \leq(m+1) n-1$
Def. The commutative join (commutator)

$$
\begin{aligned}
& {\left[L_{1^{\prime}} L_{2}\right]:=L_{1} * L_{2} \text { (the fusion) }+} \\
& \square_{j} \square_{i} p \leftrightarrow \square_{i} \square_{j} \mathrm{p} \text { (commutation axioms) } \\
& \diamond_{j} \square_{i} p \rightarrow \square_{j} \diamond \diamond_{i} \mathrm{p} \text { (Church-Rosser axioms) }
\end{aligned}
$$

Tabularity criterion-1

Theorem (Chagrov 1994)
L is tabular iff $L \vdash \alpha_{n} \wedge$ Alt $_{n}$ for some n.
The formulas α_{n}, Alt ${ }_{n}$ correspond to universal conditions on frames:

- α_{n} forbids simple paths of length n : $x_{1} R x_{2} \ldots R x_{n}$, where all the x_{i} are different.
- Alt ${ }_{n}$ forbids n-branching: $x R x_{1}, \ldots, x R x_{n}$, where all the x_{i} are different.

Tabularity criterion-2

$$
\begin{gathered}
\alpha_{n}=7 \diamond\left(P_{1} \wedge \diamond\left(P_{2} \wedge \ldots \diamond\left(P_{n-1} \wedge \diamond P_{n}\right) \ldots\right)\right) \\
\text { Alt } t_{n}=7\left(\diamond P_{1} \wedge \diamond P_{2} \wedge \ldots \wedge \diamond P_{n}\right),
\end{gathered}
$$

where

$$
P_{i}=7 p_{i} \wedge \wedge\left\{p_{j} \mid 1 \leq j \leq n, j \neq i\right\}
$$

Theorems on local tabularity

1. Every logic $\mathbf{K}_{\mathrm{N}}+\alpha_{\mathrm{n}}$ (Chagrov's formula) is locally tabular. Remarks:

- The proof does not give the FMD
- This theorem was conjectured in 1994 by Chagrov.

2. The logics $\left[\mathbf{K}_{N}+\alpha_{n}, \mathbf{K}_{N^{\prime}}+\square^{n} \perp\right],\left[\mathbf{K}_{N}+\alpha_{n}, \mathbf{S 5}\right]$ are locally tabular.

Remark. In general products and commutative joins do not preserve local tabularity, a counterexample is $[\mathbf{S 5 , S 5}]=\mathbf{S 5}{ }^{\mathbf{2}}$ (Tarski).

THANK
 YOU!

References-1

P. Blackburn, M. De Rijke, Y. Venema. Modal Logic. Cambridge University Press, 2001.
A. Chagrov, M. Zakharyaschev. Modal Logic. Oxford University Press, 1996.
K. Segerberg. An Essay in Classical Modal Logic. Uppsala, 1971.
D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Manydimensional Modal Logics: Theory and Applications. Elsevier, 2003.
D. Gabbay, V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, v. 6, pp. 73-146, 1998.
V. Shehtman. Filtration via bisimulation. In: Advances in Modal Logic, Volume 5. King's College Publications, 2005, pp. 289-308

References-2

V. Shehtman. Canonical filtrations and local tabularity.

In: Advances in Modal Logic, v.10, 498-512. College
Publications, 2014
N. Bezhanisvili. Varieties of two-dimensional cylindric algebras.

Algebra Universalis, v. 48 (2002), 11-42.
K. Fine. Logics containing K4, part 1. Journal of Symbolic Logic, 1974, v.1.
G. Bezhanishvili. Locally finite varieties. Algebra Universalis, v. 46(2001), 531-548.
G. Bezhanishvili, R. Grigolia. Locally tabular extensions of MIPC. Advances in Modal Logic 1998, 101--120.

Logics

- $\mathbf{K}=\mathbf{L}$ (all frames)
- K4 $:=\mathbf{K}+\diamond \diamond p \rightarrow \diamond p=\mathbf{L}$ (all transitive frames)
- $\mathbf{S 4}:=\mathbf{K} \mathbf{4}+\mathrm{p} \rightarrow \diamond \mathrm{p}=\mathbf{L}($ all transitive reflexive frames)
= L(all partial orders)
- Grz := S4 + $7(\mathrm{p} \wedge \square(p \rightarrow \diamond(\urcorner \mathrm{p} \wedge \diamond \mathrm{p})))$
= L(all finite partial orders)
- Grz3 := Grz $+\diamond p \wedge \diamond q \rightarrow \diamond(\mathrm{p} \wedge \diamond \mathrm{q}) \vee \diamond(\mathrm{q} \wedge \diamond \mathrm{p})$
= L(all finite chains)
- S5 := S4 + $\diamond \square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}($ all equivalence frames $)$
$=\mathbf{L}$ (all universal frames [clusters])
All these logics have the FMP, so they are decidable.

