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Modal propositional language
N-modal formulas are built from a countable set of 

proposition letters PL={p
1
,p

2
,...} using boolean connectives 

and unary modal connectives   ⃞ 
1 
,...,   ⃞ 

N 
;as usual ◇

i 
= ⅂   ⃞ 

i
⅂ 

If N=1 we denote the modalities just by   ⃞  and ◇.

The modal depth md(A) is defined by induction:

md(p
i
)=0, md(⅂ A)=md(A), 

md(A∨B)= md(A∧B) = max(md(A),md(B)),

md(  ⃞ 
i
A)=md(A)+1

  



  

Kripke frames and models-1

An N-modal Kripke frame  is a nonempty set with N binary 

relations F = (W,R
1
,...,R

N
).

A valuation in F  is a function θ:PL → 2W (so θ(p
i
) ⊆ W). 

(F,θ) is a Kripke model over F. 

In k-weak Kripke models only the letters p
1
,...,p

k

are evaluated.



  

Kripke frames and models-2

The inductive truth definition (M,x ⊨ А) is standard.  

● M,x ⊨ p
i 
iff x∈θ(p

i
)

● M,x ⊨   ⃞ 
i
 А 

 
iff  ∀y(xR

i
y ⇒ M,y ⊨ А)

● M,x ⊨  ◇
i
А 

 
iff  ∃y(xR

i
y & M,y ⊨ А)

A formula A is valid in a frame F (in symbols, F ⊨ A) if A is 

true at all points in every Kripke model over F.



  

Bisimulation games-1

Def   For a k-weak Kripke model M=(W,R
1
,...,R

N
,θ)

consider the 0-equivalence relation between points

x
 
≡

0 y := ∀j ≤ k (M,x ⊨ p
j
 ⇔ M,y ⊨p

j
)

Given M and two points x
0 

≡
0 y0 

we can play the r-round  
bisimulation game BG

r
(M,x

0
,y

0
).

Players: Spoiler (Abelard) vs Duplicator (Eloïse). 



  

Bisimulation games-2

 The initial position  in BG
r
(M,x

0
,M',y

0
) is (x

0
,y

0
).

y

'

SiRi

n+1n+1

n
nx y

x

Round (n+1) 
● Spoiler  chooses i, xn+1 [or yn+1] such that xn Rixn+1 [ynR iyn+1]
● Duplicator chooses yn+1 [xn+1] such that yn Riyn+1 [xn Rixn+1]  

and xn+1 ≡0 yn+1

● A player loses if he/she cannot move.
● Duplicator wins after r rounds. 



  

Bisimulation games-3 

Def Formula and game n-equivalence relations (on M)

● x ≡
n y := for any A(p

1
,...,p

k
) of modal depth ≤ n

  M,x ⊨ A ⇔ M',y ⊨A
● x ∼

n y := Duplicator has a winning strategy in BG
n
(M,x,y)

Main Theorem on finite bisimulation games 

 
≡

n = 
∼

n 

 



  

Logics-1
We consider normal modal logics. An N-modal logic is a set 

of N-modal formulas  

● containing all boolean tautologies,

  ⃞ 
i
(A→B) → (   ⃞ 

i
A →   ⃞ 

i
B)

● closed under Modus Ponens, Substitution,     ⃞ -introduction

(A/  ⃞ 
i
A).

The minimal logic K
N
; K = K

1
. 



  

Logics-2

Kripke complete logics

L(F) := { A | F ⊨ A} (the logic of a frame  F).

L(C ) := ∩{L(F)|F∈C } (the logic of a class of frames C ).
● If F is finite, L(F) is called  tabular (or finite)

●  If C  consists of finite frames, L(C ) has the finite model 

property (FMP). Or:  

L has the FMP iff L is an intersection of tabular logics.

Proposition ('Harrop's theorem') If L is finitely axiomatizable 

and has the FMP, then L is decidable.  

  



  

Modal algebras

An N-modal algebra is a Boolean algebra with an extra unary 

operations   ⃞ 
1
,...,  ⃞ 

N
 satisfying the equality   

 ⃞ 
i
(x∩y)=  ⃞ 

i
x∩  ⃞ 

i
y.

Every modal formula A corresponds to an equality

A*=1, where A* is obtained by translating A into a term 

with Boolean operations and   ⃞ 
i
.

A is called valid in an algebra � if  A*=1 holds in �.

For a modal logic L, an L-algebra is a modal algebra 

validating L.   



  

The modal depth of a formula A  in a modal logic L

md
L
(A):= min{md(B)|L ⊢ A↔B}

The modal depth of a logic L

md(L):= min{md
L
(A)| A is in the language of L}

 

Formula depth-1



  

Formula depth-2

Canonical model theorem For any modal logic L (weak or 

not) one can construct the canonical model M
L
 such that 

for any A in the language of L

M
L
 ⊨ A iff L ⊢ A

In every model we have a decreasing sequence ≡
0 ⊇ ≡

1
... 

≡
∞

:= ⋂
n
≡

n



  

Formula depth-3

Lemma 1 Every set W/≡
n
 (= W/∼

n
) is finite. 

Lemma 2  x ≡
∞
 y iff for any A(p

1
,...,p

k
) (M,x ⊨ A ⇔ M,y ⊨A)

Lemma 3  In canonical models: x ≡
∞
 y iff x=y.

Stabilization theorem If  ≡
n = ≡

n+1
  in every M

L⌈k (bisimulation 

games stabilize at n), then md(L) ≤ n.



  

Local tabularity-1

L⌈k denotes the restriction of a logic L to formulas in 

variables p
1
,...,p

k
. The sets L⌈k are called weak modal logics

Def A modal logic L is locally tabular (or locally finite)  

if for any k there are finitely many formulas in p
1
,...,p

k 
up to 

equivalence in L.

Equivalently: A modal logic L is locally tabular if all its weak 

fragments L⌈k are tabular.



  

 Equivalent definitions of local tabularity for a modal logic L:

● The variety of L-algebras is locally finite : every finitely 

generated L-algebra is finite

● For every finite k, the free k-generated L-algebra (the 

Lindenbaum algebra of L⌈k)  is finite

● Every weak canonical model ML⌈k is finite.

Proposition Every modal logic of finite modal depth is locally 

tabular.

Local tabularity-2



  

Lemma on repeating positions

Let M be a Kripke model, x, y ∈ M. Suppose x ≡n y and

moreover, the Duplicator has a winning strategy s in BGn(x; y) 
such that every play controlled by s has at least two repeating 
positions. Then x ≡n+1 y.

x = x0 y = y0

xm ym



  

Correlation between properties of logics

TABULARITY ⇒ FMD  ⇒ LOCAL TABULARITY ⇒ FMP

1.  Theorem  If F is finite, then md(L(F)) ≤ |F|2+1.

Proof: The Pigeonhole principle gives repeating positions.

3. Well-known

2. Easy: there are finitely many k-formulas of bounded 

modal depth up to equivalence in the basic modal logic. 

PROBLEM 1 Does every locally tabular logic have the finite 

modal depth? (Conjecture:no)

PROBLEM 2  Is there a better upper bound for modal depth 

of tabular logics? (Conjecture:yes)



  

Examples of FMD-logics-1

md(K + □n⊥) = n-1
and more generally,

md(K
N
 + □n⊥) = n-1

where

□ A := □
1
A ∧... ∧ □

N
A.

The axiom □n⊥  forbids paths of length n in Kripke frames:

x1Rx2...Rxn , where R = R
1
 ∪...∪ R

N
Proof for the upper bound: every play of a bisimulation game 
 contains at most (n-1) rounds.
An earlier result: K

N
 + □n⊥ is locally tabular (Gabbay & Sh, 

1998; a routine proof by induction).

 



  

Examples of FMD-logics-2

md(S5) = 1 (a well-known fact)

Proof. If Duplicator can win the 1-game, she can win the 2-
game

x0 x1

x2

y1

y2

y0



  

Examples of FMD-logics-3
md(DL) = 2

DL is the difference logic

DL = K +  ◇  ⃞ p → p + ◇◇p → p∨◇p

● DL is complete w.r.t inequality frames (W, ≠W).

● Arbitary DL-frames are obtained from S5-frames (equivalence 

frames) by making some points irreflexive.

● Proof (for the lower bound):

 
X ⊨ ◇2p 

y ⊭◇2p 

x ≡
1 y  

z ⊨ p

t ⊨ p



  

Examples of FMD-logics-4

md(Grz+bdn) ≤ 2n-1

md(Grz3+bdn) = n-1

 

Grz  is the logic of finite partial orders,

Grz3  is the logic of finite chains

In transitive Kripke frames bdn forbids chains of 

clusters  of length n+1 : x1Rx2...Rxn+1, where 

⅂ xiRxi+1 for each i.

bdn =⅂◇(Q1∧◇(Q2∧...∧◇Qn+1)),

Qi =pi ∧⋀{⅂◇pj | 1≤j<i}.

Grz3 + bdn = L(n-element chain)



  

Examples of FMD-logics-5

md(Grz3+bd2) = 1, while  1< md(Grz+bd2) ≤ 3 (probably, =2).

0
0

1
1

y
0x

(0,1 show the truth values of p)

Here  x ≡1 y , but  x ≢2 y:

Duplicator wins after 1 round.

Spoiler wins after 2 rounds.



  

Examples of FMD-logics-6

md(K4+bdn) ≤ 4n - 3

Theorem (Segerberg 1971;Maksimova 1975) For L ⊇ K4 

L is locally tabular iff L is of finite transitive depth.

Def  L is of finite transitive depth if L ⊦ bdn   for some n.

Thus
● Every locally tabular extension of K4 has the FMD.

PROBLEM Is there a similar criterion for extensions of K?



  

Examples of FMD-logics-7

If md(L) = m, then md([K+□n⊥,L]) ≤ (m+1)n-1

Def. The commutative join (commutator) 

       [L
1
,L

2 
] :=  L

1*L
2 
(the fusion) +L

2
]:=L

1*L
2 
+

       ⬛
j 
  ⃞ 

i
p ↔   ⃞ 

i
⬛

j
p (commutation axioms)

      ◆
j 
  ⃞ 

i 
p → ⬛

j
◇

i 
p (Church-Rosser axioms)

 



  

Tabularity criterion-1

Theorem (Chagrov 1994)

L is tabular iff L ⊦ αn ∧ Altn   for some n.

The formulas αn , Altn correspond to universal conditions on 
frames: 

● αn forbids simple paths of length n:

x1Rx2...Rxn, where all the xi are different.

● Altn forbids n-branching: xRx1,..., xRxn, , where all the xi are 
different.



  

Tabularity criterion-2

αn =⅂◇(P1∧◇(P2∧...◇(Pn-1∧◇Pn)...)),

Altn=⅂(◇P1∧◇P2∧...∧◇Pn),

where

Pi =⅂pi ∧⋀{pj | 1≤j≤n, j≠i}.



  

Theorems on local tabularity

1. Every logic K
N 
+ αn  (Chagrov's formula) is locally tabular.

Remarks: 
● The proof does not give the FMD
● This theorem was conjectured in 1994 by Chagrov.

2. The logics [K
N 
+ αn ,KN' 

+ □n⊥], [K
N 
+ αn ,S5] are locally 

tabular. 
Remark. In general products and commutative joins do not 
preserve local tabularity, a counterexample is [S5,S5] = S52 
(Tarski).



  

THANK     YOU!
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Logics
● K = L(all frames) 
● K4 := K + ◇◇p → ◇p = L(all transitive frames)
● S4 := K4 + p → ◇p   = L(all transitive reflexive frames) 

 = L(all partial orders)

● Grz := S4 + ⅂(p∧  ⃞ (p → ◇(⅂ p∧◇p)))
  

  = L(all finite partial orders)

● Grz3 := Grz +   ◇p∧◇q → ◇(p∧◇q)∨◇(q∧◇p)

 = L(all finite chains) 
 

● S5 := S4 +  ◇  ⃞ p → p  = L(all equivalence frames) 

 = L(all universal frames [clusters])

All these logics have the FMP, so they are decidable.
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