Complete axiomatizations of lexicographic sums and products of modal logics

Philippe Balbiani ${ }^{1} \quad$ Ilya Shapirovsky ${ }^{2}$
${ }^{1}$ Institut de Recherche en Informatique de Toulouse, CNRS - Toulouse University
${ }^{2}$ Institute for Information Transmission Problems, Russian Academy of Sciences

Topology, Algebra, and Categories in Logic (TACL 2015) Ischia (Italy), June 22, 2015

We consider two natural operations on modal logics -

> lexicographic (or ordered) sums and products.

For such systems we present general completeness results.

We consider two natural operations on modal logics -

$$
\begin{aligned}
& \text { lexicographic (or ordered) } \\
& \text { sums and products. }
\end{aligned}
$$

For such systems we present general completeness results.
Like "usual" product of modal logics, the lexicographic sum and the lexicographic product of modal logics are defined semantically via corresponding operation on their frames.

Sum of frames

Definition

Let $\mathrm{I}=(I, S)$ be a frame, $\left\{\mathrm{F}_{i}=\left(W_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of frames. The lexicographic (or ordered) sum $\sum_{l} F_{i}$ is the frame
(W, R_{+}, S_{+}), where W is the disjoin sum
$\sum_{I} W_{i}=\left\{(w, i) \mid i \in I, w \in W_{i}\right\}$, and

$$
\begin{aligned}
(w, i) R_{+}(u, j) & \Longleftrightarrow i=j \& w R_{i} u \\
(w, i) S_{+}(u, j) & \Longleftrightarrow i S j .
\end{aligned}
$$

I is "vertical", F_{i} are "horizontal".

Sum of logics

Definition

$\sum_{L_{2}} L_{1}$ is the logic of sums where "horizontal" frames are L_{1}-frames, and the "vertical" frame is an L_{2}-frame:

$$
\sum_{L_{2}} L_{1}=\log \left(\left\{\sum_{\mathrm{I}} \mathrm{~F}_{i} \mid \mathrm{I} \models L_{2}, \quad\left\{\mathrm{~F}_{i} \mid i \text { in } \mathrm{I}\right\} \models L_{1}\right\}\right) .
$$

Problem

To construct the axiomatization of $\sum_{L_{2}} L_{1}$, knowing the logics L_{1}, L_{2}.

Some history

In 2007, Lev Beklemishev constructed the axiomatization of

$$
\sum_{G L} G L
$$

Some history

In 2007, Lev Beklemishev constructed the axiomatization of

$$
\sum_{G L} G L, \quad \sum_{G L}\left(\sum_{G L} G L\right), \quad \sum_{G L}\left(\sum_{G L}\left(\sum_{G L} G L\right)\right), \cdots
$$

[L. Beklemishev. Kripke semantics for provability logic GLP. 2010]

Some history

In 2007, Lev Beklemishev constructed the axiomatization of

$$
\sum_{G L} G L, \quad \sum_{G L}\left(\sum_{G L} G L\right), \quad \sum_{G L}\left(\sum_{G L}\left(\sum_{G L} G L\right)\right)
$$

[L. Beklemishev. Kripke semantics for provability logic GLP. 2010] In the context of decidability and complexity, the sum operation turns out to be a good operation!

In many cases the sum operation preserves complexity of logics. In particular, all the above logics are in PSPACE ([Sh, 2008]); it follows that GLP is in PSPACE.

Simultaneously, Sergey Babenyshev and Vladimir Rybakov developed filtrations for sums, and proved a number of decidability results.
[Babenyshev, Rybakov. Logics of Kripke meta-models. 2010]

$$
\begin{aligned}
\alpha=\square_{2} p \rightarrow \square_{1} \square_{2} p, \quad \beta & =\square_{2} p \rightarrow \square_{2} \square_{1} p, \quad \gamma=\diamond_{2} p \rightarrow \square_{1} \diamond_{2} p \\
\sum_{G L} G L & =G L * G L+\{\alpha, \beta, \gamma\}
\end{aligned}
$$

$$
\begin{aligned}
\alpha=\square_{2} p \rightarrow \square_{1} \square_{2} p, \quad \beta & =\square_{2} p \rightarrow \square_{2} \square_{1} p, \quad \gamma=\diamond_{2} p \rightarrow \square_{1} \diamond_{2} p \\
\sum_{G L} G L & =G L * G L+\{\alpha, \beta, \gamma\}
\end{aligned}
$$

What is the meaning of the formulas α, β, γ ?

$$
\begin{aligned}
\alpha=\square_{2} p \rightarrow \square_{1} \square_{2} p, \quad \beta & =\square_{2} p \rightarrow \square_{2} \square_{1} p, \quad \gamma=\diamond_{2} p \rightarrow \square_{1} \diamond_{2} p \\
\sum_{G L} G L & =G L * G L+\{\alpha, \beta, \gamma\}
\end{aligned}
$$

What is the meaning of the formulas α, β, γ ?
α, β, γ are Sahlqvist formulas. For $\mathrm{F}=\left(W, R_{1}, R_{2}\right)$, we have:

$$
\begin{aligned}
& \mathrm{F} \models \alpha \Longleftrightarrow R_{1} \circ R_{2} \subseteq R_{2} \\
& \mathrm{~F} \models \beta \Longleftrightarrow R_{2} \circ R_{1} \subseteq R_{2} \\
& \mathrm{~F} \models \gamma \Longleftrightarrow R_{1}^{-1} \circ R_{2} \subseteq R_{2}
\end{aligned}
$$

$$
\begin{aligned}
\alpha=\square_{2} p \rightarrow \square_{1} \square_{2} p, \quad \beta & =\square_{2} p \rightarrow \square_{2} \square_{1} p, \quad \gamma=\diamond_{2} p \rightarrow \square_{1} \diamond_{2} p \\
\sum_{G L} G L & =G L * G L+\{\alpha, \beta, \gamma\}
\end{aligned}
$$

What is the meaning of the formulas α, β, γ ?
α, β, γ are Sahlqvist formulas. For $\mathrm{F}=\left(W, R_{1}, R_{2}\right)$, we have:

$$
\begin{aligned}
& \mathrm{F} \models \alpha \Longleftrightarrow R_{1} \circ R_{2} \subseteq R_{2} \\
& \mathrm{~F} \models \beta \Longleftrightarrow R_{2} \circ R_{1} \subseteq R_{2} \\
& \mathrm{~F} \models \gamma \Longleftrightarrow R_{1}^{-1} \circ R_{2} \subseteq R_{2}
\end{aligned}
$$

Lemma (2014)
Consider a rooted frame $\mathrm{F}=\left(W, R_{1}, R_{2}\right)$.
$\mathrm{F} \models \alpha \wedge \beta \wedge \gamma$ iff F is a p-morphic image of a sum.

$$
\begin{aligned}
\alpha=\square_{2} p \rightarrow \square_{1} \square_{2} p, \quad \beta & =\square_{2} p \rightarrow \square_{2} \square_{1} p, \quad \gamma=\diamond_{2} p \rightarrow \square_{1} \diamond_{2} p \\
\sum_{G L} G L & =G L * G L+\{\alpha, \beta, \gamma\}
\end{aligned}
$$

What is the meaning of the formulas α, β, γ ?
α, β, γ are Sahlqvist formulas. For $\mathrm{F}=\left(W, R_{1}, R_{2}\right)$, we have:

$$
\begin{aligned}
& \mathrm{F} \models \alpha \Longleftrightarrow R_{1} \circ R_{2} \subseteq R_{2} \\
& \mathrm{~F} \models \beta \Longleftrightarrow R_{2} \circ R_{1} \subseteq R_{2} \\
& \mathrm{~F} \models \gamma \Longleftrightarrow R_{1}^{-1} \circ R_{2} \subseteq R_{2}
\end{aligned}
$$

Lemma (2014)

Consider a rooted frame $\mathrm{F}=\left(W, R_{1}, R_{2}\right)$.
$\mathrm{F} \models \alpha \wedge \beta \wedge \gamma$ iff F is a p-morphic image of a sum.
Corollary
$\sum_{K} K=K * K+\{\alpha, \beta, \gamma\}$

By a closed sentence we mean the standard translation of a closed modal formula.

Horn sentences: $\forall x_{1} \ldots x_{n}\left(\psi_{1} \wedge \ldots \wedge \psi_{k} \rightarrow \psi_{0}\right)$, where ψ_{i} are atoms.

A logic L is Horn axiomatizable, if Frames (L) is an elementary class that is defined by Horn sentences and closed sentences. The standard systems K, T, B, K4, S4, S5, . . are examples of Horn axiomatizable logics.

Theorem 1

Let $L_{1} * L_{2}+\{\alpha, \beta, \gamma\}$ be Kripke complete, L_{2} Horn axiomatizable. Then $\sum_{L_{2}} L_{1}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}$.

Corollary

Let L_{1} and L_{2} be canonical unimodal logics, L_{2} Horn axiomatizable. Then $\sum_{L_{2}} L_{1}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}$.

Lexicographic products of frames

Definition

Let $\mathrm{I}=(I, S)$ be a frame, $\left\{\mathrm{F}_{i}=\left(W_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of frames. The lexicographic (or ordered) sum $\sum_{l} F_{i}$ is the frame (W, R_{+}, S_{+}), where W is the disjoin sum $\sum_{l} W_{i}=\left\{(w, i) \mid i \in I, w \in W_{i}\right\}$, and

$$
\begin{aligned}
(w, i) R_{+}(u, j) & \Longleftrightarrow i=j \& w R_{i} u, \\
(w, i) S_{+}(u, j) & \Longleftrightarrow i S j .
\end{aligned}
$$

Lexicographic products of frames

Definition

Let $\mathrm{I}=(I, S)$ be a frame, $\left\{\mathrm{F}_{i}=\left(W_{i}, R_{i}\right) \mid i \in I\right\}$ be a family of frames. The lexicographic (or ordered) sum $\sum_{l} F_{i}$ is the frame $\left(W, R_{+}, S_{+}\right)$, where W is the disjoin sum $\sum_{I} W_{i}=\left\{(w, i) \mid i \in I, w \in W_{i}\right\}$, and

$$
\begin{aligned}
(w, i) R_{+}(u, j) & \Longleftrightarrow i=j \& w R_{i} u, \\
(w, i) S_{+}(u, j) & \Longleftrightarrow i S j .
\end{aligned}
$$

If for all $i F_{i}=F$, we write $F \lambda I$ for $\sum_{I} F_{i}$; the frame $F \lambda I$ is called the lexicographic product of frames F and I .

Lexicographic products of logics

Definition
For logics L_{1}, L_{2}, put

$$
L_{1} \lambda L_{2}=\log \left(\left\{\mathrm{F} \lambda \mathbf{I} \mid \mathrm{F} \models L_{1}, \mathbf{I} \models L_{2}\right\}\right) .
$$

Problem
To construct the axiomatization of $L_{1} \lambda L_{2}$, knowing the logics L_{1}, L_{2}.

Lexicographic products of logics

Definition

For logics L_{1}, L_{2}, put

$$
L_{1} \lambda L_{2}=\log \left(\left\{\mathrm{F} \lambda \mathbf{I} \mid \mathrm{F} \models L_{1}, \mathbf{I} \models L_{2}\right\}\right) .
$$

Problem

To construct the axiomatization of $L_{1} \lambda L_{2}$, knowing the logics L_{1}, L_{2}.
[Ph. Balbiani, Axiomatization and completeness of lexicographic products of modal logics. 2009.]

Theorem 2 (2009; 2014)
If

- L_{1} and L_{2} are Horn axiomatizable Kripke complete logics, - $\Delta T \in L_{1}$,
then

$$
L_{1} \lambda L_{2}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}
$$

Theorem 2 (2009; 2014)
If

- L_{1} and L_{2} are Horn axiomatizable Kripke complete logics,
- $\Delta T \in L_{1}$,
then

$$
L_{1} \lambda L_{2}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}
$$

and hence,

$$
L_{1} \lambda L_{2}=\sum_{L_{2}} L_{1}
$$

Theorem 2 (2009; 2014)
If

- L_{1} and L_{2} are Horn axiomatizable Kripke complete logics,
- $\Delta T \in L_{1}$,
then

$$
L_{1} \lambda L_{2}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}
$$

and hence,

$$
L_{1} \lambda L_{2}=\sum_{L_{2}} L_{1}
$$

Question (2009)

$$
\mathrm{K} \lambda \mathrm{~K}=?
$$

Φ is the set of all closed formulas in the modal language $\operatorname{ML}\left(\square_{1}\right)$.

Theorem 3

If L_{1} and L_{2} are Horn axiomatizable Kripke complete logics, then

$$
L_{1} \lambda L_{2}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\} \cup \Xi_{1} \cup \bar{\Xi}_{2} \cup \bar{\Xi}_{3},
$$

where

$$
\begin{aligned}
& \bar{\Xi}_{1}=\left\{\Delta_{2} \nabla_{2} p \wedge \Delta_{2} \varphi \rightarrow \Delta_{2}\left(\Delta_{2} p \wedge \varphi\right) \mid \varphi \in \Phi\right\}, \\
& \bar{\Xi}_{2}=\left\{\Delta_{2} \square_{2} \perp \wedge \Delta_{2} \varphi \rightarrow \diamond_{2}\left(\square_{2} \perp \wedge \varphi\right) \mid \varphi \in \Phi\right\}, \\
& \bar{\Xi}_{3}=\left\{\diamond_{2}^{i} \varphi \rightarrow \square_{2}^{j}\left(\diamond_{2} \top \rightarrow \diamond_{2} \varphi\right) \mid i, j \geq 0, \varphi \in \Phi\right\} .
\end{aligned}
$$

Note that
if $\diamond T \in L_{1}$, then

$$
L_{1} * L_{2}+\{\alpha, \beta, \gamma\} \cup \Xi_{1} \cup \bar{\Xi}_{2} \cup \bar{\Xi}_{3}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}
$$

By the way...

Similar situation appears in topological (neighborhood) products of modal logics:
[J. van Benthem, G Bezhanishvili, B. ten Cate, D. Sarenac, 2006], [Kudinov, 2012]
$\mathbf{S} 4 \times_{N}$ S4 $=\mathbf{S} 4 * \mathbf{S} 4$,
$(\mathbf{K}+\diamond \top) \times_{N} \mathbf{S} 4=(\mathbf{K}+\diamond \top) * \mathbf{S} 4$,
$(\mathbf{K}+\diamond T) \times_{N}(\mathbf{K}+\diamond T)=(\mathbf{K}+\diamond T) *(\mathbf{K}+\diamond T)$,

By the way...

Similar situation appears in topological (neighborhood) products of modal logics:
[J. van Benthem, G Bezhanishvili, B. ten Cate, D. Sarenac, 2006], [Kudinov, 2012]
$\mathbf{S} 4 \times_{N} \mathbf{S 4}=\mathbf{S} 4 * \mathbf{S} 4$,
$(\mathrm{K}+\diamond \top) \times_{N} \mathbf{S} 4=(\mathbf{K}+\diamond \top) * \mathbf{S} 4$,
$(\mathbf{K}+\diamond T) \times_{N}(\mathbf{K}+\diamond \top)=(\mathbf{K}+\diamond T) *(\mathbf{K}+\diamond T)$,
[Kudinov, 2014]

$$
\mathbf{K} \times_{N} \mathrm{~K}=\mathbf{K} * \mathrm{~K}+\Delta,
$$

where

$$
\begin{gathered}
\Delta=\left\{\phi \rightarrow \square_{2} \phi \mid \phi \text { is closed } \square_{1} \text {-formula }\right\} \cup \\
\left\{\psi \rightarrow \square_{1} \psi \mid \psi \text { is closed } \square_{2} \text {-formula }\right\} .
\end{gathered}
$$

Φ is the set of all closed formulas in the modal language $\operatorname{ML}\left(\square_{1}\right)$.

Theorem 3

If L_{1} and L_{2} are Horn axiomatizable Kripke complete logics, then

$$
L_{1} \lambda L_{2}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\} \cup \Xi_{1} \cup \bar{\Xi}_{2} \cup \bar{\Xi}_{3},
$$

where

$$
\begin{aligned}
& \bar{\Xi}_{1}=\left\{\Delta_{2} \nabla_{2} p \wedge \Delta_{2} \varphi \rightarrow \Delta_{2}\left(\Delta_{2} p \wedge \varphi\right) \mid \varphi \in \Phi\right\}, \\
& \bar{\Xi}_{2}=\left\{\Delta_{2} \square_{2} \perp \wedge \Delta_{2} \varphi \rightarrow \diamond_{2}\left(\square_{2} \perp \wedge \varphi\right) \mid \varphi \in \Phi\right\}, \\
& \bar{\Xi}_{3}=\left\{\diamond_{2}^{i} \varphi \rightarrow \square_{2}^{j}\left(\diamond_{2} \top \rightarrow \diamond_{2} \varphi\right) \mid i, j \geq 0, \varphi \in \Phi\right\} .
\end{aligned}
$$

Note that
if $\diamond T \in L_{1}$, then

$$
L_{1} * L_{2}+\{\alpha, \beta, \gamma\} \cup \Xi_{1} \cup \bar{\Xi}_{2} \cup \bar{\Xi}_{3}=L_{1} * L_{2}+\{\alpha, \beta, \gamma\}
$$

Decidability and complexity of lexicographic products

From the computational point of view, lexicographic products are safer than "usual" modal products.
For example, the satisfiability problem for $\mathrm{S} 4 \lambda \mathrm{~S} 4$ is in PSPACE.

Theorem

Let L_{1}, L_{2} be Kripke complete unimodal logics, and both L_{1} and L_{2} admit filtration. Then L_{1} and L_{2} have the λ-fmp, i.e.,

$$
L_{1} \lambda L_{2}=\log \left(\left\{F_{1} \lambda F_{2}\left|F_{i}\right|=L_{i}, F_{i} \text { are finite }\right\}\right)
$$

Thank you!

