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Some works I’m in debt to . . .

Tadeusz Litak, Szabolcs Mikulás, and Jan Hidders.
Relational lattices.
In Peter Höfner and et al., editors, RAMiCS 2014, volume
8428 of LNCS, pages 327–343. Springer, 2014.

Marshall Spight and Vadim Tropashko.
First steps in relational lattice.
CoRR, abs/cs/0603044, 2006.

Marshall Spight and Vadim Tropashko.
Relational lattice axioms.
CoRR, abs/0807.3795, 2008.

Vadim Tropashko.
Relational lattice foundation for algebraic logic.
CoRR, abs/0902.3532, 2009.

4/25



Relational
lattices

Bibliography

Intro

Relational
lattices

Axiomatizations

Outline

1 Bibliography

2 Intro

3 Relational lattices

4 Axiomatizations

5/25



Relational
lattices

Bibliography

Intro

Relational
lattices

Axiomatizations

Databases, tables, sqls . . .
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Mixing up tables: the outer join

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∧

Item Description
33 Book
33 Livre
21 Machine

=

Name Surname Item Description
Luigi Santocanale 33 Book
Luigi Santocanale 33 Livre
Alan Turing 21 Machine
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Mixing up tables: the inner union

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∨
Name Surname Sport
Diego Maradona Football
Usain Bolt Athletics

=

Name Surname
Luigi Santocanale
Alan Turing

Diego Maradona
Usain Bolt
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Saving the world with lattice theory and logic

Proposition (Spight & Tropashko [3])

The set of tables, whose columns are indexed by a subset of A
and values are from a set D, is a lattice, with external join as
meet and inner union as join.

Goals

Study the equational theory of relational lattices.

Use knowledge of the equational theory to improve
database queries.

Get a job with Oracle,

. . . a house on the see in California, . . .
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The lattice R(D,A)

A a set of attributes, D a set of values.

A member of R(D,A) is a pair (X ,T ) with X ⊆ A and
T ⊆ DX .

We have

(X1,T1) ≤ (X2,T2) iff X2 ⊆ X1 and T1�X2⊆ T2 .
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A bit of categories . . .

R(D,A) is the category of elements of the functor

P(A)op −→ Set −→ SL∨
X 7→ DX 7→ P(DX ) .

The image of a pullback square satisfies the Beck-Chevalley
property:

P(DX1∩X2)
i --

i
��

P(DX2)

i
��

j
mm

P(DX1)

66

i --

j

JJ

P(DX3)

j

JJ

j

mm
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A bit of algebra . . .

We have an action

j : P(A) −−−−−−−→ Clops(P(DA))

giving rise to a semidirect product construction:

R(D,A) ≡ P(A) nj P(DA)

:= {(X , jX (T )) | X ∈ P(A),T ∈ DA} .

This action satisfies the BC-Malcev-property:

jX∪Y = jX ◦ jY .
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R(D,A) from a closure operator

Define an ultrametric distance on DA with values in P(A):

δ(f , g) = {x ∈ A | f (x) 6= g(x)} .

This distance is

1 symmetric: δ(f , g) = δ(g , f ),

2 it has the Beck-Chevalley-Malcev property: if δ(f , g) ⊆ A ∪ B,
then there exists h such that δ(f , h) ⊆ A and δ(h, g) ⊆ B.

A subset X of A + DA is closed if δ(f , g) ∪ {g} ⊆ X implies f ∈ X .

Proposition (Litak et al. [1])

R(D,A) is isomorphic to the lattice of closed subsets of A + DA.

14/25
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OD-graph based duality

Given a finite latttice L, its OD-graph is the structure
(J(L),≤,�), with

(J(L),≤): ordered join-irreducible els.,

j � C iff C ⊆ J(L) and C is a minimal join-cover of j .

In particular:

j ≤
∨

X iff

there exists C ⊆ J(L) with j � C and C � X ,

where

X � Y iff ∀x ∈ X∃y ∈ Y s.t. x ≤ y .
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Use of duality

semantics, game semantics, . . .

validity of equations . . .

counter-model construction . . .

correspondence results . . .

heuristics . . .

The lattices R(D,A) might not be finite, but they are
more-than-perfect

That is: they enjoy the useful properties of the finite ones.
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Minimal join-covers in R(D,A)

R(D,A) is an atomistic lattice: its atoms are of the form

â, for a ∈ A (these are join-prime);

f̂ , for f ∈ DA.

(Possiblly infinite) mimimal join-covers are those of the form

f̂ ≤
∨

a∈δ(f ,g)

â ∨ ĝ

for each g ∈ DA.

Remarkable property:
Each minimal join-cover has at most one non-join-prime
element.
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Known equations [1]: AxRL1 and AxRL2

AxRL1 is:

x ∧ ((y ∧ (z ∨ x)) ∨ (z ∧ (y ∨ x))) ≤ (x ∧ y) ∨ (x ∧ z)

For u ∈ {y , z}, set

do` ( u ) := (u0 ∨ u1) ∧ (u0 ∨ u2) , doρ( u ) := u0 ∨ (u1 ∧ u2) .

AxRL2 is:

x ∧ (do` ( y ) ∨ do` ( z ))

≤ (x ∧ (doρ( y ) ∨ do` ( z ))) ∨ (x ∧ (do` ( y ) ∨ doρ( z )))

Easy proofs that R(D,A) satifies therse equations using the dual
structure.

19/25
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New equations: UNJP

Set

d`( u ) := u0 ∧ (u1 ∨ u2) , dρ( u ) := (u0 ∧ u1) ∨ (u0 ∧ u2) .

UNJP is:

x ∧ (d`( y ) ∨ d`( z ) ∨ w)

≤ (x ∧ (dρ( y ) ∨ d`( z ) ∨ w)) ∨ (x ∧ (d`( y ) ∨ dρ( z ) ∨ w)) .

Theorem

UNJP holds in a more-than-perfect lattice iff every minimal
join-cover contains at most one non-join-prime element.
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Remarks

Proposition

AXRL2 is derivable from UNJP, but not the converse.

(Throw Mace4, Prover9, and Waldemeister in the trash . . . )

Proposition

Can derive from UNJP

(x ∧ (t`(y) ∨ s`(z) ∨ w)) ∨ (x ∧ (tρ(y) ∨ sρ(z) ∨ w))

= (x ∧ (tρ(y) ∨ s`(z) ∨ w)) ∨ (x ∧ (t`(y) ∨ sρ(z) ∨ w))

whenver t`(y) = tρ(y) and s`(z) = sρ(z) hold on distributive
lattices.
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Other equations: symmetry and the BC property

x ∧ (y ∨ z) ≤ (SymBC1)

(x ∧ (y ∨ (z ∧ (x ∨ y)))) ∨ (x ∧ (z ∨ (y ∧ (x ∨ z))))

x ∧ ((y ∧ z) ∨ (y ∧ x) ∨ (z ∧ x)) (Var-AxRL1)

≤ (x ∧ y) ∨ (x ∧ z)

x ∧ ((x ∧ y) ∨ d`( z )) ≤ (x ∧ ((x ∧ y) ∨ dρ( z ))) ∨ (x ∧ d`( z ))
(R-Mod)

Proposition

UNJP, SymBC1, Var-AxRL1, R-Mod ` AxRL1.
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Theorem

Assume UNJP. A more-than-perfect lattice satisfies SymBC1,
Var-AxRL1, R-Mod if and only if it is symmetric and satisfies
the Beck-Chevalley property.

A more-than-perfect lattice in the variety UNJP is
symmetric iff . . .

A more-than-perfect lattice in the variety the
Beck-Chevalley property iff . . .
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Towards a completeness theorem?

We can obtain similar lattices from (generalized) ultrametric
spaces with distance valued on P(A).

Open problem

Is the above axiomatization complete, w.r.t.

relational lattices?

lattices constructed out of ultrametric spaces?

Tentative answer. No, we miss the distance property:

for each join-irreducible elements j , k there exists at most one
minimal join-covering j � C such that k ∈ C.
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Thanks four your attention . . .

. . . R(D,A)s, get me there !!!
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