Sahlqvist Theory for Hybrid Logics (Unified Correspondence IV)

Willem Conradie and Claudette Robinson Dept. Pure and Applied Mathematics, University of Johannesburg

TACL 2015

Unified correspondence

Hybrid logics [CR15]

DLE-logics [CP12, CPS]

Mu-calculi [CFPS15, CGP14, CC15]

> Regular DLE-logics Kripke frames with impossible worlds [PSZ15a]

Finite lattices and monotone ML [FPS15]

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Canonicity via pseudo-correspondence [CPSZ]

[CP15]

Substructural logics

Display calculi [GMPTZ]

Jónsson-style vs Sambin-style canonicity [PSZ15b]

Fix countably infinite disjoint sets PROP and NOM of propositional variables (p, q, r, ...) and nominals ($\mathbf{i}, \mathbf{j}, \mathbf{k}, ...$), respectively. Then $\mathcal{H}(@)$ is defined as follows:

 $\varphi ::= \bot | p | \mathbf{i} | \neg \varphi | \varphi \land \psi | \Diamond \varphi | @_{\mathbf{j}}\varphi,$

with $p \in PROP$ and $i \in NOM$.

Fix countably infinite disjoint sets PROP and NOM of propositional variables (p, q, r, ...) and nominals ($\mathbf{i}, \mathbf{j}, \mathbf{k}, ...$), respectively. Then $\mathcal{H}(@)$ is defined as follows:

 $\varphi ::= \bot \mid p \mid \mathbf{i} \mid \neg \varphi \mid \varphi \land \psi \mid \Diamond \varphi \mid \mathbb{Q}_{\mathbf{j}}\varphi,$

with $p \in \text{PROP}$ and $\mathbf{i} \in \text{NOM}$.

The expanded language $\mathcal{H}^+(\mathbb{Q})$ is defined as follows:

$$\varphi ::= \bot | p | \mathbf{i} | \neg \varphi | \varphi \land \psi | \Diamond \varphi | @_{\mathbf{j}}\varphi | \diamond^{-1}\varphi | \mathsf{E}\varphi,$$

with $p \in PROP$ and $i \in NOM$.

Fix countably infinite disjoint sets PROP and NOM of propositional variables (p, q, r, ...) and nominals ($\mathbf{i}, \mathbf{j}, \mathbf{k}, ...$), respectively. Then $\mathcal{H}(@)$ is defined as follows:

 $\varphi ::= \bot \mid p \mid \mathbf{i} \mid \neg \varphi \mid \varphi \land \psi \mid \Diamond \varphi \mid \mathbb{Q}_{\mathbf{j}}\varphi,$

with $p \in PROP$ and $i \in NOM$.

The expanded language $\mathcal{H}^+(\mathbb{Q})$ is defined as follows:

$$\varphi ::= \bot | p | \mathbf{i} | \neg \varphi | \varphi \land \psi | \Diamond \varphi | @_{\mathbf{j}}\varphi | \Diamond^{-1}\varphi | \mathsf{E}\varphi,$$

ション キョン キョン キョン しょう

with $p \in PROP$ and $i \in NOM$.

Let $\varphi, \psi, \varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_n \in \mathcal{H}^+(\mathbb{Q})$. Then:

• an inequality is an expression of the form $\varphi \leq \psi$;

Fix countably infinite disjoint sets PROP and NOM of propositional variables (p, q, r, ...) and nominals ($\mathbf{i}, \mathbf{j}, \mathbf{k}, ...$), respectively. Then $\mathcal{H}(@)$ is defined as follows:

 $\varphi ::= \bot \mid p \mid \mathbf{i} \mid \neg \varphi \mid \varphi \land \psi \mid \Diamond \varphi \mid \mathbb{Q}_{\mathbf{j}}\varphi,$

with $p \in PROP$ and $i \in NOM$.

The expanded language $\mathcal{H}^+(\mathbb{Q})$ is defined as follows:

$$\varphi ::= \bot | p | \mathbf{i} | \neg \varphi | \varphi \land \psi | \Diamond \varphi | @_{\mathbf{j}}\varphi | \Diamond^{-1}\varphi | \mathsf{E}\varphi,$$

with $p \in PROP$ and $i \in NOM$.

Let $\varphi, \psi, \varphi_1, \ldots, \varphi_n, \psi_1, \ldots, \psi_n \in \mathcal{H}^+(\mathbb{Q})$. Then:

- an inequality is an expression of the form $\varphi \leq \psi$;
- a quasi-inequality is an expression of the form $\varphi_1 \leq \psi_1 \& \cdots \& \varphi_n \leq \psi_n \Rightarrow \varphi \leq \psi$.

Models

- $\mathcal{M} = (W, R, V)$ with
 - ► $W \neq \emptyset$
 - $R \subseteq W \times W$
 - ▶ $V : \mathsf{PROP} \to \mathcal{P}(W)$
 - ▶ V : NOM \rightarrow {{w} | $w \in W$ }

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Relational semantics

- $\mathcal{M}, w \models p \text{ iff } w \in V(p);$
- $\mathcal{M}, w \models i \text{ iff } V(i) = \{w\};$
- $\mathcal{M}, w \models \neg \varphi$ iff $\mathcal{M}, w \not\models \varphi$;
- $\mathcal{M}, w \models \varphi \land \psi$ iff $\mathcal{M}, w \models \varphi$ and $\mathcal{M}, w \models \psi$;
- $\mathcal{M}, w \models \Diamond \varphi$ iff $\mathcal{M}, v \models \varphi$ for some $v \in W$ with wRv;
- $\mathcal{M}, w \models \mathbb{Q}_{i}\varphi$ iff $\mathcal{M}, v \models \varphi$ where $V(i) = \{v\}$;
- $\mathcal{M}, w \models \diamond^{-1}\varphi$ iff $\mathcal{M}, v \models \varphi$ for some $v \in W$ with vRw;

• $\mathcal{M}, w \models \mathsf{E}\varphi$ iff $\mathcal{M}, v \models \varphi$ for some $v \in W$.

Definition A hybrid algebra is a pair $\mathfrak{A} = (\mathbf{A}, X_A)$, where $\mathbf{A} = (A, \land, \lor, \neg, \bot, \top, \diamondsuit)$ such that $(A, \land, \lor, \neg, \bot, \top, \diamondsuit)$ is a BAO containing at least one atom and $\emptyset \neq X_A \subseteq At\mathbf{A}$.

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Definition A hybrid algebra is a pair $\mathfrak{A} = (\mathbf{A}, X_A)$, where $\mathbf{A} = (A, \land, \lor, \neg, \bot, \top, \diamondsuit)$ such that $(A, \land, \lor, \neg, \bot, \top, \diamondsuit)$ is a BAO containing at least one atom and $\emptyset \neq X_A \subseteq At\mathbf{A}$.

Definition

Any hybrid algebra can be turned into a hybrid algebra for $\mathcal{H}(\mathbb{Q})$ by adding a binary operator \mathbb{Q} whose first coordinate ranges over X_A and the second coordinate over all elements of the algebra, defined by

ション キョン キョン キョン しょう

Definition

A hybrid algebra $\mathbf{A} = (A, X_A)$ is said to be complete if \mathbf{A} is a complete BAO.

Definition

A hybrid algebra $\mathbf{A} = (A, X_A)$ is said to be complete if \mathbf{A} is a complete BAO.

Definition

A hybrid algebra $\mathbf{A} = (A, X_A)$ is atomic if \mathbf{A} is atomic and $X_A = At\mathbf{A}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

A hybrid algebra $\mathbf{A} = (A, X_A)$ is said to be complete if \mathbf{A} is a complete BAO.

Definition

A hybrid algebra $\mathbf{A} = (A, X_A)$ is atomic if \mathbf{A} is atomic and $X_A = At\mathbf{A}$.

Definition

A permeated hybrid algebra is a hybrid algebra $\mathfrak{A} = (A, X_A)$ satisfying the following additional conditions:

- 1. for each $\perp \neq a \in A$, there is an atom $x \in X_A$ such that $x \leq a$, and
- 2. for all $x \in X_A$ and $a \in A$, if $x \le \diamond a$, then there exists a $y \in X_A$ such that $y \le a$ and $x \le \diamond y$.

Algebraic semantics

Definition

An assignment on a hybrid algebra (**A**, X_A) is a map v associating an element of A with each propositional variable in PROP and an atom of X_A with each nominal in NOM. Given an assignment v, we calculate the meaning $\tilde{v}(t)$ of a term t as follows:

- 1. $v(\perp) = \perp$; 2. $\tilde{v}(p) = v(p)$; 5. $\tilde{v}(\varphi \land \psi) = \tilde{v}(\varphi) \land \tilde{v}(\psi)$; 6. $(\Diamond \varphi) = \Diamond \tilde{v}(\varphi)$;
- 3. $\tilde{v}(\mathbf{i}) = v(\mathbf{i});$ 7. $\tilde{v}(\mathbb{Q}_{\mathbf{i}}\varphi) = \mathbb{Q}_{\tilde{v}(\mathbf{i})}\tilde{v}(\varphi);$
- 4. $\tilde{v}(\neg \varphi) = \neg \tilde{v}(\varphi);$ 8. $\tilde{v}(\mathsf{E}\varphi) = \mathsf{E}\tilde{v}(\varphi).$

An inequality $\varphi \leq \psi$ is true in a hybrid algebra \mathfrak{A} ($\mathfrak{A} \models \varphi \leq \psi$) if for all assignments $v, v(\varphi) \leq v(\psi)$.

A quasi-inequality $\varphi_1 \leq \psi_1 \& \cdots \& \varphi_n \leq \psi_n \Rightarrow \varphi \leq \psi$ is true in a hybrid algebra \mathfrak{A} under assignment v, if $\varphi_i \leq \psi_i$ is not true in \mathfrak{A} under v for some $1 \leq i \leq n$, or $\varphi \leq \psi$ is true in \mathfrak{A} under v.

Admissible validity

Let $\mathfrak{A} = (\mathbf{A}, X_A)$ be a hybrid subalgebra of $\mathfrak{B} = (\mathbf{B}, X_B)$, i.e, \mathbf{A} is a subalgebra of \mathbf{B} and $X_A \subseteq X_B$. An admissible assignment in \mathfrak{B} relative to \mathfrak{A} is any assignment sending propositional variables into A and nominals into X_A .

We say that an inequality $\varphi \leq \psi$ is admissibly valid in \mathfrak{B} relative to \mathfrak{A} , denoted $\mathfrak{B} \models_{\mathfrak{A}} \varphi \leq \psi$, if \mathfrak{B} , $v \models \varphi \leq \psi$ for every admissible assignment v relative to \mathfrak{A} .

ション キョン キョン キョン しょう

Note that if $\varphi, \psi \in \mathcal{H}(\mathbb{Q})$, then $\mathfrak{B} \models_{\mathfrak{A}} \varphi \leq \psi$ iff $\mathfrak{A} \models \varphi \leq \psi$.

Canonical extensions and MacNeille completions

Definition

The canonical extension of a hybrid algebra $\mathfrak{A} = (\mathbf{A}, X_A)$ is the hybrid algebra $\mathfrak{A}^{\delta} = (\mathbf{A}^{\delta}, X_{A^{\delta}})$ such that \mathbf{A}^{δ} is the canonical extension of \mathbf{A} and $X_{A^{\delta}} = At\mathbf{A}^{\delta}$.

ション キョン キョン キョン しょう

Definition

The canonical extension of a hybrid algebra $\mathfrak{A} = (\mathbf{A}, X_A)$ is the hybrid algebra $\mathfrak{A}^{\delta} = (\mathbf{A}^{\delta}, X_{A^{\delta}})$ such that \mathbf{A}^{δ} is the canonical extension of \mathbf{A} and $X_{A^{\delta}} = At\mathbf{A}^{\delta}$.

Definition

We define the MacNeille completion of a hybrid algebra $\mathfrak{A}^{dm} = (\mathbf{A}, X_A)$ to be the hybrid algebra $\mathfrak{A}^{dm} = (\mathbf{A}^{dm}, X_{A^{dm}})$ such that \mathbf{A}^{dm} is the MacNeille completion of \mathbf{A} and $X_{A^{dm}} = At\mathbf{A}^{dm}$.

ション キョン キョン キョン しょう

Every modal Sahlqvist formula has two properties:

Every modal Sahlqvist formula has two properties:

 firstly, it has a local first-order frame correspondent and, secondly,

Every modal Sahlqvist formula has two properties:

 firstly, it has a local first-order frame correspondent and, secondly,

it is canonical.

Every modal Sahlqvist formula has two properties:

- firstly, it has a local first-order frame correspondent and, secondly,
- it is canonical.

If Σ is a set of Sahlqvist formulas, then $\mathbf{K} \oplus \Sigma$ is strongly complete with respect to its class of Kripke frames.

 Formulas obtained by introducing nominals into Sahlqvist formulas also has first-order frame correspondents.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Formulas obtained by introducing nominals into Sahlqvist formulas also has first-order frame correspondents.
- If Σ is a set of Salqvist formulas, then H(@) ⊕ Σ is strongly complete with respect to its class of Kripke frames [Ten Cate, Marx and Viana].

- Formulas obtained by introducing nominals into Sahlqvist formulas also has first-order frame correspondents.
- If Σ is a set of Salqvist formulas, then H(@) ⊕ Σ is strongly complete with respect to its class of Kripke frames [Ten Cate, Marx and Viana].
- If Σ is a set of pure formulas (formulas containing no propositional variables), then H⁺(@) ⊕ Σ is strongly complete with respect to its class of Kripke frames [G. Gargov and V. Goranko].

- Formulas obtained by introducing nominals into Sahlqvist formulas also has first-order frame correspondents.
- If Σ is a set of Salqvist formulas, then H(@) ⊕ Σ is strongly complete with respect to its class of Kripke frames [Ten Cate, Marx and Viana].
- If Σ is a set of pure formulas (formulas containing no propositional variables), then H⁺(@) ⊕ Σ is strongly complete with respect to its class of Kripke frames [G. Gargov and V. Goranko].
- The second and third result cannot be combined in general: the logic H⁺(@) ⊕ {◊□p → □◊p, ◊(i ∧ □j) → □(◊j → i)} is incomplete [Ten Cate, Marx and Viana].

The logics H(@) and $H^+(@)$: axioms

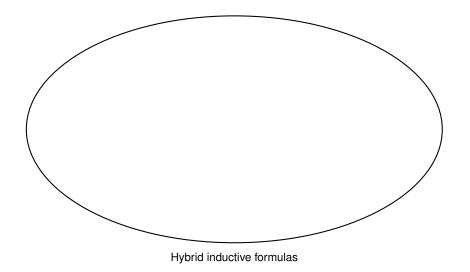
 $\begin{array}{lll} (Taut) & \vdash \varphi \text{ for all propositional tautologies } \varphi. \\ (K) & \vdash \Box(p \to q) \to (\Box p \to \Box q) \\ (Dual) & \vdash \diamond p \leftrightarrow \neg \Box \neg p \\ (K_{@}) & \vdash @_{j}(p \to q) \to (@_{j}p \to @_{j}q) \\ (Selfdual) & \vdash \neg @_{j}p \leftrightarrow @_{j} \neg p \\ (Ref) & \vdash @_{j}j \\ (Intro) & \vdash j \land p \to @_{j}p \\ (Back) & \vdash \diamond @_{j}p \to @_{j}p \\ (Agree) & \vdash @_{i}@_{i}p \to @_{j}p \end{array}$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

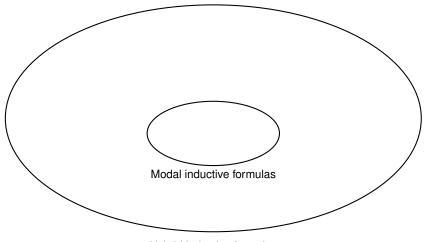
The logics H(@) and $H^+(@)$: inference rules

(Modus ponens) (Sorted substitution) (Nec) (Nec_@) (Name_@) (BG_@) If $\vdash \varphi \rightarrow \psi$ and $\vdash \varphi$, then $\vdash \psi$. $\vdash \varphi'$ whenever $\vdash \varphi$, where φ' is obtained from φ by sorted substitution. If $\vdash \varphi$, then $\vdash \Box \varphi$. If $\vdash \varphi$, then $\vdash \mathbb{Q}_{i}\varphi$. If $\vdash \mathbb{Q}_{i}\varphi$, then $\vdash \varphi$ for **i** not occurring in φ . If $\vdash @_{i} \diamond j \land @_{i} \varphi \rightarrow \psi$, then $\vdash @_{i} \diamond \varphi \rightarrow \psi$ for $\mathbf{i} \neq \mathbf{i}$ and \mathbf{i} not occurring in φ and ψ .

・ロト・西ト・ヨト・ヨー シック

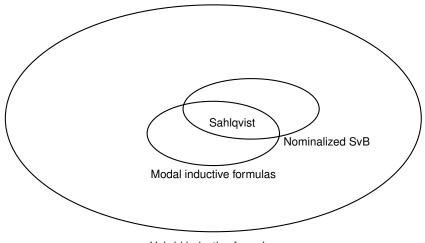


▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ



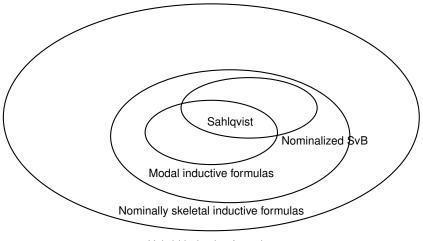
Hybrid inductive formulas

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ



Hybrid inductive formulas

(ロト (個) (E) (E) (E) (9)



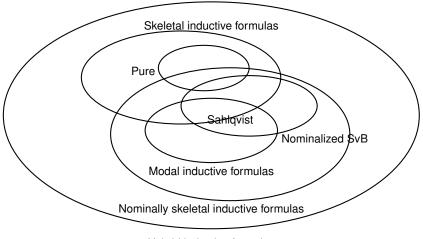
Hybrid inductive formulas

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ



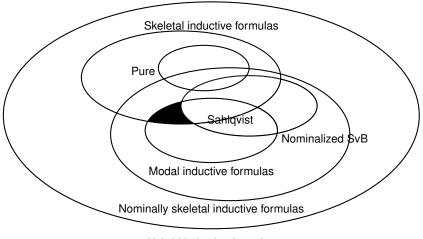
Hybrid inductive formulas

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



Hybrid inductive formulas

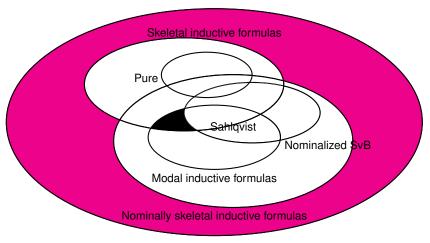
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



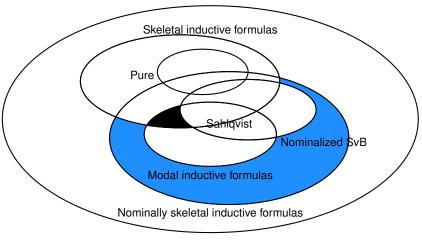
Hybrid inductive formulas

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

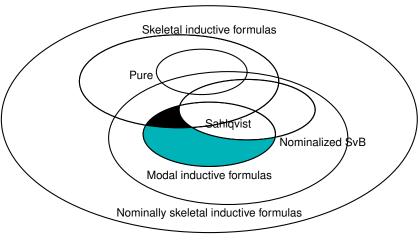
$@_{i}\rho \land \diamond \Box (\rho \land i) \to \Box \diamond (\rho \lor i)$

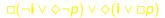


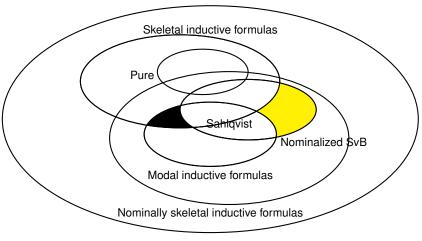
Hybrid inductive formulas

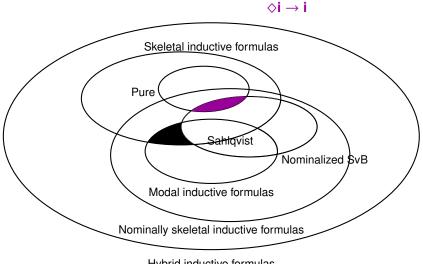


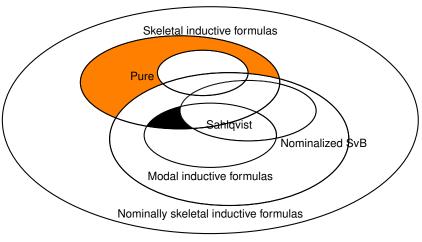
Hybrid inductive formulas

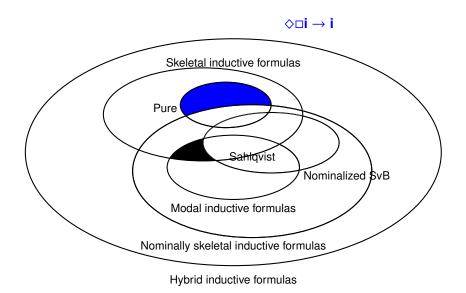












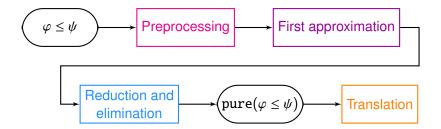
Hybrid-ALBA

The key methodological tool in proving the new results is a hybrid version of the ALBA algorithm [Conradie and Palmigiano], called hybrid-ALBA.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Hybrid-ALBA

The key methodological tool in proving the new results is a hybrid version of the ALBA algorithm [Conradie and Palmigiano], called hybrid-ALBA.



Preprocessing

$$\frac{\alpha \leq \beta \land \gamma}{\alpha \leq \beta \And \alpha \leq \gamma} (\land \mathsf{-Adj}) \quad \frac{\alpha \lor \beta \leq \gamma}{\alpha \leq \gamma \And \beta \leq \gamma} (\lor \mathsf{-Adj})$$

$$\begin{aligned} \alpha \wedge (\beta \vee \gamma) &\equiv (\alpha \wedge \beta) \vee (\alpha \wedge \gamma) & \alpha \vee (\beta \wedge \gamma) \equiv (\alpha \vee \beta) \wedge (\alpha \vee \gamma) \\ \neg (\alpha \vee \beta) &\equiv \neg \alpha \wedge \neg \beta & \neg (\alpha \wedge \beta) \equiv \neg \alpha \vee \neg \beta \\ \diamond (\alpha \vee \beta) &\equiv \diamond \alpha \vee \diamond \beta & \Box (\alpha \wedge \beta) \equiv \Box \alpha \wedge \Box \beta \\ \mathbf{0}_{\mathbf{i}}(\alpha \vee \beta) &\equiv \mathbf{0}_{\mathbf{i}} \alpha \vee \mathbf{0}_{\mathbf{i}} \beta & \mathbf{0}_{\mathbf{i}}(\alpha \wedge \beta) \equiv \mathbf{0}_{\mathbf{i}} \alpha \wedge \mathbf{0}_{\mathbf{i}} \beta \end{aligned}$$

・ロト・日本・日本・日本・日本・日本・日本

Let $\{\varphi_i \leq \psi_i \mid i \in I\}$ be the set of inequalities obtained by preprocessing. Then the following rule is applied to each $\varphi_i \leq \psi_i$ only once:

$$\frac{\varphi_i \leq \psi_i}{\mathbf{i}_0 \leq \varphi_i \ \& \psi_i \leq \neg \mathbf{j}_0 \Rightarrow \mathbf{i}_0 \leq \neg \mathbf{j}_0}$$
(First-Approx)

Here \mathbf{i}_0 and \mathbf{j}_0 are new nominals which do not occur in any inequality received in input.

Ackermann rules

$$\frac{\mathbf{a}_{i=1}^{n} \alpha_{i} \leq p \& \mathbf{a}_{j=1}^{m} \beta_{j}(p) \leq \gamma_{j}(p)}{\mathbf{a}_{j=1}^{m} \beta_{j}(\bigvee_{i=1}^{n} \alpha_{i}) \leq \gamma_{j}(\bigvee_{i=1}^{n} \alpha_{i})}$$
(RH-Ack)

$$\frac{\mathbf{a}_{i=1}^{n} p \leq \alpha_{i} \mathbf{a}_{i} \mathbf{a}_{j=1}^{m} \gamma_{j}(p) \leq \beta_{j}(p)}{\mathbf{a}_{j=1}^{m} \gamma_{j}(\bigwedge_{i=1}^{n} \alpha_{i}) \leq \beta_{j}(\bigwedge_{i=1}^{n} \alpha_{i})}$$
(LH-Ack)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

Here

- 1. the α_i are *p*-free,
- 2. the β_i are positive in *p*, and
- 3. the γ_i are negative in *p*.

Adjunction rules

$$\frac{\alpha \leq \beta \land \gamma}{\alpha \leq \beta \& \alpha \leq \gamma} (\land \mathsf{-Adj}) \quad \frac{\alpha \lor \beta \leq \gamma}{\alpha \leq \gamma \& \beta \leq \gamma} (\lor \mathsf{-Adj})$$

$$\frac{\alpha \leq \Box \beta}{\diamond^{-1} \alpha \leq \beta} (\Box \operatorname{\mathsf{-Adj}}) \quad \frac{\diamond \alpha \leq \beta}{\alpha \leq \Box^{-1} \beta} (\diamond \operatorname{\mathsf{-Adj}})$$

$$\frac{\alpha \leq \neg \beta}{\beta \leq \neg \alpha} (\neg -\mathsf{R}-\mathsf{Adj}) \quad \frac{\neg \alpha \leq \beta}{\neg \beta \leq \alpha} (\neg -\mathsf{L}-\mathsf{Adj})$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Residuation rules

$$\frac{\alpha \land \beta \le \gamma}{\alpha \le \beta \to \gamma} (\land -\mathsf{Res}) \qquad \frac{\alpha \le \beta \lor \gamma}{\alpha \land \neg \beta \le \gamma} (\lor -\mathsf{Res}) \qquad \frac{\alpha \le \beta \to \gamma}{\alpha \land \beta \le \gamma} (\to -\mathsf{Res})$$

$$\frac{\alpha \leq \mathbf{0}_{\mathbf{j}}\beta}{\alpha \leq \perp \ \mathcal{P} \mathbf{j} \leq \beta} \ (\mathbf{0}\text{-}\mathbf{R}\text{-}\mathbf{Res}) \qquad \frac{\mathbf{0}_{\mathbf{j}}\alpha \leq \beta}{\top \leq \beta \ \mathcal{P} \ \alpha \leq \neg \mathbf{j}} \ (\mathbf{0}\text{-}\mathbf{L}\text{-}\mathbf{Res})$$

Approximation rules

$$\frac{\Box \alpha \leq \neg \mathbf{i}}{\exists \mathbf{j} (\Box \neg \mathbf{j} \leq \neg \mathbf{i} \& \alpha \leq \neg \mathbf{j})} (\Box \neg \mathsf{Approx}) \qquad \frac{\mathbf{i} \leq \Diamond \alpha}{\exists \mathbf{j} (\mathbf{i} \leq \Diamond \mathbf{j} \& \mathbf{j} \leq \alpha)} (\Diamond \neg \mathsf{Approx})$$

$$\frac{\mathbf{i} \leq \mathbf{0}_{\mathbf{j}} \alpha}{\mathbf{j} \leq \alpha} \quad (\mathbb{Q}\text{-}\mathsf{R}\text{-}\mathsf{Approx}) \qquad \frac{\mathbf{0}_{\mathbf{j}} \alpha \leq \neg \mathbf{i}}{\alpha \leq \neg \mathbf{j}} \quad (\mathbb{Q}\text{-}\mathsf{L}\text{-}\mathsf{Approx})$$

The nominal **j** in (\Box -Approx) and (\diamond -Approx) is a new nominal not occuring in the computation thus far.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Every hybrid inductive formula has a local first-order frame correspondent.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Theorem

Every inductive formula that is nominally skeletal is preserved under canonical extensions of permeated hybrid algebras.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Every inductive formula that is nominally skeletal is preserved under canonical extensions of permeated hybrid algebras.

Proof

$$\begin{split} \mathfrak{A} &\models \varphi \leq \psi & \mathfrak{A}^{\delta} \models \varphi \leq \psi \\ \mathfrak{A} & \mathfrak{A}^{\delta} \models_{\mathfrak{A}} \varphi \leq \psi & \mathfrak{A} \\ \mathfrak{A}^{\delta} &\models_{\mathfrak{A}} \varphi \leq \psi & \mathfrak{A} \\ \mathfrak{A}^{\delta} \models_{\mathfrak{A}} \mathfrak{i}_{0} \leq \varphi & \& & \psi \leq \mathfrak{j}_{0} \Rightarrow \mathfrak{i}_{0} \leq \neg \mathfrak{i}_{0} \\ \mathfrak{A}^{\delta} \models_{\mathfrak{A}} \mathfrak{pure}(\varphi \leq \psi) & \longleftrightarrow & \mathfrak{A}^{\delta} \models \mathfrak{pure}(\varphi \leq \psi) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Corollary

For any set Σ of inductive formulas that are nominally skeletal, the logic $\mathbf{H}^+(@) \oplus \Sigma$ is sound and strongly complete with respect to the class of Kripke frames defined by the first-order correspondents of the axioms in Σ .

Theorem

Every skeletal formula is preserved under Dedekind MacNeille completions of atomic hybrid algebras in which \diamond preserves all existing joins.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem

Every skeletal formula is preserved under Dedekind MacNeille completions of atomic hybrid algebras in which \diamond preserves all existing joins.

Proof

|▲□▶▲□▶▲三▶▲三▶ 三三 のへぐ

Corollary

For any set Σ of skeletal formulas, the logic $\mathbf{H}^+(@) \oplus \Sigma$ is sound and strongly complete with respect to the class of Kripke frames defined by the first-order correspondents of the axioms in Σ .

Relationship between main results

 Gehrke, Harding and Venema showed that all varieties of monotone bounded lattice expansions which are closed under MacNeille completions are also closed under canonical extensions.

Relationship between main results

- Gehrke, Harding and Venema showed that all varieties of monotone bounded lattice expansions which are closed under MacNeille completions are also closed under canonical extensions.
- So are the skeletal inductive hybrid formulas also preserved under canonical extensions?

Relationship between main results

- Gehrke, Harding and Venema showed that all varieties of monotone bounded lattice expansions which are closed under MacNeille completions are also closed under canonical extensions.
- So are the skeletal inductive hybrid formulas also preserved under canonical extensions?
- No, the irreflexivity axiom i → ¬◊i is a skeletal inductive formula which is not preserved under canonical extensions [Conradie].

[Conradie Craig] Canonicity results for mu-calculi: an algorithmic approach, *JLC*, to appear, 2015.

[Conradie Fomatati Palmigiano Sourabh] Correspondence theory for intuitionistic modal mu-calculus, *TCS*, 564:30-62 (2015).

[Conradie Ghilardi Palmigiano] Unified Correspondence, in Johan van Benthem on Logic and Information Dynamics, Springer, 2014.

[Conradie Palmigiano 2012] Algorithmic Correspondence and Canonicity for Distributive Modal Logic, *APAL*, 163:338-376.

[Conradie Palmigiano 2015] Algorithmic correspondence and canonicity for non-distributive logics, *JLC*, to appear.

[Conradie Palmigiano Sourabh] Algebraic modal correspondence: Sahlqvist and beyond, submitted, 2014.

[Conradie Palmigiano Sourabh Zhao] Canonicity and relativized canonicity via pseudo-correspondence, submitted, 2014.

[Conradie Robinson 2015] On Sahlqvist Theory for Hybrid Logics, *JLC*, to appear. [Frittella Palmigiano Santocanale] Dual characterizations for finite lattices via correspondence theory for monotone modal logic, *JLC*, to appear.

[Gargov Goranko 1993] Modal logic with names, *Journal of Philosophical Logic*, 22:607-636.

[Gehrke Harding Venema 2006] MacNeille completions and canonical extensions, *Transactions of the American Mathematical Society*, 358:573-590. [Greco Ma Palmigiano Tzimoulis Zhao] Unified correspondence as a proof-theoretic tool, submitted, 2015. [Palmigiano Sourabh Zhao/a] Sahlqvist theory for impossible worlds, *JLC*, 2015. [Palmigiano Sourabh Zhao/b] Jónsson-style canonicity for ALBA inequalities, *JLC*, 2015.

[Ten Cate Marx Viana 2005] Hybrid logics with Sahlqvist axioms, *Logic Journal of the IGPL*, 13(3):293-300.

(日)

Thank you!

(ロト (個) (E) (E) (E) (9)