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Languages

Fix countably infinite disjoint sets PROP and NOM of propositional
variables (p, q, r , . . .) and nominals (i, j, k, . . .), respectively. Then
H(@) is defined as follows:

ϕ ::= ⊥ | p | i | ¬ϕ | ϕ ∧ ψ | ^ϕ | @jϕ,

with p ∈ PROP and i ∈ NOM.

The expanded language H+(@) is defined as follows:

ϕ ::= ⊥ | p | i | ¬ϕ | ϕ ∧ ψ | ^ϕ | @jϕ | ^
−1ϕ | Eϕ,

with p ∈ PROP and i ∈ NOM.
Let ϕ, ψ, ϕ1, . . . , ϕn, ψ1, . . . , ψn ∈ H

+(@). Then:

I an inequality is an expression of the form ϕ ≤ ψ;
I a quasi-inequality is an expression of the form
ϕ1 ≤ ψ1 & · · ·& ϕn ≤ ψn ⇒ ϕ ≤ ψ.
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Models

M = (W ,R ,V) with

I W , ∅
I R ⊆ W ×W
I V : PROP→ P(W)

I V : NOM→ {{w} | w ∈ W }



Relational semantics

I M,w |= p iff w ∈ V(p);
I M,w |= i iff V(i) = {w};
I M,w |= ¬ϕ iffM,w 6|= ϕ;
I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ;
I M,w |= ^ϕ iffM, v |= ϕ for some v ∈ W with wRv;
I M,w |= @iϕ iffM, v |= ϕ where V(i) = {v};
I M,w |= ^−1ϕ iffM, v |= ϕ for some v ∈ W with vRw;
I M,w |= Eϕ iffM, v |= ϕ for some v ∈ W .



Hybrid algebras

Definition
A hybrid algebra is a pair A = (A,XA ), where
A = (A ,∧,∨,¬,⊥,>,^) such that (A ,∧,∨,¬,⊥,>,^) is a BAO
containing at least one atom and ∅ , XA ⊆ AtA.

Definition
Any hybrid algebra can be turned into a hybrid algebra forH(@) by
adding a binary operator @ whose first coordinate ranges over XA

and the second coordinate over all elements of the algebra,
defined by

@xa =

{
> if x ≤ a
⊥ otherwise
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Hybrid algebras

Definition
A hybrid algebra A = (A ,XA ) is said to be complete if A is a
complete BAO.

Definition
A hybrid algebra A = (A ,XA ) is atomic if A is atomic and
XA = AtA.

Definition
A permeated hybrid algebra is a hybrid algebra A = (A ,XA )
satisfying the following additional conditions:

1. for each ⊥ , a ∈ A , there is an atom x ∈ XA such that x ≤ a,
and

2. for all x ∈ XA and a ∈ A , if x ≤ ^a, then there exists a y ∈ XA

such that y ≤ a and x ≤ ^y.
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Algebraic semantics

Definition
An assignment on a hybrid algebra (A,XA ) is a map v associating an element of
A with each propositional variable in PROP and an atom of XA with each nominal
in NOM. Given an assignment v, we calculate the meaning ṽ(t) of a term t as
follows:

1. v(⊥) = ⊥;

2. ṽ(p) = v(p);

3. ṽ(i) = v(i);

4. ṽ(¬ϕ) = ¬ṽ(ϕ);

5. ṽ(ϕ ∧ ψ) = ṽ(ϕ) ∧ ṽ(ψ);

6. (̃^ϕ) = ^ṽ(ϕ);

7. ṽ(@iϕ) = @ṽ(i)ṽ(ϕ);

8. ṽ(Eϕ) = Eṽ(ϕ).

An inequality ϕ ≤ ψ is true in a hybrid algebra A (A |= ϕ ≤ ψ) if for all assignments
v, v(ϕ) ≤ v(ψ).

A quasi-inequality ϕ1 ≤ ψ1 & · · ·& ϕn ≤ ψn ⇒ ϕ ≤ ψ is true in a hybrid algebra A
under assignment v, if ϕi ≤ ψi is not true in A under v for some 1 ≤ i ≤ n, or
ϕ ≤ ψ is true in A under v.



Admissible validity

Let A = (A,XA ) be a hybrid subalgebra of B = (B,XB), i.e, A is a
subalgebra of B and XA ⊆ XB . An admissible assignment in B
relative to A is any assignment sending propositional variables into
A and nominals into XA .

We say that an inequality ϕ ≤ ψ is admissibly valid in B relative to
A, denoted B |=A ϕ ≤ ψ, if B, v |= ϕ ≤ ψ for every admissible
assignment v relative to A.

Note that if ϕ, ψ ∈ H(@), then B |=A ϕ ≤ ψ iff A |= ϕ ≤ ψ.



Canonical extensions and MacNeille completions

Definition
The canonical extension of a hybrid algebra A = (A,XA ) is the
hybrid algebra Aδ = (Aδ,XAδ) such that Aδ is the canonical
extension of A and XAδ = AtAδ.

Definition
We define the MacNeille completion of a hybrid algebra
A = (A,XA ) to be the hybrid algebra Adm = (Adm,XAdm ) such that
Adm is the MacNeille completion of A and XAdm = AtAdm.
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Sahlqvist theory for modal logic

Every modal Sahlqvist formula has two properties:

I firstly, it has a local first-order frame correspondent and,
secondly,

I it is canonical.

If Σ is a set of Sahlqvist formulas, then K ⊕ Σ is strongly complete
with respect to its class of Kripke frames.
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Sahlqvist theory for hybrid logics: known results

I Formulas obtained by introducing nominals into Sahlqvist
formulas also has first-order frame correspondents.

I If Σ is a set of Salqvist formulas, then H(@) ⊕ Σ is strongly
complete with respect to its class of Kripke frames [Ten Cate,
Marx and Viana].

I If Σ is a set of pure formulas (formulas containing no
propositional variables), then H+(@) ⊕ Σ is strongly complete
with respect to its class of Kripke frames [G. Gargov and V.
Goranko].

I The second and third result cannot be combined in general:
the logic H+(@) ⊕ {^�p → �^p,^(i ∧ �j)→ �(^j→ i)} is
incomplete [Ten Cate, Marx and Viana].
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The logics H(@) and H+(@): axioms

(Taut) ` ϕ for all propositional tautologies ϕ.
(K ) ` �(p → q)→ (�p → �q)
(Dual) ` ^p ↔ ¬�¬p
(K@) ` @j(p → q)→ (@jp → @jq)
(Selfdual) ` ¬@jp ↔ @j¬p
(Ref ) ` @jj
(Intro) ` j ∧ p → @jp
(Back ) ` ^@jp → @jp
(Agree) ` @i@jp → @jp



The logics H(@) and H+(@): inference rules

(Modus ponens) If ` ϕ→ ψ and ` ϕ, then ` ψ.
(Sorted substitution) ` ϕ′ whenever ` ϕ, where ϕ′ is

obtained from ϕ by sorted
substitution.

(Nec) If ` ϕ, then ` �ϕ.
(Nec@) If ` ϕ, then ` @jϕ.
(Name@) If ` @jϕ, then ` ϕ for j not occurring

in ϕ.
(BG@) If ` @i^j ∧ @jϕ→ ψ, then ` @i^ϕ→ ψ

for j , i and j not occurring in ϕ
and ψ.
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Hybrid-ALBA

The key methodological tool in proving the new results is a hybrid
version of the ALBA algorithm [Conradie and Palmigiano], called
hybrid-ALBA.

ϕ ≤ ψ Preprocessing First approximation

Reduction and
elimination

pure(ϕ ≤ ψ) Translation
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Preprocessing

α ≤ β ∧ γ
(∧-Adj)

α ≤ β & α ≤ γ

α ∨ β ≤ γ
(∨-Adj)

α ≤ γ & β ≤ γ

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)

¬(α ∨ β) ≡ ¬α ∧ ¬β ¬(α ∧ β) ≡ ¬α ∨ ¬β

^(α ∨ β) ≡ ^α ∨ ^β �(α ∧ β) ≡ �α ∧ �β

@i(α ∨ β) ≡ @iα ∨ @iβ @i(α ∧ β) ≡ @iα ∧ @iβ



First approximation

Let {ϕi ≤ ψi | i ∈ I} be the set of inequalities obtained by
preprocessing. Then the following rule is applied to each ϕi ≤ ψi

only once:

ϕi ≤ ψi (First-Approx)
i0 ≤ ϕi &ψi ≤ ¬j0 ⇒ i0 ≤ ¬j0

Here i0 and j0 are new nominals which do not occur in any
inequality received in input.



Reduction and elimination

Ackermann rules

&n
i=1 αi ≤ p & &m

j=1 βj(p) ≤ γj(p)
(RH-Ack)

&m
j=1 βj(

∨n
i=1 αi) ≤ γj(

∨n
i=1 αi)

&n
i=1 p ≤ αi & &m

j=1 γj(p) ≤ βj(p)
(LH-Ack)

&m
j=1 γj(

∧n
i=1 αi) ≤ βj(

∧n
i=1 αi)

Here

1. the αi are p-free,

2. the βj are positive in p, and

3. the γi are negative in p.



Reduction and elimination

Adjunction rules

α ≤ β ∧ γ
(∧-Adj)

α ≤ β & α ≤ γ

α ∨ β ≤ γ
(∨-Adj)

α ≤ γ & β ≤ γ

α ≤ �β
(�-Adj)

^−1α ≤ β

^α ≤ β
(^-Adj)

α ≤ �−1β

α ≤ ¬β
(¬-R-Adj)

β ≤ ¬α

¬α ≤ β
(¬-L-Adj)

¬β ≤ α



Reduction and elimination

Residuation rules

α ∧ β ≤ γ
(∧-Res)

α ≤ β→ γ

α ≤ β ∨ γ
(∨-Res)

α ∧ ¬β ≤ γ

α ≤ β→ γ
(→-Res)

α ∧ β ≤ γ

α ≤ @jβ
(@-R-Res)

α ≤ ⊥ ` j ≤ β
@jα ≤ β

(@-L-Res)
> ≤ β ` α ≤ ¬j



Reduction and elimination

Approximation rules

�α ≤ ¬i (�-Approx)
∃j(�¬j ≤ ¬i & α ≤ ¬j)

i ≤ ^α (^-Approx)
∃j(i ≤ ^j & j ≤ α)

i ≤ @jα
(@-R-Approx)

j ≤ α
@jα ≤ ¬i

(@-L-Approx)
α ≤ ¬j

The nominal j in (�-Approx) and (^-Approx) is a new nominal not occuring in the
computation thus far.



Main results

Theorem
Every hybrid inductive formula has a local first-order frame
correspondent.
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Main results

Corollary
For any set Σ of inductive formulas that are nominally skeletal, the
logic H+(@) ⊕Σ is sound and strongly complete with respect to the
class of Kripke frames defined by the first-order correspondents of
the axioms in Σ.
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Relationship between main results

I Gehrke, Harding and Venema showed that all varieties of
monotone bounded lattice expansions which are closed under
MacNeille completions are also closed under canonical
extensions.

I So are the skeletal inductive hybrid formulas also preserved
under canonical extensions?

I No, the irreflexivity axiom i→ ¬^i is a skeletal inductive
formula which is not preserved under canonical extensions
[Conradie].
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