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Prologue Why MV-algebras? S-algebras Epilogue

Prologue: Axiomatisability of KHaus®P

Stone (1936): “The algebraic theory of Boolean algebras is
mathematically equivalent to the topological theory of
zero-dimensional compact Hausdorff spaces”.
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Bool Step
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Bool = Boolean algebras
St = Zero-dimensional compact Hausdorff spaces
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Question: Can we generalise Stone duality by removing
zero-dimensionality?

Max —
/_\
Bool Stop
\/
C(—{0,1})
O T > KHaus®P

Bool = Boolean algebras
St = Zero-dimensional compact Hausdorff spaces
KHaus = Compact Hausdorft spaces
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Classical solutions:

e Kakutani (1941): M-spaces

* Yosida (1941): (some) abelian £-groups

* Gelfand-Neumark (1943): commutative C*-algebras
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Classical solutions:

e Kakutani (1941): M-spaces

* Yosida (1941): (some) abelian £-groups

* Gelfand-Neumark (1943): commutative C*-algebras

Theorem (Duskin, Negrepontis (1969, 1971))

The category KHaus®P is monadic over Set, i.e. KHaus®P 1s
equwalent to a A-variety.
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Question: Is there a finitary variety of algebras dually equivalent
to KHaus?

Answer: No (the monad does not preserve directed colimits).
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Question: Is there a finitary variety of algebras dually equivalent
to KHaus?

Answer: No (the monad does not preserve directed colimits).
e Isbell (1982): KHaus is dually equivalent to an N;-variety. An

operation of countably infinite arity, along with finitely many
finitary operations, suffice:

Ml&..,

6(f11f27f37"' Z
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Problem
Give an explicit tractable axiomatisation of a variety of infinitary
algebras dually equivalent to KHaus (if there is any).

We shall give a finite axiomatisation, relying on the theory of
MV-algebras.
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From C*-algebras to MV-algebras, via £-groups

Theorem (Gelfand-Neumark, 1943)

For every commutative unital C*-algebra A there erists a
compact Hausdorff space X such that A = C(X,C).
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From C*-algebras to MV-algebras, via £-groups

Theorem (Gelfand-Neumark, 1943)

For every commutative unital C*-algebra A there erists a
compact Hausdorff space X such that A = C(X,C).

If A is a commutative unital C*-algebra, define
H(A):={z € A|z* ==z}.

H(A) is always a unital abelian £-group.
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c* MV

\/

F

Lemma
The functor F 1s full and faithful.

C* = C*-algebras
MV = MV-algebras
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Cc* \/ MV
F
H r
£Grp,

£Grp, = Unital abelian £-groups
C* = C*-algebras
MV = MV-algebras
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c* MV

Lemma
The functor C(Max —, C) is left adjoint to F.

C* = C*-algebras
MV = MV-algebras
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C(Max —,C)

—

c* MV

\/

F

By Gelfand-Neumark duality,

Theorem
The category KHaus®P is equivalent to the refliection of a
finitary variety.

C* = C*-algebras
MV = MV-algebras
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0-algebras

In addition to the MV-algebraic operations @, -, 0, consider an
operation 4 of arity Np, whose intended interpretation is the Isbell
series

6(f11f2)f37 . . ) = Z ;
=1
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0-algebras

In addition to the MV-algebraic operations @, -, 0, consider an
operation 4 of arity Np, whose intended interpretation is the Isbell
series

6(f11f2)f37 . . ) = Z E

=1

For simplicity, define the unary operation
fi(z) :=4(z,0,0,0,...).

We denote the sequences zi, 25, 23,... and 0,0, 0, ... respectively
by Z,0.
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A j-algebra is a structure (4,4, ®, -, 0) such that (4,®,,0) is
an MV-algebra, and the following identities hold.

Al d (5(5),5(3;1,6)) = 6(0, 75, 73, . . .).
motivation: (L2, %) - % =12, 5.
A2 f1(6()) = 5(fl($1),f§($2):f%($3),---)-
motivation: -y 92, & =y2 1. &
A3 é(z,z,z,...)=1.

motivation: 3372, & = z.
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A4 §(0,7) = £1(5())-

2
motivation: 7 =0 = >3, 7t = 1.y, =
Ab (5(2}1 @tl,il;z@ tz 3 D t3,...) 5(2}1,1}2 z3, . )
motivation: y; > z; Vi = > 52 12; >>> L

1=1 9¢*
16 fi(z0y) = f1(2)© f1(1).

1
2
motivation: % (0, T — y) = maX(O, % — %)
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A4 §(0,7) = £1(5())-

2

I:z_

motivation: ; =0 = 3%, & 2 DR

Ab 5($1@t1,$2€9t2 $3®t3,...) 5(2}1,1}2 z3, . )

motivation: y; > ; Vi = >37°; & > 3072 2.

16 fi(z @) = f1(2) © f1(v).

1
2
motivation: % (0, T — y) = maX(O, % — %)

Let A be the category whose objects are §-algebras and whose
morphisms are all the MV-homomorphisms preserving the
infinitary operation.
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Theorem
For every d-algebra A there exists a compact Hausdorff space
X, unique to within a homeomorphism, s.t. A= C(X,|0,1]).

Max —

T

A KHaus®P

\/

0(7![0:1})

A = §-algebras
KHaus = Compact Hausdorff spaces

Theorem
The wnfinitary variety A s equivalent to the category KHaus®P.
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Lemma (Step 1)

If A is a 6-algebra, then its MV-algebraic reduct 1s semisimple.
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Lemma (Step 1)

If A is a 6-algebra, then its MV-algebraic reduct 1s semisimple.

Idea of the proof.

The radical ideal is closed under the operation d. If Rad A
contains a non-zero infinitesimal element, then there exists a
sequence on which § does not converge. O
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Lemma (Step 1)

If A is a 6-algebra, then its MV-algebraic reduct 1s semisimple.

Idea of the proof.

The radical ideal is closed under the operation d. If Rad A
contains a non-zero infinitesimal element, then there exists a
sequence on which § does not converge. O

Theorem (Chang-Yosida)

An MV-algebra A 1s semaistmple if, and only if, it s
1somorphic to a separating subalgebra n(A) of C(Max A4, [0, 1]).
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Lemma (Step 2)

If A is a 6-algebra (identified with n(A)), then it s dense in
C(Max 4,0, 1]).
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Lemma (Step 2)

If A is a 6-algebra (identified with n(A)), then it s dense in
C(Max 4,0, 1]).

Proof.

We apply a lattice-theoretic version of Stone-Weierstrass theorem.
The algebra A is closed under A,V, ® and contains lyax 4. If

r €[0,1] and f € A, then rf is shown to be in A. Let

{r:}ien € {0,1}* be a dyadic expansion of r. Define f = {f.}ien

-,

by f; := Omaxa if 7, =0, and f; := f if r, = 1. Then §(f) =rf. O
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Lemma (Step 2)

If A is a 6-algebra (identified with n(A)), then it s dense in
C(Max 4,0, 1]).

Proof.

We apply a lattice-theoretic version of Stone-Weierstrass theorem.
The algebra A is closed under A,V, ® and contains lyax 4. If

r €[0,1] and f € A, then rf is shown to be in A. Let

{r:}ien € {0,1}* be a dyadic expansion of r. Define f = {f.}ien

-,

by f; := Omaxa if 7, =0, and f; := f if r, = 1. Then §(f) =rf. O

Lemma (Step 3)
If A 1s a 6-algebra, then it 1s closed 1n C(Max A4, [0, 1]).
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Axiomatisability of KHaus®P: negative results

Theorem (Banaschewski, 1984)

Let F be a full subcategory of KHaus which extends St. If F s
dually equivalent to an elementary class of finitary algebras
closed under products, then F = St.
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Axiomatisability of KHaus®P: negative results

Theorem (Banaschewski, 1984)

Let F be a full subcategory of KHaus which extends St. If F s
dually equivalent to an elementary class of finitary algebras
closed under products, then F = St.

Consequence: Stone duality for zero-dimensional compact
Hausdorff spaces cannot be extended by retaining the finitary
algebraic nature of the dual. In particular, KHaus is not dually
equivalent to any finitary variety.
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Recall that an object A of a (locally small) category C is finitely
presentable if the covariant functor hom(A, —): C — Set
preserves directed colimits.
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Recall that an object A of a (locally small) category C is finitely
presentable if the covariant functor hom(A, —): C — Set
preserves directed colimits.

The category C is finitely accessible provided that it has
directed colimits and a dense subset A of finitely presentable
objects (i.e. every object of C is a directed colimit of objects from
A).
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Recall that an object A of a (locally small) category C is finitely
presentable if the covariant functor hom(A, —): C — Set
preserves directed colimits.

The category C is finitely accessible provided that it has
directed colimits and a dense subset A of finitely presentable
objects (i.e. every object of C is a directed colimit of objects from
A).

Theorem
Let F be a full subcategory of KHaus which extends St. If F s
dually equivalent to a finitely accessible category, then F = St.
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Thank you for your attention.
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