Axiomatising the dual of compact Hausdorff spaces

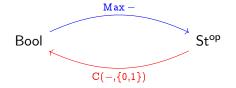
Luca Reggio Joint work with V. Marra

Dipartimento di Matematica Federigo Enriques, Università di Milano

Topology, Algebra, and Categories in Logic 2015, Ischia, June 23, 2015

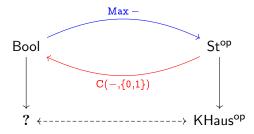
Prologue: Axiomatisability of KHaus^{op}

Stone (1936): "The algebraic theory of Boolean algebras is mathematically equivalent to the topological theory of zero-dimensional compact Hausdorff spaces".



- Bool = Boolean algebras
- $St = Zero\text{-}dimensional \ compact \ Hausdorff \ spaces$

Question: Can we *generalise* Stone duality by removing zero-dimensionality?



Bool = Boolean algebras St = Zero-dimensional compact Hausdorff spaces KHaus = Compact Hausdorff spaces

Classical solutions:

- Kakutani (1941): M-spaces
- Yosida (1941): (some) abelian ℓ-groups
- Gelfand-Neumark (1943): commutative C*-algebras

Theorem (Duskin, Negrepontis (1969, 1971))

The category KHaus^{op} is monadic over Set, i.e. KHaus^{op} is equivalent to a λ -variety.

Classical solutions:

- Kakutani (1941): M-spaces
- Yosida (1941): (some) abelian ℓ-groups
- Gelfand-Neumark (1943): commutative C*-algebras

Theorem (Duskin, Negrepontis (1969, 1971))

The category KHaus^{op} is monadic over Set, i.e. KHaus^{op} is equivalent to a λ -variety.

Question: Is there a *finitary* variety of algebras dually equivalent to KHaus?

Answer: No (the monad does not preserve directed colimits).

Isbell (1982): KHaus is dually equivalent to an ℵ₁-variety. An operation of *countably* infinite arity, along with finitely many finitary operations, suffice:

$$\delta(f_1,f_2,f_3,\ldots):=\sum_{i=1}^\infty rac{f_i}{2^i}.$$

Question: Is there a *finitary* variety of algebras dually equivalent to KHaus?

Answer: No (the monad does not preserve directed colimits).

Isbell (1982): KHaus is dually equivalent to an ℵ₁-variety. An operation of *countably* infinite arity, along with finitely many finitary operations, suffice:

$$\delta(f_1,f_2,f_3,\ldots):=\sum_{i=1}^\infty rac{f_i}{2^i}.$$

Problem

Give an explicit *tractable* axiomatisation of a variety of infinitary algebras dually equivalent to KHaus (if there is any).

We shall give a *finite* axiomatisation, relying on the theory of MV-algebras.

From C*-algebras to MV-algebras, via ℓ -groups

Theorem (Gelfand-Neumark, 1943)

For every commutative unital C^{*}-algebra A there exists a compact Hausdorff space X such that $A \cong C(X, \mathbb{C})$.

If A is a commutative unital C*-algebra, define

 $\operatorname{H}(A):=\{x\in A\mid x^*=x\}.$

H(A) is always a unital abelian ℓ -group.

From C*-algebras to MV-algebras, via ℓ -groups

Theorem (Gelfand-Neumark, 1943)

For every commutative unital C^{*}-algebra A there exists a compact Hausdorff space X such that $A \cong C(X, \mathbb{C})$.

If A is a commutative unital C*-algebra, define

$$\operatorname{H}(A):=\{x\in A\mid x^*=x\}.$$

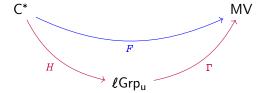
H(A) is always a unital abelian ℓ -group.

Prologue	Why MV-algebras?	ð-algebras	Epilogue
	C*	MV	
	2		

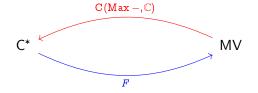
F

Lemma The functor F is full and faithful.

$$C^* = C^*$$
-algebras
MV = MV-algebras



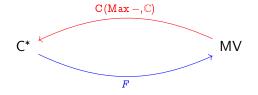
$$\label{eq:constraint} \begin{split} \ell Grp_u &= \text{Unital abelian } \ell\text{-groups} \\ C^* &= C^*\text{-algebras} \\ \mathsf{MV} &= \mathsf{MV}\text{-algebras} \end{split}$$



Lemma

The functor $C(Max -, \mathbb{C})$ is left adjoint to F.

$$C^* = C^*$$
-algebras
MV = MV-algebras



By Gelfand-Neumark duality,

Theorem

The category KHaus^{op} is equivalent to the reflection of a finitary variety.

 $C^* = C^*$ -algebras MV = MV-algebras

 δ -algebras

In addition to the MV-algebraic operations \oplus , \neg , 0, consider an operation δ of arity \aleph_0 , whose intended interpretation is the Isbell series

$$\delta(f_1,f_2,f_3,\ldots) = \sum_{i=1}^\infty rac{f_i}{2^i}.$$

For simplicity, define the unary operation

$$f_{\frac{1}{2}}(x) := \delta(x, 0, 0, 0, \ldots).$$

We denote the sequences x_1, x_2, x_3, \ldots and $0, 0, 0, \ldots$ respectively by $\vec{x}, \vec{0}$.

 δ -algebras

In addition to the MV-algebraic operations \oplus , \neg , 0, consider an operation δ of arity \aleph_0 , whose intended interpretation is the Isbell series

$$\delta(f_1,f_2,f_3,\ldots) = \sum_{i=1}^\infty rac{f_i}{2^i}.$$

For simplicity, define the unary operation

$$f_{\frac{1}{2}}(x) := \delta(x, 0, 0, 0, \ldots).$$

We denote the sequences x_1, x_2, x_3, \ldots and $0, 0, 0, \ldots$ respectively by $\vec{x}, \vec{0}$.

A δ -algebra is a structure $(A, \delta, \oplus, \neg, 0)$ such that $(A, \oplus, \neg, 0)$ is an MV-algebra, and the following identities hold.

$$\begin{split} & \bigtriangleup 1 \ d\left(\delta(\vec{x}), \delta(x_1, \vec{0})\right) = \delta(0, x_2, x_3, \ldots). \\ & \texttt{motivation:} \ \left(\sum_{i=1}^{\infty} \frac{x_i}{2^i}\right) - \frac{x_1}{2} = \sum_{i=2}^{\infty} \frac{x_i}{2^i}. \\ & \bigtriangleup 2 \ f_{\frac{1}{2}}(\delta(\vec{x})) = \delta(f_{\frac{1}{2}}(x_1), f_{\frac{1}{2}}(x_2), f_{\frac{1}{2}}(x_3), \ldots). \\ & \texttt{motivation:} \ \frac{1}{2} \cdot \sum_{i=1}^{\infty} \frac{x_i}{2^i} = \sum_{i=1}^{\infty} \frac{1}{2} \cdot \frac{x_i}{2^i}. \\ & \bigtriangleup 3 \ \delta(x, x, x, \ldots) = x. \\ & \texttt{motivation:} \ \sum_{i=1}^{\infty} \frac{x}{2^i} = x. \end{split}$$

$$\begin{array}{ll} \Delta 4 \ \delta(0,\vec{x}) = f_{\frac{1}{2}}(\delta(\vec{x})). \\ & \text{motivation:} \ x_1 = 0 \ \Rightarrow \ \sum_{i=1}^{\infty} \frac{x_i}{2^i} = \frac{1}{2} \cdot \sum_{i=2}^{\infty} \frac{x_i}{2^i}. \\ \Delta 5 \ \delta(x_1 \oplus t_1, x_2 \oplus t_2, x_3 \oplus t_3, \ldots) \geqslant \delta(x_1, x_2, x_3, \ldots). \\ & \text{motivation:} \ y_i \geqslant x_i \ \forall i \ \Rightarrow \ \sum_{i=1}^{\infty} \frac{y_i}{2^i} \geqslant \sum_{i=1}^{\infty} \frac{x_i}{2^i}. \\ \Delta 6 \ f_{\frac{1}{2}}(x \ominus y) = f_{\frac{1}{2}}(x) \ominus f_{\frac{1}{2}}(y). \\ & \text{motivation:} \ \frac{1}{2} \max(0, x - y) = \max(0, \frac{x}{2} - \frac{y}{2}). \end{array}$$

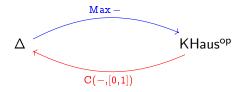
Let Δ be the category whose objects are δ -algebras and whose morphisms are all the MV-homomorphisms preserving the infinitary operation.

$$\begin{array}{ll} \bigtriangleup 4 & \delta(0,\vec{x}) = f_{\frac{1}{2}}(\delta(\vec{x})). \\ & \text{motivation:} & x_1 = 0 \Rightarrow \sum_{i=1}^{\infty} \frac{x_i}{2^i} = \frac{1}{2} \cdot \sum_{i=2}^{\infty} \frac{x_i}{2^i}. \\ \bigtriangleup 5 & \delta(x_1 \oplus t_1, x_2 \oplus t_2, x_3 \oplus t_3, \ldots) \geqslant \delta(x_1, x_2, x_3, \ldots). \\ & \text{motivation:} & y_i \geqslant x_i \,\forall i \ \Rightarrow \ \sum_{i=1}^{\infty} \frac{y_i}{2^i} \geqslant \sum_{i=1}^{\infty} \frac{x_i}{2^i}. \\ \bigtriangleup 6 & f_{\frac{1}{2}}(x \ominus y) = f_{\frac{1}{2}}(x) \ominus f_{\frac{1}{2}}(y). \\ & \text{motivation:} & \frac{1}{2} \max(0, x - y) = \max(0, \frac{x}{2} - \frac{y}{2}). \end{array}$$

Let Δ be the category whose objects are δ -algebras and whose morphisms are all the MV-homomorphisms preserving the infinitary operation.

Theorem

For every δ -algebra A there exists a compact Hausdorff space X, unique to within a homeomorphism, s.t. $A \cong C(X, [0, 1])$.



 $\Delta = \delta$ -algebras KHaus = Compact Hausdorff spaces

Theorem

The infinitary variety Δ is equivalent to the category KHaus^{op}.

Lemma (Step 1)

If A is a δ -algebra, then its MV-algebraic reduct is semisimple.

Idea of the proof.

The radical ideal is closed under the operation δ . If Rad A contains a non-zero infinitesimal element, then there exists a sequence on which δ does not converge.

Theorem (Chang-Yosida)

An MV-algebra A is semisimple if, and only if, it is isomorphic to a separating subalgebra $\eta(A)$ of C(Max A, [0, 1]).

Lemma (Step 1)

If A is a δ -algebra, then its MV-algebraic reduct is semisimple.

Idea of the proof.

The radical ideal is closed under the operation δ . If Rad A contains a non-zero infinitesimal element, then there exists a sequence on which δ does not converge.

Theorem (Chang-Yosida)

An MV-algebra A is semisimple if, and only if, it is isomorphic to a separating subalgebra $\eta(A)$ of C(Max A, [0, 1]).

Lemma (Step 1)

If A is a δ -algebra, then its MV-algebraic reduct is semisimple.

Idea of the proof.

The radical ideal is closed under the operation δ . If Rad A contains a non-zero infinitesimal element, then there exists a sequence on which δ does not converge.

Theorem (Chang-Yosida)

An MV-algebra A is semisimple if, and only if, it is isomorphic to a separating subalgebra $\eta(A)$ of C(Max A, [0, 1]).

Lemma (Step 2)

If A is a δ -algebra (identified with $\eta(A)$), then it is dense in $C(\max A, [0, 1])$.

Proof.

We apply a lattice-theoretic version of Stone-Weierstrass theorem. The algebra A is closed under \land, \lor, \oplus and contains $1_{\max A}$. If $r \in [0, 1]$ and $f \in A$, then rf is shown to be in A. Let $\{r_i\}_{i\in\mathbb{N}} \in \{0, 1\}^{\omega}$ be a dyadic expansion of r. Define $\vec{f} = \{f_i\}_{i\in\mathbb{N}}$ by $f_i := 0_{\max A}$ if $r_i = 0$, and $f_i := f$ if $r_i = 1$. Then $\delta(\vec{f}) = rf$. \Box

Lemma (Step 3)

If A is a δ -algebra, then it is closed in C(Max A, [0, 1]).

Lemma (Step 2)

If A is a δ -algebra (identified with $\eta(A)$), then it is dense in $C(\max A, [0, 1])$.

Proof.

We apply a lattice-theoretic version of Stone-Weierstrass theorem. The algebra A is closed under \land, \lor, \oplus and contains $1_{\max A}$. If $r \in [0, 1]$ and $f \in A$, then rf is shown to be in A. Let $\{r_i\}_{i \in \mathbb{N}} \in \{0, 1\}^{\omega}$ be a dyadic expansion of r. Define $\vec{f} = \{f_i\}_{i \in \mathbb{N}}$ by $f_i := 0_{\max A}$ if $r_i = 0$, and $f_i := f$ if $r_i = 1$. Then $\delta(\vec{f}) = rf$. \Box

Lemma (Step 3)

If A is a δ -algebra, then it is closed in C(Max A, [0, 1]).

Lemma (Step 2)

If A is a δ -algebra (identified with $\eta(A)$), then it is dense in $C(\max A, [0, 1])$.

Proof.

We apply a lattice-theoretic version of Stone-Weierstrass theorem. The algebra A is closed under \land, \lor, \oplus and contains $1_{\max A}$. If $r \in [0, 1]$ and $f \in A$, then rf is shown to be in A. Let $\{r_i\}_{i \in \mathbb{N}} \in \{0, 1\}^{\omega}$ be a dyadic expansion of r. Define $\vec{f} = \{f_i\}_{i \in \mathbb{N}}$ by $f_i := 0_{\max A}$ if $r_i = 0$, and $f_i := f$ if $r_i = 1$. Then $\delta(\vec{f}) = rf$. \Box

Lemma (Step 3)

If A is a δ -algebra, then it is closed in C(Max A, [0, 1]).

Axiomatisability of KHaus^{op}: negative results

Theorem (Banaschewski, 1984)

Let F be a full subcategory of KHaus which extends St. If F is dually equivalent to an elementary class of finitary algebras closed under products, then F = St.

Consequence: Stone duality for zero-dimensional compact Hausdorff spaces cannot be extended by retaining the finitary algebraic nature of the dual. In particular, KHaus is not dually equivalent to any finitary variety.

Axiomatisability of KHaus^{op}: negative results

Theorem (Banaschewski, 1984)

Let F be a full subcategory of KHaus which extends St. If F is dually equivalent to an elementary class of finitary algebras closed under products, then F = St.

Consequence: Stone duality for zero-dimensional compact Hausdorff spaces cannot be extended by retaining the finitary algebraic nature of the dual. In particular, KHaus is not dually equivalent to any finitary variety.

Recall that an object A of a (locally small) category C is finitely presentable if the covariant functor $hom(A, -): C \rightarrow Set$ preserves directed colimits.

The category C is **finitely accessible** provided that it has directed colimits and a *dense* subset \mathcal{A} of finitely presentable objects (i.e. every object of C is a directed colimit of objects from \mathcal{A}).

Theorem

Let F be a full subcategory of KHaus which extends St. If F is dually equivalent to a finitely accessible category, then F = St.

Recall that an object A of a (locally small) category C is finitely presentable if the covariant functor $hom(A, -): C \rightarrow Set$ preserves directed colimits.

The category C is finitely accessible provided that it has directed colimits and a *dense* subset \mathcal{A} of finitely presentable objects (i.e. every object of C is a directed colimit of objects from \mathcal{A}).

Theorem

Let F be a full subcategory of KHaus which extends St. If F is dually equivalent to a finitely accessible category, then F = St.

Recall that an object A of a (locally small) category C is finitely presentable if the covariant functor $hom(A, -): C \rightarrow Set$ preserves directed colimits.

The category C is finitely accessible provided that it has directed colimits and a *dense* subset \mathcal{A} of finitely presentable objects (i.e. every object of C is a directed colimit of objects from \mathcal{A}).

Theorem

Let F be a full subcategory of KHaus which extends St. If F is dually equivalent to a finitely accessible category, then F = St.

Thank you for your attention.