Injectivity of relational semantics for (connected) MELL proof-structures via the Taylor expansion

<u>Giulio Guerrieri</u>¹

Luc Pellissier²

Lorenzo Tortora de Falco³

¹PPS, Université Paris Diderot

²LIPN, Université Paris 13

³Dipartimento di Matematica e Fisica, Università Roma Tre

Topology, Algebra and Categories in Logic 2015 (TACL 2015) Ischia, June 21, 2015

Outline

1 Introduction: linear logic in a nutshell

2 From linear logic to differential linear logic and Taylor expansion

3 The question of injectivity

Outline

1 Introduction: linear logic in a nutshell

2 From linear logic to differential linear logic and Taylor expansion

3 The question of injectivity

- Hilbert/Gödel (~1920-30): a proof is a finite sequence of formulas (through Gödelization a finite sequence of integers and thus an integer)
 → no structure, no dynamics
- Gentzen (1936): a proof (in sequent calculus, natural deduction) is a finite tree with an internal dynamics, cut-elimination →_{cut}. This led to:
 - Curry-Howard correspondence (~1960): e.g. propositional intuitionistic minimal logic/simply typed λ-calculus, 2nd order intuitionistic logic/system F, propositional classical logic/λμ-calculus, etc.
 - * formula $A \rightarrow \text{type } A$
 - * proof π of $A \Rightarrow B \rightsquigarrow$ program π with input of type A and output of type B
 - ★ cut-elimination → execution
 - denotational semantics (~1970): it is concerned with the mathematical meaning of proofs/programs. Goals:
 - * to provide mathematical tools for proving properties of proofs/programs
 - * to suggest new features to add to the syntax of logic/programming languages.
 - The general pattern is (in categorical terms)
 - \star formula/type A \rightsquigarrow an object $\mathcal A$ is some category **C**
 - * proof/program π of $A \Rightarrow B \rightsquigarrow$ a morphism $[\![\pi]\!] : \mathcal{A} \to \mathcal{B}$ in **C**
 - * invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!] = [\![\pi]\!]$

- Hilbert/Gödel (~1920-30): a proof is a finite sequence of formulas (through Gödelization a finite sequence of integers and thus an integer)
 → no structure, no dynamics
- Gentzen (1936): a proof (in sequent calculus, natural deduction) is a finite tree with an internal dynamics, cut-elimination →_{cut}. This led to:
 - Curry-Howard correspondence (~1960): e.g. propositional intuitionistic minimal logic/simply typed λ-calculus, 2nd order intuitionistic logic/system F, propositional classical logic/λμ-calculus, etc.
 - ★ formula $A \rightsquigarrow$ type A
 - * proof π of $A \Rightarrow B \rightsquigarrow$ program π with input of type A and output of type B
 - ★ cut-elimination → execution
 - denotational semantics (~1970): it is concerned with the mathematical meaning of proofs/programs. Goals:
 - to provide mathematical tools for proving properties of proofs/programs
 - * to suggest new features to add to the syntax of logic/programming languages. The general pattern is (in categorical terms)
 - * formula/type $A \rightsquigarrow$ an object A is some category C
 - ★ proof/program π of $A \Rightarrow B \rightsquigarrow$ a morphism $\llbracket \pi \rrbracket : \mathcal{A} \to \mathcal{B}$ in **C**
 - * invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!] = [\![\pi']\!]$

- Hilbert/Gödel (~1920-30): a proof is a finite sequence of formulas (through Gödelization a finite sequence of integers and thus an integer)
 → no structure, no dynamics
- Gentzen (1936): a proof (in sequent calculus, natural deduction) is a finite tree with an internal dynamics, cut-elimination →_{cut}. This led to:
 - Curry-Howard correspondence (~1960): e.g. propositional intuitionistic minimal logic/simply typed λ-calculus, 2nd order intuitionistic logic/system *F*, propositional classical logic/λμ-calculus, etc.
 - ★ formula $A \rightsquigarrow$ type A
 - ★ proof π of $A \Rightarrow B \rightsquigarrow$ program π with input of type A and output of type B
 - ★ cut-elimination → execution
 - denotational semantics (~1970): it is concerned with the mathematical meaning of proofs/programs. Goals:
 - to provide mathematical tools for proving properties of proofs/programs
 - * to suggest new features to add to the syntax of logic/programming languages. The general pattern is (in categorical terms)
 - * formula/type $A \rightsquigarrow$ an object A is some category C
 - ★ proof/program π of $A \Rightarrow B \rightsquigarrow$ a morphism $\llbracket \pi \rrbracket : \mathcal{A} \to \mathcal{B}$ in **C**
 - * invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!] = [\![\pi']\!]$

- Hilbert/Gödel (~1920-30): a proof is a finite sequence of formulas (through Gödelization a finite sequence of integers and thus an integer)
 → no structure, no dynamics
- Gentzen (1936): a proof (in sequent calculus, natural deduction) is a finite tree with an internal dynamics, cut-elimination →_{cut}. This led to:
 - Curry-Howard correspondence (~1960): e.g. propositional intuitionistic minimal logic/simply typed λ-calculus, 2nd order intuitionistic logic/system F, propositional classical logic/λμ-calculus, etc.
 - ★ formula A --- type A
 - ★ proof π of $A \Rightarrow B \rightsquigarrow$ program π with input of type A and output of type B
 - ★ cut-elimination → execution
 - denotational semantics (~1970): it is concerned with the mathematical meaning of proofs/programs. Goals:
 - to provide mathematical tools for proving properties of proofs/programs
 - \star to suggest new features to add to the syntax of logic/programming languages.

The general pattern is (in categorical terms)

- ★ formula/type $A \rightsquigarrow$ an object A is some category **C**
- ★ proof/program π of $A \Rightarrow B \rightsquigarrow$ a morphism $[\![\pi]\!] : \mathcal{A} \to \mathcal{B}$ in **C**
- ★ invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $\llbracket \pi \rrbracket = \llbracket \pi' \rrbracket$

- Girard (1987): a proof is a graph, cut-elimination is graph rewriting
 - ▶ denotational semantics of intuitionistic logic/λ-calculus: let Coh (resp. Coh_l) be the category of coherence spaces and stable →_{st} (resp. linear -∞) functions.
 - ★ formula/type $A \rightsquigarrow$ a coherence space A
 - ★ proof/program π of $A \Rightarrow B \rightsquigarrow$ a stable function $[\![\pi]\!]^{\mathsf{Coh}} : \mathcal{A} \to_{\mathsf{st}} \mathcal{B}$
 - * invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{Coh} = [\![\pi']\!]^{Coh}$

- \rightsquigarrow **Coh**[A, B] = **Coh**_l[!A, B], more precisely $f : A \rightarrow_{st} B = f : !A \multimap B$
- ▶ logical formulas: the operations ! and can be internalized in the syntax → Linear Logic (LL) where:
 - * structural rules (contraction, weakening) acquire a logical status thanks to a pair of duals modalities, the *exponentials* ! and ?
 - * usual connectives split into *multiplicative* and *additive*
 - * classical and intuitionistic logic can be embedded into LL, for example

$$A \Rightarrow B = !A \multimap B$$

- Girard (1987): a proof is a graph, cut-elimination is graph rewriting
 - ► denotational semantics of intuitionistic logic/λ-calculus: let Coh (resp. Coh_i) be the category of coherence spaces and stable →_{st} (resp. linear -∞) functions.
 - ★ formula/type $A \rightsquigarrow$ a coherence space A
 - ★ proof/program π of $A \Rightarrow B \rightsquigarrow$ a stable function $[\![\pi]\!]^{\mathsf{Coh}} : \mathcal{A} \to_{\mathsf{st}} \mathcal{B}$
 - * invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{Coh} = [\![\pi']\!]^{Coh}$

 \rightsquigarrow **Coh**[A, B] = **Coh**_l[!A, B], more precisely $f : A \rightarrow_{st} B = f : !A \multimap B$

- ▶ logical formulas: the operations ! and can be internalized in the syntax → Linear Logic (LL) where:
 - * structural rules (contraction, weakening) acquire a logical status thanks to a pair of duals modalities, the *exponentials* ! and ?
 - * usual connectives split into *multiplicative* and *additive*
 - * classical and intuitionistic logic can be embedded into LL, for example

$$A \Rightarrow B = !A \multimap B$$

5 / 24

- Girard (1987): a proof is a graph, cut-elimination is graph rewriting (continued)
 - semantics of proofs in LL:
 - * proof/program π of $!A \multimap B \leadsto$ a stable function $\llbracket \pi \rrbracket^{\operatorname{Coh}} : A \to_{\operatorname{st}} B$ = a linear function $\llbracket \pi \rrbracket^{\operatorname{Coh}} : !A \multimap B$

Idea: the proof π may use the hypothesis A an arbitrary number of times i.e. the program π may call its arguments of type A at will

* proof/program π of $A \multimap B \rightsquigarrow$ a linear function $[\![\pi]\!]^{\mathsf{Coh}_l} : \mathcal{A} \multimap \mathcal{B}$

Idea: the proof π uses the hypothesis A linearly (exactly once) i.e. the program π calls its arguments of type A linearly (exactly once)

- representations of proofs in LL: proofs in LL become particular graphs (proof-nets) among more general graphs (proof-structures)
- cut-elimination in LL: cut-elimination can be defined on proof-structures; the modality ! marks a resource erasable and duplicable at will, on proof structures a ! corresponds to a box

6 / 24

- Girard (1987): a proof is a graph, cut-elimination is graph rewriting (continued)
 - semantics of proofs in LL:
 - * proof/program π of $!A \multimap B \leadsto$ a stable function $\llbracket \pi \rrbracket^{\operatorname{Coh}} : A \to_{\operatorname{st}} B$ = a linear function $\llbracket \pi \rrbracket^{\operatorname{Coh}} : !A \multimap B$

Idea: the proof π may use the hypothesis A an arbitrary number of times i.e. the program π may call its arguments of type A at will

- * proof/program π of A → B → a linear function [[π]]^{Coh}: A → B
 Idea: the proof π uses the hypothesis A linearly (exactly once)
 i.e. the program π calls its arguments of type A linearly (exactly once)
- representations of proofs in LL: proofs in LL become particular graphs (proof-nets) among more general graphs (proof-structures)
- cut-elimination in LL: cut-elimination can be defined on proof-structures; the modality ! marks a resource erasable and duplicable at will, on proof structures a ! corresponds to a box

- Girard (1987): a proof is a graph, cut-elimination is graph rewriting (continued)
 - semantics of proofs in LL:
 - * proof/program π of $!A \multimap B \leadsto$ a stable function $\llbracket \pi \rrbracket^{\mathsf{Coh}} : \mathcal{A} \to_{\mathsf{st}} \mathcal{B}$ = a linear function $\llbracket \pi \rrbracket^{\mathsf{Coh}} : !\mathcal{A} \multimap \mathcal{B}$

Idea: the proof π may use the hypothesis A an arbitrary number of times i.e. the program π may call its arguments of type A at will

- * proof/program π of A → B → a linear function [[π]]^{Coh}: A → B
 Idea: the proof π uses the hypothesis A linearly (exactly once)
 i.e. the program π calls its arguments of type A linearly (exactly once)
- representations of proofs in LL: proofs in LL become particular graphs (proof-nets) among more general graphs (proof-structures)
- cut-elimination in LL: cut-elimination can be defined on proof-structures; the modality ! marks a resource erasable and duplicable at will, on proof structures a ! corresponds to a box

The syntax of Linear Logic (LL, Girard [1987])

Contraction and weakening are allowed only on formulas of the form $?A \rightarrow$ For the lack of unrestricted structural rules, connectives and units are split

MELL = multiplicative and exponential (?, !) fragment of LL (no additives)

 $A,B ::= X \mid X^{\perp} \mid 1 \mid \perp \mid A \otimes B \mid A \mathrel{\mathcal{R}} B \mid !A \mid ?A$

Negation is involutive. A^{\perp} is defined by induction using the usual De Morgan identities

The syntax of Linear Logic (LL, Girard [1987])

Contraction and weakening are allowed only on formulas of the form $?A \rightarrow$ For the lack of unrestricted structural rules, connectives and units are split

MELL = multiplicative and exponential (?, !) fragment of LL (no additives)

$$A,B ::= X \mid X^{\perp} \mid 1 \mid \perp \mid A \otimes B \mid A \Im B \mid !A \mid ?A$$

Negation is involutive. A^{\perp} is defined by induction using the usual De Morgan identities

From MELL sequent calculus to MELL-proof structures

Example: the following proof of MELL sequent calculus...

From MELL sequent calculus to MELL-proof structures

Example: ... corresponds to the following MELL proof-net

contraction/promotion: duplication of a resource

contraction/promotion: duplication of a resource

weakening/promotion: erasure of a resource

weakening/promotion: erasure of a resource

weakening/promotion: erasure of a resource

 \rightarrow_{cut}

weakening/promotion: erasure of a resource

Outline

1 Introduction: linear logic in a nutshell

2 From linear logic to differential linear logic and Taylor expansion

3 The question of injectivity

Concrete denotational semantics of LL: the relational model

The simplest denotational semantics of LL is the *relational model* \rightsquigarrow LL is interpreted in **Rel**, the category of sets and relations

- formula/type $A \rightsquigarrow$ a set \mathcal{A}
- proof/program π of $A \multimap B \rightsquigarrow$ a relation $\llbracket \pi \rrbracket^{\mathsf{Rel}} \subseteq \mathcal{A} \times \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{\text{Rel}} = [\![\pi']\!]^{\text{Rel}}$

Remark: A coherence space \mathcal{A} (interpreting the formula A) can be seen as a set of elements (*points*) endowed with a reflexive and symmetric relation (*coherence*). The set \mathcal{A} without the coherence relation is the interpretation of A in **Rel**.

 \rightsquigarrow relational model can be seen as coherence semantics "without coherence" \rightsquigarrow the price to pay is that negation is invisible in **Rel**: $\mathcal{A} = \mathcal{A}^{\perp}$

Apparently, $[\![\pi]\!]^{\mathsf{Rel}}$ is just a set of points without any structure...

Concrete denotational semantics of LL: the relational model

The simplest denotational semantics of LL is the *relational model* \rightsquigarrow LL is interpreted in **Rel**, the category of sets and relations

- formula/type $A \rightsquigarrow$ a set \mathcal{A}
- proof/program π of $A \multimap B \rightsquigarrow$ a relation $[\![\pi]\!]^{\mathsf{Rel}} \subseteq \mathcal{A} \times \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{\text{Rel}} = [\![\pi']\!]^{\text{Rel}}$

Remark: A coherence space A (interpreting the formula A) can be seen as a set of elements (*points*) endowed with a reflexive and symmetric relation (*coherence*). The set A without the coherence relation is the interpretation of A in **Rel**.

 \rightsquigarrow relational model can be seen as coherence semantics "without coherence" \rightsquigarrow the price to pay is that negation is invisible in **ReI**: $\mathcal{A} = \mathcal{A}^{\perp}$

Apparently, $[\![\pi]\!]^{\mathsf{Rel}}$ is just a set of points without any structure...

Concrete denotational semantics of LL: the relational model

The simplest denotational semantics of LL is the *relational model* \rightsquigarrow LL is interpreted in **Rel**, the category of sets and relations

- formula/type $A \rightsquigarrow$ a set \mathcal{A}
- proof/program π of $A \multimap B \rightsquigarrow$ a relation $[\![\pi]\!]^{\mathsf{Rel}} \subseteq \mathcal{A} \times \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{\text{Rel}} = [\![\pi']\!]^{\text{Rel}}$

Remark: A coherence space A (interpreting the formula A) can be seen as a set of elements (*points*) endowed with a reflexive and symmetric relation (*coherence*). The set A without the coherence relation is the interpretation of A in **Rel**.

→ relational model can be seen as coherence semantics "without coherence" → the price to pay is that negation is invisible in **Rel**: $A = A^{\perp}$

Apparently, $[\![\pi]\!]^{\text{Rel}}$ is just a set of points without any structure...

Concrete denotational semantics of LL: the finiteness spaces

Ehrhard (2005) introduced *finiteness spaces*, a new denotational semantics of LL **Fin** = the category of finiteness spaces and continuous linear functions \rightarrow_{lin}

- formula/type $A \rightsquigarrow$ a finiteness space \mathcal{A} (topological vector space over a field)
- proof/program π of $A \multimap B \rightsquigarrow$ a continuous linear map $[\![\pi]\!]^{\mathsf{Fin}} \colon \mathcal{A} \to_{\mathsf{lin}} \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{\operatorname{Fin}} = [\![\pi']\!]^{\operatorname{Fin}}$

In **Fin**, ! is an endofunctor such that:

• proof/program π of $!A \multimap B \rightsquigarrow$ a continuous linear map $\llbracket \pi \rrbracket^{\operatorname{Fin}} : !A \to_{\operatorname{lin}} B$ = a continuous analytical map $\llbracket \pi \rrbracket^{\operatorname{Fin}} : A \to_{\operatorname{an}} B$

• the categorical structure of ! corresponds to the *differential operations* on these continuous analytical maps

 \rightsquigarrow Any analytical map is equal to its *Taylor expansion* at any point of its domain

These differential operations and the notion of Taylor expansion can be internalized in the syntax

 \rightsquigarrow Differential Linear Logic (DiLL₀), introduced by Ehrhard and Regnier (2006)

Concrete denotational semantics of LL: the finiteness spaces

Ehrhard (2005) introduced *finiteness spaces*, a new denotational semantics of LL **Fin** = the category of finiteness spaces and continuous linear functions \rightarrow_{lin}

- formula/type $A \rightsquigarrow$ a finiteness space \mathcal{A} (topological vector space over a field)
- proof/program π of $A \multimap B \rightsquigarrow$ a continuous linear map $[\![\pi]\!]^{\mathsf{Fin}} \colon \mathcal{A} \to_{\mathsf{lin}} \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{Fin} = [\![\pi']\!]^{Fin}$

In Fin, ! is an endofunctor such that:

- proof/program π of $!A \multimap B \rightsquigarrow$ a continuous linear map $\llbracket \pi \rrbracket^{\mathsf{Fin}} : !A \to_{\mathsf{lin}} B$ = a continuous analytical map $\llbracket \pi \rrbracket^{\mathsf{Fin}} : A \to_{\mathsf{an}} B$
- the categorical structure of ! corresponds to the *differential operations* on these continuous analytical maps
- \rightsquigarrow Any analytical map is equal to its *Taylor expansion* at any point of its domain

These differential operations and the notion of Taylor expansion can be internalizied in the syntax $ightarrow Differential Linear Logic (DiLL_0), introduced by Ehrhard and Regnier (2006)$

Concrete denotational semantics of LL: the finiteness spaces

Ehrhard (2005) introduced *finiteness spaces*, a new denotational semantics of LL **Fin** = the category of finiteness spaces and continuous linear functions \rightarrow_{lin}

- formula/type $A \rightsquigarrow$ a finiteness space \mathcal{A} (topological vector space over a field)
- proof/program π of $A \multimap B \rightsquigarrow$ a continuous linear map $[\![\pi]\!]^{\mathsf{Fin}} \colon \mathcal{A} \to_{\mathsf{lin}} \mathcal{B}$
- invariance under cut-elimination/execution: if $\pi \rightarrow_{cut} \pi'$ then $[\![\pi]\!]^{Fin} = [\![\pi']\!]^{Fin}$

In **Fin**, ! is an endofunctor such that:

- proof/program π of $!A \multimap B \rightsquigarrow$ a continuous linear map $\llbracket \pi \rrbracket^{\mathsf{Fin}} : !A \to_{\mathsf{lin}} B$ = a continuous analytical map $\llbracket \pi \rrbracket^{\mathsf{Fin}} : A \to_{\mathsf{an}} B$
- the categorical structure of ! corresponds to the *differential operations* on these continuous analytical maps
- \rightsquigarrow Any analytical map is equal to its *Taylor expansion* at any point of its domain

These differential operations and the notion of Taylor expansion can be internalized in the syntax

 \rightsquigarrow Differential Linear Logic (DiLL₀), introduced by Ehrhard and Regnier (2006)

Differential Linear Logic (Ehrhard & Regnier [2006])

 $DiLL_0$ formulas = MELL formulas

 $DiLL_0$ proof-structures = the same as MELL except for the rules introducing ! \rightarrow (infinitary) boxes are replaced by three new kind of (finitary) nodes:

- Co-dereliction (!d) releases inputs of type !A that can be called *exactly once* (i.e. *linearly*) during the cut elimination process
- Thanks to co-contraction (!*c*) and co-weakening (!*w*), in DiLL₀ every resource is available only *finitely many times*.

Idea: a proof is an *infinite* (formal) *sum* of graphs, cut elimination is a *local* graph rewriting

Differential Linear Logic (Ehrhard & Regnier [2006])

 $DiLL_0$ formulas = MELL formulas

 $DiLL_0$ proof-structures = the same as MELL except for the rules introducing ! \rightarrow (infinitary) boxes are replaced by three new kind of (finitary) nodes:

$$\begin{array}{c|c} & A & !A & !A \\ \hline \begin{matrix} 1w & \downarrow \\ \downarrow \\ IA & \downarrow \\ IA & !A \end{array} \begin{pmatrix} \text{perfectly symmetric to structural nodes } & A & ?A & ?A \\ \hline \begin{matrix} 2w & \downarrow \\ \uparrow \\ ?A & \downarrow \\ ?A & ?A \end{pmatrix} \\ \hline \begin{matrix} 2d & \downarrow \\ ?A & \uparrow \\ ?A & ?A \end{pmatrix}$$

- Co-dereliction (!d) releases inputs of type !A that can be called *exactly once* (i.e. *linearly*) during the cut elimination process
- Thanks to co-contraction (!c) and co-weakening (!w), in DiLL₀ every resource is available only *finitely many times*.

Idea: a proof is an *infinite* (formal) *sum* of graphs, cut elimination is a *local* graph rewriting

Examples of co-structural cut-elimination steps (1 of 2)

A DiLL_0 proof-structure reduces to a finite set of DiLL_0 proof-structures

Examples of co-structural cut-elimination steps (1 of 2)

A $DiLL_0$ proof-structure reduces to a finite set of $DiLL_0$ proof-structures

Examples of co-structural cut-elimination steps (2 of 2)

Why? Because there is a mismatch: π ask for 2 copies of a resource, but only 1 copy (π_1) is available and it cannot be duplicated.

Examples of co-structural cut-elimination steps (2 of 2)

Why? Because there is a mismatch: π ask for 2 copies of a resource, but only 1 copy (π_1) is available and it cannot be duplicated.

Taylor expansion of a MELL proof-structure

Taylor expansion \mathcal{T} : MELL $\rightarrow \mathcal{P}(\text{DiLL}_0)$ $\pi \mapsto \mathcal{T}(\pi)$

Idea: each box is replaced by *n* copies of its content, recursively (for every box and every $n \in \mathbb{N}$)

(definition by induction on the depth of π)

Taylor expansion of a MELL proof-structure

 $\begin{array}{rcl} \text{Taylor expansion } \mathcal{T}: & \mathsf{MELL} & \to & \mathcal{P}(\mathsf{DiLL}_0) \\ & \pi & \mapsto & \mathcal{T}(\pi) \end{array}$

Idea: each box is replaced by *n* copies of its content, recursively (for every box and every $n \in \mathbb{N}$)

Taylor expansion of a MELL proof-structure Taylor expansion \mathcal{T} : MELL $\rightarrow \mathcal{P}(\text{DiLL}_0)$ $\pi \mapsto \mathcal{T}(\pi)$

Idea: each box is replaced by *n* copies of its content, recursively (for every box and every $n \in \mathbb{N}$)

Example:

Taylor expansion: bridge between syntax and semantics (1 of 2)

Remark: A finiteness space (interpreting the formula A in **Fin**) can be seen as a set A equipped with a notion of "finitary" subsets of A; a MELL-proof-structure is interpreted as a finitary set.

Remark: It turns out that A is the same set as the interpretation of A in **Rel**, and

$$[\pi]^{\mathsf{Fin}} = [\![\pi]\!]^{\mathsf{Rel}} (\neq [\![\pi]\!]^{\mathsf{Coh}})$$

Summing up:

- $\llbracket \pi \rrbracket^{\mathsf{Fin}} \colon \mathcal{A} \to_{\mathsf{an}} \mathcal{B}$ is its Taylor expansion
- the Taylor expansion can be internalized in the syntax
- the interpretation of a proof in Fin and in Rel is the same

 \rightsquigarrow It is natural to expect a relationship between the Taylor expansion of a MELL-proof-structure π and the interpretation of π in **Rel**

Taylor expansion: bridge between syntax and semantics (1 of 2)

Remark: A finiteness space (interpreting the formula A in **Fin**) can be seen as a set A equipped with a notion of "finitary" subsets of A; a MELL-proof-structure is interpreted as a finitary set.

Remark: It turns out that A is the same set as the interpretation of A in **Rel**, and

$$[\pi]^{\mathsf{Fin}} = [\![\pi]\!]^{\mathsf{Rel}} (\neq [\![\pi]\!]^{\mathsf{Coh}})$$

Summing up:

- $\llbracket \pi \rrbracket^{\mathsf{Fin}} \colon \mathcal{A} \to_{\mathsf{an}} \mathcal{B}$ is its Taylor expansion
- the Taylor expansion can be internalized in the syntax
- the interpretation of a proof in Fin and in Rel is the same

 \leadsto It is natural to expect a relationship between the Taylor expansion of a MELL-proof-structure π and the interpretation of π in **Rel**

Taylor expansion: bridge between syntax and semantics $_{(2 \mbox{ of } 2)}$ Our first "contribution":

Proposition (G., P., TdF., but also "folklore")

For every normal (= *cut-free, with atomic axioms*) MELL-proof-structure π :

 $\llbracket \pi \rrbracket_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi).$

where $\llbracket \pi \rrbracket_{ini/\sim}^{\text{Rel}} \subseteq \llbracket \pi \rrbracket^{\text{Rel}}$, more precisely:

- $[\![\pi]\!]_{ini}^{\text{Rel}}$ = the set containing the "most informative" points of $[\![\pi]\!]^{\text{Rel}}$
- ullet \sim is an equivalence relation on the points based on renaming of atoms

Given a normal MELL proof-structure π , the proposition above allows us to deal with the elements of $\mathcal{T}(\pi)$ instead the points of $[\![\pi]\!]^{\text{Rel}}$

ightarrow a geometrical representation of the points of the relational semantics of $\pi.$

 $\llbracket \pi \rrbracket = \begin{cases} a \text{ morphism in some category (Rel, Fin, Coh, ...)} \\ a (infinite) \text{ set of points (of a set, finiteness space, coherence space, ...)} \\ a (infinite) \text{ set of graphs (the DiLL_0-proof-structures of } \mathcal{T}(\pi)) \end{cases}$

Taylor expansion: bridge between syntax and semantics $_{(2 \mbox{ of } 2)}$ Our first "contribution":

Proposition (G., P., TdF., but also "folklore")

For every normal (= *cut-free, with atomic axioms*) MELL-proof-structure π :

 $\llbracket \pi \rrbracket_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi).$

where $\llbracket \pi \rrbracket_{ini/\sim}^{\text{Rel}} \subseteq \llbracket \pi \rrbracket^{\text{Rel}}$, more precisely:

- $[\![\pi]\!]_{ini}^{\text{Rel}} =$ the set containing the "most informative" points of $[\![\pi]\!]^{\text{Rel}}$
- ullet \sim is an equivalence relation on the points based on renaming of atoms

Given a normal MELL proof-structure π , the proposition above allows us to deal with the elements of $\mathcal{T}(\pi)$ instead the points of $[\![\pi]\!]^{\text{Rel}}$

 \rightsquigarrow a geometrical representation of the points of the relational semantics of $\pi.$

 $\llbracket \pi \rrbracket = \begin{cases} a \text{ morphism in some category } (\text{Rel, Fin, Coh}, \dots) \\ a \text{ (infinite) set of points (of a set, finiteness space, coherence space, \dots)} \\ a \text{ (infinite) set of graphs (the DiLL_0-proof-structures of } \mathcal{T}(\pi)) \end{cases}$

Taylor expansion: bridge between syntax and semantics $_{(2 \mbox{ of } 2)}$ Our first "contribution":

Proposition (G., P., TdF., but also "folklore")

For every normal (= *cut-free, with atomic axioms*) MELL-proof-structure π :

 $\llbracket \pi \rrbracket_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi).$

where $\llbracket \pi \rrbracket_{ini/\sim}^{\text{Rel}} \subseteq \llbracket \pi \rrbracket^{\text{Rel}}$, more precisely:

- $[\![\pi]\!]_{ini}^{\text{Rel}} =$ the set containing the "most informative" points of $[\![\pi]\!]^{\text{Rel}}$
- ullet \sim is an equivalence relation on the points based on renaming of atoms

Given a normal MELL proof-structure π , the proposition above allows us to deal with the elements of $\mathcal{T}(\pi)$ instead the points of $[\![\pi]\!]^{\mathsf{Rel}}$

 \rightsquigarrow a geometrical representation of the points of the relational semantics of $\pi.$

$$\llbracket \pi \rrbracket = \begin{cases} a \text{ morphism in some category (Rel, Fin, Coh, ...)} \\ a \text{ (infinite) set of points (of a set, finiteness space, coherence space, ...)} \\ a \text{ (infinite) set of graphs (the DiLL_0-proof-structures of } \mathcal{T}(\pi)) \end{cases}$$

Outline

1 Introduction: linear logic in a nutshell

2 From linear logic to differential linear logic and Taylor expansion

The question of injectivity

The question of injectivity and its motivations

The question of injectivity

Given two normal terms π and π' in a given syntax (with rewrite rules) and their interpretations $[\![\pi]\!]$ and $[\![\pi']\!]$ in some denotational semantics:

$$\pi]\!] = [\![\pi']\!] \stackrel{?}{\Rightarrow} \pi = \pi'.$$

If the implication holds, then that denotational semantics is injective.

In categorical terms, injectivity corresponds faithfulness of the interpretation.
Injectivity is a natural and well studied question for denotational semantics of λ-calculi and term rewriting systems (Friedman '75, Statman '82).

In '90s Tortora de Falco addressed the question of injectivity for the following case:

- syntax ~→ Linear Logic (LL) proof-structures
- normal \rightsquigarrow cut-free and η -expanded (= with atomic axioms) proof-structures
- semantics \rightsquigarrow set-based model (coherence spaces, relational semantics, . . .)

Among the motivations: To prove the uniqueness of the normal form (Danos):

where π_1, π_2 are normal $\stackrel{\text{invar.}}{\Longrightarrow} [\![\pi_1]\!] = [\![\pi]\!] = [\![\pi_2]\!] \stackrel{\text{inj.}}{\Longrightarrow} \pi_1 = \pi_2$

The question of injectivity and its motivations

1

The question of injectivity

Given two normal terms π and π' in a given syntax (with rewrite rules) and their interpretations $[\![\pi]\!]$ and $[\![\pi']\!]$ in some denotational semantics:

$$\pi]\!] = [\![\pi']\!] \stackrel{?}{\Rightarrow} \pi = \pi'.$$

If the implication holds, then that denotational semantics is injective.

- In categorical terms, injectivity corresponds faithfulness of the interpretation.
- Injectivity is a natural and well studied question for denotational semantics of λ -calculi and term rewriting systems (Friedman '75, Statman '82).

In '90s Tortora de Falco addressed the question of injectivity for the following case:

- syntax ~>> Linear Logic (LL) proof-structures
- normal \rightsquigarrow cut-free and η -expanded (= with atomic axioms) proof-structures
- semantics \rightsquigarrow set-based model (coherence spaces, relational semantics, ...)

Among the motivations: To prove the uniqueness of the normal form (Danos):

where π_1, π_2 are normal $\stackrel{\text{invar.}}{\Longrightarrow}$ $[\![\pi_1]\!] = [\![\pi]\!] = [\![\pi_2]\!] \stackrel{\text{inj.}}{\Longrightarrow} \pi_1 = \pi_2$

Some results about injectivity (w.r.t. MELL proof-structures)

- The question of injectivity has been deeply studied for the first time in Tortora de Falco's thesis (2000).
- Other contributions: TdF., Laurent, Boudes, Pagani, de Carvalho, ...

Theorem: about injectivity of coherence semantics (TdF. [2003])

- Coherence semantics is not injective: there exist two normal MELL proof-structures π_1 and π_2 such that $[\![\pi_1]\!]^{Coh} = [\![\pi_2]\!]^{Coh}$ and $\pi_1 \neq \pi_2$
- Coherence semantics is injective w.r.t. some fragments of MELL

Theorem: injectivity of relational semantics (de Carvalho, TdF. [2012])

- Given two normal MELL proof-structures π_1 and π_2 without ?w nodes, if $[\![\pi_1]\!]^{\text{Rel}} = [\![\pi_2]\!]^{\text{Rel}}$ then $\pi_1 = \pi_2$.
- Conjecture (TdF. [2003]): relational semantics is injective w.r.t. all MELL proof-structures (proof by de Carvalho).

Some results about injectivity (w.r.t. MELL proof-structures)

- The question of injectivity has been deeply studied for the first time in Tortora de Falco's thesis (2000).
- Other contributions: TdF., Laurent, Boudes, Pagani, de Carvalho, ...

Theorem: about injectivity of coherence semantics (TdF. [2003])

- Coherence semantics is not injective: there exist two normal MELL proof-structures π_1 and π_2 such that $[\![\pi_1]\!]^{\text{Coh}} = [\![\pi_2]\!]^{\text{Coh}}$ and $\pi_1 \neq \pi_2$.
- Coherence semantics is injective w.r.t. some fragments of MELL

Theorem: injectivity of relational semantics (de Carvalho, TdF. [2012])

- Given two normal MELL proof-structures π_1 and π_2 without ?w nodes, if $[\![\pi_1]\!]^{\text{Rel}} = [\![\pi_2]\!]^{\text{Rel}}$ then $\pi_1 = \pi_2$.
- Conjecture (TdF. [2003]): relational semantics is injective w.r.t. all MELL proof-structures (proof by de Carvalho).

• Hypothesis: Let π_1 and π_2 be two normal MELL proof-structures such that $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$ (where $\llbracket \cdot \rrbracket$ is a *set-based* semantics: $\llbracket \cdot \rrbracket^{\text{Rel}}, \llbracket \cdot \rrbracket^{\text{Coh}}, \llbracket \cdot \rrbracket^{\text{Fin}}, \ldots$). Set-based model \longleftrightarrow For any MELL proof-structure π , $\llbracket \pi \rrbracket$ is a *set*.

e Key-Lemma:

For any normal MELL proof-structures π , there is at least *one* "discriminating element" $\rho \in [\![\pi]\!]$, i.e., for any normal MELL-proof-structure π'

If $\rho \in \llbracket \pi \rrbracket \cap \llbracket \pi' \rrbracket$, then $\pi = \pi'$.

Output Conclusion (injectivity): Since $[\![\pi_1]\!] = [\![\pi_2]\!]$, then the "discriminating element" ρ of $\{\pi_1, \pi_2\}$ satisfies $\rho \in [\![\pi_1]\!] \cap [\![\pi_2]\!]$, hence $\pi_1 = \pi_2$ by the Key-Lemma.

The crucial points in this kind of proofs are:

• To define the "discriminating element" ρ of any pair $\{\pi,\pi'\}$ of normal MELL proof-structures.

Remark: the "structure" of ρ depends on π, π' (the Key-Lemma claims: " $\forall \{\pi, \pi'\} \exists \rho$ such that if $P(\rho, \pi, \pi')$ then ρ is discriminating for π, π' ")

• Hypothesis: Let π_1 and π_2 be two normal MELL proof-structures such that $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$ (where $\llbracket \cdot \rrbracket$ is a *set-based* semantics: $\llbracket \cdot \rrbracket^{\text{Rel}}, \llbracket \cdot \rrbracket^{\text{Coh}}, \llbracket \cdot \rrbracket^{\text{Fin}}, \ldots$). Set-based model \longleftrightarrow For any MELL proof-structure π , $\llbracket \pi \rrbracket$ is a *set*.

Sey-Lemma:

For any normal MELL proof-structures π , there is at least *one* "discriminating element" $\rho \in [\![\pi]\!]$, i.e., for any normal MELL-proof-structure π'

 $\text{ if } \rho \in \llbracket \pi \rrbracket \cap \llbracket \pi' \rrbracket \text{, then } \pi = \pi'.$

• Conclusion (injectivity): Since $[\![\pi_1]\!] = [\![\pi_2]\!]$, then the "discriminating element" ρ of $\{\pi_1, \pi_2\}$ satisfies $\rho \in [\![\pi_1]\!] \cap [\![\pi_2]\!]$, hence $\pi_1 = \pi_2$ by the Key-Lemma.

The crucial points in this kind of proofs are:

• To define the "discriminating element" ρ of any pair $\{\pi,\pi'\}$ of normal MELL proof-structures.

Remark: the "structure" of ρ depends on π, π' (the Key-Lemma claims: " $\forall \{\pi, \pi'\} \exists \rho$ such that if $P(\rho, \pi, \pi')$ then ρ is discriminating for π, π' ")

• Hypothesis: Let π_1 and π_2 be two normal MELL proof-structures such that $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$ (where $\llbracket \cdot \rrbracket$ is a *set-based* semantics: $\llbracket \cdot \rrbracket^{\text{Rel}}, \llbracket \cdot \rrbracket^{\text{Coh}}, \llbracket \cdot \rrbracket^{\text{Fin}}, \ldots$). Set-based model \longleftrightarrow For any MELL proof-structure π , $\llbracket \pi \rrbracket$ is a *set*.

Ø Key-Lemma:

For any normal MELL proof-structures π , there is at least *one* "discriminating element" $\rho \in [\![\pi]\!]$, i.e., for any normal MELL-proof-structure π'

 $\text{ if } \rho \in \llbracket \pi \rrbracket \cap \llbracket \pi' \rrbracket, \text{ then } \pi = \pi'.$

• Conclusion (injectivity): Since $[\![\pi_1]\!] = [\![\pi_2]\!]$, then the "discriminating element" ρ of $\{\pi_1, \pi_2\}$ satisfies $\rho \in [\![\pi_1]\!] \cap [\![\pi_2]\!]$, hence $\pi_1 = \pi_2$ by the Key-Lemma.

The crucial points in this kind of proofs are:

• To define the "discriminating element" ρ of any pair $\{\pi,\pi'\}$ of normal MELL proof-structures.

Remark: the "structure" of ρ depends on π, π' (the Key-Lemma claims: " $\forall \{\pi, \pi'\} \exists \rho$ such that if $P(\rho, \pi, \pi')$ then ρ is discriminating for π, π' ")

• Hypothesis: Let π_1 and π_2 be two normal MELL proof-structures such that $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$ (where $\llbracket \cdot \rrbracket$ is a *set-based* semantics: $\llbracket \cdot \rrbracket^{\text{Rel}}, \llbracket \cdot \rrbracket^{\text{Coh}}, \llbracket \cdot \rrbracket^{\text{Fin}}, \ldots$). Set-based model \longleftrightarrow For any MELL proof-structure π , $\llbracket \pi \rrbracket$ is a *set*.

Ø Key-Lemma:

For any normal MELL proof-structures π , there is at least *one* "discriminating element" $\rho \in [\![\pi]\!]$, i.e., for any normal MELL-proof-structure π'

 $\text{ if } \rho \in [\![\pi]\!] \cap [\![\pi']\!] \text{, then } \pi = \pi'.$

• Conclusion (injectivity): Since $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$, then the "discriminating element" ρ of $\{\pi_1, \pi_2\}$ satisfies $\rho \in \llbracket \pi_1 \rrbracket \cap \llbracket \pi_2 \rrbracket$, hence $\pi_1 = \pi_2$ by the Key-Lemma.

The crucial points in this kind of proofs are:

• To define the "discriminating element" ρ of any pair $\{\pi,\pi'\}$ of normal MELL proof-structures.

Remark: the "structure" of ρ depends on π, π' (the Key-Lemma claims: " $\forall \{\pi, \pi'\} \exists \rho$ such that if $P(\rho, \pi, \pi')$ then ρ is discriminating for π, π' ")

• Hypothesis: Let π_1 and π_2 be two normal MELL proof-structures such that $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$ (where $\llbracket \cdot \rrbracket$ is a *set-based* semantics: $\llbracket \cdot \rrbracket^{\text{Rel}}, \llbracket \cdot \rrbracket^{\text{Coh}}, \llbracket \cdot \rrbracket^{\text{Fin}}, \ldots$). Set-based model \longleftrightarrow For any MELL proof-structure π , $\llbracket \pi \rrbracket$ is a *set*.

Skey-Lemma:

For any normal MELL proof-structures π , there is at least *one* "discriminating element" $\rho \in [\![\pi]\!]$, i.e., for any normal MELL-proof-structure π'

 $\text{ if }\rho\in[\![\pi]\!]\cap[\![\pi']\!]\text{, then }\pi=\pi'.$

• Conclusion (injectivity): Since $\llbracket \pi_1 \rrbracket = \llbracket \pi_2 \rrbracket$, then the "discriminating element" ρ of $\{\pi_1, \pi_2\}$ satisfies $\rho \in \llbracket \pi_1 \rrbracket \cap \llbracket \pi_2 \rrbracket$, hence $\pi_1 = \pi_2$ by the Key-Lemma.

The crucial points in this kind of proofs are:

• To define the "discriminating element" ρ of any pair $\{\pi,\pi'\}$ of normal MELL proof-structures.

Remark: the "structure" of ρ depends on π, π' (the Key-Lemma claims: " $\forall \{\pi, \pi'\} \exists \rho$ such that if $P(\rho, \pi, \pi')$ then ρ is discriminating for π, π' ")

Inspired by the proposition relating the relational interpretation and the Taylor expansion in the cut-free case ($[\![\pi]\!]_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi)$), we used DiLL₀-proof-structures to study the question of injectivity of **Rel** wrt MELL-proof-structures \rightsquigarrow we thus obtained a new proof of injectivity of relational semantics, generalizing and simplifying the one of de Carvalho, TdF. [2012].

Theorem: injectivity of relational model (G., P., Tdf.)

- **3** Given two MELL proof-structures π_1 and π_2 which are box-connected, if $\mathcal{T}(\pi_1) = \mathcal{T}(\pi_2)$ then $\pi_1 = \pi_2$.
- On particular, given two normal MELL proof-structures π₁ and π₂ which are box-connected, if [[π₁]]^{Rel} = [[π₂]]^{Rel} then π₁ = π₂.

Our novelties:

- it is a simplification, since the "structure" of the discriminating element ρ does not depend on π, π'. Thus the Key-Lemma has a logically less complex claim: "∀ρ ∈ DiLL₀ such that P(ρ), if ρ ∈ T(π) ∩ T(π'), then π = π'.
- generalization because the result holds in presence of cuts: the discriminating element $\rho \in \mathcal{T}(\pi)$ allows to build univocally π also in presence of cuts.

Inspired by the proposition relating the relational interpretation and the Taylor expansion in the cut-free case ($[\![\pi]\!]_{inj/\sim}^{\mathbf{Rel}} \simeq \mathcal{T}(\pi)$), we used DiLL₀-proof-structures to study the question of injectivity of **Rel** wrt MELL-proof-structures \rightsquigarrow we thus obtained a new proof of injectivity of relational semantics, generalizing and simplifying the one of de Carvalho, TdF. [2012].

Theorem: injectivity of relational model (G., P., Tdf.)

- Given two MELL proof-structures π_1 and π_2 which are box-connected, if $\mathcal{T}(\pi_1) = \mathcal{T}(\pi_2)$ then $\pi_1 = \pi_2$.
- In particular, given two normal MELL proof-structures π₁ and π₂ which are box-connected, if [[π₁]]^{Rel} = [[π₂]]^{Rel} then π₁ = π₂.

Our novelties:

- it is a simplification, since the "structure" of the discriminating element ρ does not depend on π, π'. Thus the Key-Lemma has a logically less complex claim: "∀ρ ∈ DiLL₀ such that P(ρ), if ρ ∈ T(π) ∩ T(π'), then π = π'.
- generalization because the result holds in presence of cuts: the discriminating element $\rho \in \mathcal{T}(\pi)$ allows to build univocally π also in presence of cuts.

Inspired by the proposition relating the relational interpretation and the Taylor expansion in the cut-free case ($[\![\pi]\!]_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi)$), we used DiLL₀-proof-structures to study the question of injectivity of **Rel** wrt MELL-proof-structures \rightsquigarrow we thus obtained a new proof of injectivity of relational semantics, generalizing and simplifying the one of de Carvalho, TdF. [2012].

Theorem: injectivity of relational model (G., P., Tdf.)

- Given two MELL proof-structures π_1 and π_2 which are box-connected, if $\mathcal{T}(\pi_1) = \mathcal{T}(\pi_2)$ then $\pi_1 = \pi_2$.
- In particular, given two normal MELL proof-structures π₁ and π₂ which are box-connected, if [[π₁]]^{Rel} = [[π₂]]^{Rel} then π₁ = π₂.

Our novelties:

 it is a simplification, since the "structure" of the discriminating element ρ does not depend on π, π'. Thus the Key-Lemma has a logically less complex claim: "∀ρ ∈ DiLL₀ such that P(ρ), if ρ ∈ T(π) ∩ T(π'), then π = π'.

• generalization because the result holds in presence of cuts: the discriminating element $\rho \in \mathcal{T}(\pi)$ allows to build univocally π also in presence of cuts.

Inspired by the proposition relating the relational interpretation and the Taylor expansion in the cut-free case ($[\![\pi]\!]_{inj/\sim}^{\text{Rel}} \simeq \mathcal{T}(\pi)$), we used DiLL₀-proof-structures to study the question of injectivity of **Rel** wrt MELL-proof-structures \rightsquigarrow we thus obtained a new proof of injectivity of relational semantics, generalizing and simplifying the one of de Carvalho, TdF. [2012].

Theorem: injectivity of relational model (G., P., Tdf.)

- Given two MELL proof-structures π_1 and π_2 which are box-connected, if $\mathcal{T}(\pi_1) = \mathcal{T}(\pi_2)$ then $\pi_1 = \pi_2$.
- On particular, given two normal MELL proof-structures π₁ and π₂ which are box-connected, if [[π₁]]^{Rel} = [[π₂]]^{Rel} then π₁ = π₂.

Our novelties:

- it is a simplification, since the "structure" of the discriminating element ρ does not depend on π, π'. Thus the Key-Lemma has a logically less complex claim: "∀ρ ∈ DiLL₀ such that P(ρ), if ρ ∈ T(π) ∩ T(π'), then π = π'.
- generalization because the result holds in presence of cuts: the discriminating element $\rho \in \mathcal{T}(\pi)$ allows to build univocally π also in presence of cuts.