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o Orthogonal relational systems and associated orthogroupoids
@ Decomposition of a variety of orthogroupoids

@ Amalgamation property

Motivation: generalising the theory of partially ordered sets and
pre-ordered sets.
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Relational system

Relational system with 1 and involution

A= (A R/, 1) where
@ A is a non empty set;

@ R is a binary relation on A;
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Relational system with 1 and involution

A= (A R/, 1) where
@ A is a non empty set;
@ R is a binary relation on A;
o A= A st (X)) =xand, if (x,y) € R then (y/,x') € R;
o (x,1) € R for any x € A.
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Relational system

Relational system with 1 and involution

A= (A R/, 1) where
@ A is a non empty set;
@ R is a binary relation on A;
o A= A st (X)) =xand, if (x,y) € R then (y/,x') € R;
o (x,1) € R for any x € A.

Ur(a,b) = {x € A|(a,x) € R and (b, x) € R} is the upper cone of
a,b € A (with respect to R).
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Orthogonal relational system

A= (A R/,1). a,b € A are orthogonal (a L b) whenever
(a,b') € R.
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Orthogonal relational system

A= (A R/,1). a,b € A are orthogonal (a L b) whenever
(a,b') € R.

Supremal elements

An element w € Ug(a, b) is supremal if, for every z € Ug(a, b),
with z # w, (w,z) € R.
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Orthogonal relational system

(A,R/,1). a,b € A are orthogonal (a L b) whenever
(a, b’) €R.

Supremal elements

An element w € Ug(a, b) is supremal if, for every z € Ug(a, b),
with z # w, (w,z) € R.

Orthogonal relational system
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Orthogonal relational system

(A,R/,1). a,b € A are orthogonal (a L b) whenever
(a, b’) €R.

Supremal elements

An element w € Ug(a, b) is supremal if, for every z € Ug(a, b),
with z # w, (w,z) € R.

Orthogonal relational system

The relational system A is orthogonal iff:
o Ugr(x,x) = {1} for any x € A;
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Orthogonal relational system

(A,R/,1). a,b € A are orthogonal (a L b) whenever
(a, b’) €R.

Supremal elements

An element w € Ug(a, b) is supremal if, for every z € Ug(a, b),
with z # w, (w,z) € R.

Orthogonal relational system

The relational system A is orthogonal iff:
o Ugr(x,x) = {1} for any x € A;
@ For every x | y, x # 0 # y there exists a supremal element
x,y in Ur(x,y).
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From relational systems to groupoids
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From relational systems to groupoids

Induced groupoids

Let A = (A, R) a relational system. We define the induced
groupoid G(A) = (A, +)

o if (x,y) € Rthenx+y=1y;

o if (x,y) ¢ Rand (y,x) € R then x+y =x;

o if (x,y) ¢ Rand (y,x) € Rthen x+y =y + x € Ugr(x,y).
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From relational systems to groupoids

Induced groupoids

Let A = (A, R) a relational system. We define the induced
groupoid G(A) = (A, +)

o if (x,y) € Rthenx+y=1y;

o if (x,y) ¢ Rand (y,x) € R then x+y =x;

o if (x,y) ¢ Rand (y,x) € Rthen x+y =y + x € Ugr(x,y).

Obs: the groupoid induced by a relational system is not uniquel!!
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Orthogroupoid

An orthogroupoid is an algebra G = (G, +,,1) of type (2,1,0)
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Orthogroupoid

An orthogroupoid is an algebra G = (G, +,,1) of type (2,1,0)
satisfying the following:

X
0+x=xand 1+ x=1, where 0 =1';
x+x' =1;

d) ifx+z=2zand X'+ z =z then z = 1;

e) ((z+y)+(z+x) +(z+y))+2 =2,
f) x+(x+y)=x+yandy+ (x+y)=x+y.
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Orthogroupoid

An orthogroupoid is an algebra G = (G, +,,1) of type (2,1,0)
satisfying the following:

(a) X" =x;

(b) 0+ x=xand 1+ x =1, where 0 =1/;
(c) x+x' =1,

(d) if x+z=zand X'+ z=2zthenz=1,
(€ ((z+y)+(@z+x) +(z+y))+2 =7,

f) x+(x+y)=x+yandy+ (x+y)=x+y.

Any orthogroupoid induces a relational system A(G) = (G, Rg),
where (a,b) € Rg if and only if a4+ b = b.
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Some properties

Orthogroupoids form an equational class. Quasi-identity (d) may
be equivalently replaced by: x +1 =1+ x.
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Orthogroupoids form an equational class. Quasi-identity (d) may
be equivalently replaced by: x +1 =1+ x.

Let D = (D, +,",1) be an orthogroupoid and R the induced
relation. Then the relational system A(D) = (D, R, ,1) is
orthogonal and R is reflexive.
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Some properties

Orthogroupoids form an equational class. Quasi-identity (d) may
be equivalently replaced by: x +1 =1+ x.

Let D = (D, +,",1) be an orthogroupoid and R the induced
relation. Then the relational system A(D) = (D, R, ,1) is
orthogonal and R is reflexive.

Let A= (A, R/, 1) be an orthogonal relational system with R
reflexive and transitive. Then any induced groupoid is an
orthogroupoid.
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Church algebras

“Church algebras” are algebras equipped with a term operation

a(x,y,2) st
q(1,x,y) = x

q(0,x,y) =y
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Church algebras

“Church algebras” are algebras equipped with a term operation
a(x,y,2) st

q(1,x,y) = x

q(0,x,y) =y

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory
algebras.
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Church algebras

“Church algebras” are algebras equipped with a term operation
a(x,y,2) st
q(1,x,y) = x

q(0,x,y) =y

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory
algebras.

In a Church algebra the following operations are definable
XNy = 4(x¥,0)
xVy=q(x,1,y)

x* =q(x,0,1)
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Central elements

An element e in a Church algebra A is central if §(e,0),0(e, 1)
form a pair of factor congruences on A.

Stefano Bonzio Orthogonal relational systems



Central elements

An element e in a Church algebra A is central if §(e,0),0(e, 1)
form a pair of factor congruences on A.

Theorem (Salibra, Ledda, Paoli and Kowalski)

Let A a Church algebra. Then Ce(A) = (Ce(A), A, V,*,0,1) is a
Boolean algebra isomorphic to the Boolean algebra of factor
congruences of A.
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Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also
x+0=0+ x.
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0-commutative orthogroupoid
A 0-commutative orthogroupoid in an orthogroupoid satisfying also
x+0=0+ x.

Defining an operation a la De Morgan: x -y = (x' +y')" we get
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Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also
x+0=0+ x.

Defining an operation a la De Morgan: x -y = (x' +y')" we get

The variety of 0-commutative orthogroupoid is a Church variety,
with witnessing term q(x,y,z) = (x + z) - (X' + y).
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Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also
x+0=0+ x.

Defining an operation a la De Morgan: x -y = (x' +y')" we get

The variety of 0-commutative orthogroupoid is a Church variety,
with witnessing term q(x,y,z) = (x + z) - (X' + y).

Let A be 0-commutative orthogroupoid and Ce(A) the set of
central elements. Then Ce(A) = (Ce(A),+,-,,0,1) is a Boolean
algebra.
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A decomposition theorem

Let A be a Church algebra of type v, e € A a central element, it is
possible to define A, = (Ae; ge)gev:

Ac={eAb:bc A}, ge(enb)=eng(enb).
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A decomposition theorem

Let A be a Church algebra of type v, e € A a central element, it is
possible to define A, = (Ae; ge)gev:

Ac={eAb:bc A}, ge(enb)=eng(enb).

=

Let A a 0-commutative orthogroupoid s.t. Ce(A) is a Boolean
algebra with a denumerable number of atoms. Then

A:HAe

ecAt(A)

is a decomposition as product of directly indecomposable algebras.
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Amalgamation property

A V-formation is a 5-tuple (A, B1, B2, i,j), where A, By, B> are
similar algebras and i, j embeddings.
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Amalgamation property

A V-formation is a 5-tuple (A, B1, B2, i,j), where A, By, B> are
similar algebras and i, j embeddings.

A class IC of similar algebras has the amalgamation property, if for
any V-formation there exists an algebra D € K e embeddings
h:B1— D,k :By— Ds.t. kOj:hOi
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Amalgamation property

A V-formation is a 5-tuple (A, B1, B2, i,j), where A, By, B> are
similar algebras and i, j embeddings.

A class IC of similar algebras has the amalgamation property, if for
any V-formation there exists an algebra D € K e embeddings
h:B1— D,k :By— Ds.t. kOj:hOi

In particular K ha the strong amalgamation property if k and h can
be taken s.t. ko j(A) = h(B1) N k(B>).
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Amalgamation property for orthogroupoids

The variety of orthogroupoid has the strong amalgamation property.
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Amalgamation property for orthogroupoids

The variety of orthogroupoid has the strong amalgamation property.

Sketch of the proof

Given a V-formation, let D = B; U By, x'° = x’Bi and

B; : .
— X+ ’y? IfX),ye Blv
x@y—{ 1, otherwise.

D = (D,®,,1) is an orthogroupoid.

Assuming with no loss of generality B; N B, = A one gets the
conclusion.
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Thanks for your attention!!
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