Stefano Bonzio

University of Cagliari

TACL 2015

Joint work with I.Chajda and A.Ledda

• Orthogonal relational systems and associated orthogroupoids

- Orthogonal relational systems and associated orthogroupoids
- Decomposition of a variety of orthogroupoids
- Amalgamation property

- Orthogonal relational systems and associated orthogroupoids
- Decomposition of a variety of orthogroupoids
- Amalgamation property

Motivation: generalising the theory of partially ordered sets and pre-ordered sets.

Relational system

Relational system with 1 and involution

- $\mathbf{A}=\langle A,R,'\,,1
 angle$ where
 - A is a non empty set;
 - R is a binary relation on A;

Relational system with 1 and involution

 $\mathbf{A}=\langle A,R,'\,,1
angle$ where

- A is a non empty set;
- R is a binary relation on A;

• ':
$$A
ightarrow A$$
, s.t. $(x')' = x$ and, if $(x, y) \in R$ then $(y', x') \in R$;

Relational system with 1 and involution

 $\mathbf{A}=\langle A,R,'\,,1
angle$ where

- A is a non empty set;
- R is a binary relation on A;

• ':
$$A
ightarrow A$$
, s.t. $(x')' = x$ and, if $(x,y) \in R$ then $(y',x') \in R$;

•
$$(x,1) \in R$$
 for any $x \in A$.

Relational system with 1 and involution

 $\mathbf{A}=\langle A,R,'\,,1
angle$ where

- A is a non empty set;
- R is a binary relation on A;

• ':
$$A
ightarrow A$$
, s.t. $(x')' = x$ and, if $(x,y) \in R$ then $(y',x') \in R$;

•
$$(x,1)\in R$$
 for any $x\in A$.

Upper cone

 $U_R(a,b) = \{x \in A | (a,x) \in R \text{ and } (b,x) \in R\}$ is the upper cone of $a, b \in A$ (with respect to R).

 $\mathbf{A} = \langle A, R, ', 1 \rangle$. $a, b \in A$ are orthogonal $(a \perp b)$ whenever $(a, b') \in R$.

 $\mathbf{A} = \langle A, R, ', 1 \rangle$. $a, b \in A$ are orthogonal $(a \perp b)$ whenever $(a, b') \in R$.

Supremal elements

An element $w \in U_R(a, b)$ is supremal if, for every $z \in U_R(a, b)$, with $z \neq w$, $(w, z) \in R$.

 $\mathbf{A} = \langle A, R, ', 1 \rangle$. $a, b \in A$ are orthogonal $(a \perp b)$ whenever $(a, b') \in R$.

Supremal elements

An element $w \in U_R(a, b)$ is supremal if, for every $z \in U_R(a, b)$, with $z \neq w$, $(w, z) \in R$.

Orthogonal relational system

The relational system A is orthogonal iff:

 $\mathbf{A} = \langle A, R, ', 1 \rangle$. $a, b \in A$ are orthogonal $(a \perp b)$ whenever $(a, b') \in R$.

Supremal elements

An element $w \in U_R(a, b)$ is supremal if, for every $z \in U_R(a, b)$, with $z \neq w$, $(w, z) \in R$.

Orthogonal relational system

The relational system A is orthogonal iff:

•
$$U_R(x,x') = \{1\}$$
 for any $x \in A$;

 $\mathbf{A} = \langle A, R, ', 1 \rangle$. $a, b \in A$ are orthogonal $(a \perp b)$ whenever $(a, b') \in R$.

Supremal elements

An element $w \in U_R(a, b)$ is supremal if, for every $z \in U_R(a, b)$, with $z \neq w$, $(w, z) \in R$.

Orthogonal relational system

The relational system A is orthogonal iff:

- $U_R(x,x') = \{1\}$ for any $x \in A$;
- For every $x \perp y$, $x \neq 0 \neq y$ there exists a supremal element x, y in $U_R(x, y)$.

From relational systems to groupoids

Induced groupoids

Let $\mathbf{A} = \langle A, R \rangle$ a relational system. We define the *induced* groupoid $\mathbf{G}(A) = \langle A, + \rangle$

- if $(x, y) \in R$ then x + y = y;
- if $(x, y) \notin R$ and $(y, x) \in R$ then x + y = x;
- if $(x, y) \notin R$ and $(y, x) \notin R$ then $x + y = y + x \in U_R(x, y)$.

Induced groupoids

Let $\mathbf{A} = \langle A, R \rangle$ a relational system. We define the *induced* groupoid $\mathbf{G}(A) = \langle A, + \rangle$

• if
$$(x, y) \in R$$
 then $x + y = y$;

- if $(x, y) \notin R$ and $(y, x) \in R$ then x + y = x;
- if $(x, y) \notin R$ and $(y, x) \notin R$ then $x + y = y + x \in U_R(x, y)$.

Obs: the groupoid induced by a relational system is not unique!!

An orthogroupoid is an algebra $\mathbf{G} = \langle G, +, ', 1 \rangle$ of type (2,1,0)

An orthogroupoid is an algebra $\mathbf{G} = \langle G, +, ', 1 \rangle$ of type (2, 1, 0) satisfying the following:

An orthogroupoid is an algebra $\mathbf{G} = \langle G, +, ', 1 \rangle$ of type (2, 1, 0) satisfying the following:

Any orthogroupoid induces a relational system $A(G) = \langle G, R_G \rangle$, where $(a, b) \in R_G$ if and only if a + b = b.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: x + 1 = 1 + x.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: x + 1 = 1 + x.

Theorem 1

Let $\mathbf{D} = \langle D, +, ', 1 \rangle$ be an orthogroupoid and R the induced relation. Then the relational system $\mathbf{A}(D) = \langle D, R, ', 1 \rangle$ is orthogonal and R is reflexive.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: x + 1 = 1 + x.

Theorem 1

Let $\mathbf{D} = \langle D, +, ', 1 \rangle$ be an orthogroupoid and R the induced relation. Then the relational system $\mathbf{A}(D) = \langle D, R, ', 1 \rangle$ is orthogonal and R is reflexive.

Theorem 2

Let $\mathbf{A} = \langle A, R, ', 1 \rangle$ be an orthogonal relational system with R reflexive and transitive. Then any induced groupoid is an orthogroupoid.

Church algebras

"Church algebras" are algebras equipped with a term operation q(x, y, z) s.t.

$$q(1, x, y) = x$$
$$q(0, x, y) = y$$

Church algebras

"Church algebras" are algebras equipped with a term operation q(x, y, z) s.t.

$$q(1, x, y) = x$$
$$q(0, x, y) = y$$

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory algebras.

Church algebras

"Church algebras" are algebras equipped with a term operation q(x, y, z) s.t.

$$q(1, x, y) = x$$
$$q(0, x, y) = y$$

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory algebras.

In a Church algebra the following operations are definable

$$egin{aligned} & x \wedge y = q(x,y,0) \ & x \vee y = q(x,1,y) \ & x^* = q(x,0,1) \end{aligned}$$

Definition

An element e in a Church algebra **A** is central if $\theta(e, 0), \theta(e, 1)$ form a pair of factor congruences on **A**.

Definition

An element e in a Church algebra A is central if $\theta(e, 0), \theta(e, 1)$ form a pair of factor congruences on A.

Theorem (Salibra, Ledda, Paoli and Kowalski)

Let **A** a Church algebra. Then $Ce(\mathbf{A}) = (Ce(A), \land, \lor, ^*, 0, 1)$ is a Boolean algebra isomorphic to the Boolean algebra of factor congruences of **A**.

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also x + 0 = 0 + x.

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also x + 0 = 0 + x.

Defining an operation *a la De Morgan*: $x \cdot y = (x' + y')'$ we get

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also x + 0 = 0 + x.

Defining an operation *a la De Morgan*: $x \cdot y = (x' + y')'$ we get

Proposition

The variety of 0-commutative orthogroupoid is a Church variety, with witnessing term $q(x, y, z) = (x + z) \cdot (x' + y)$.

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also x + 0 = 0 + x.

Defining an operation *a la De Morgan*: $x \cdot y = (x' + y')'$ we get

Proposition

The variety of 0-commutative orthogroupoid is a Church variety, with witnessing term $q(x, y, z) = (x + z) \cdot (x' + y)$.

Proposition

Let **A** be 0-commutative orthogroupoid and $\operatorname{Ce}(A)$ the set of central elements. Then $\operatorname{Ce}(A) = \langle \operatorname{Ce}(A), +, \cdot, ', 0, 1 \rangle$ is a Boolean algebra.

Let **A** be a Church algebra of type ν , $e \in A$ a central element, it is possible to define $\mathbf{A}_e = (A_e; g_e)_{g \in \nu}$:

$$A_e = \{e \land b : b \in A\}; \quad g_e(e \land \overline{b}) = e \land g(e \land \overline{b}).$$

Let **A** be a Church algebra of type ν , $e \in A$ a central element, it is possible to define $\mathbf{A}_e = (A_e; g_e)_{g \in \nu}$:

$$A_e = \{e \land b : b \in A\}; \quad g_e(e \land \overline{b}) = e \land g(e \land \overline{b}).$$

Theorem

Let A a 0-commutative orthogroupoid s.t. ${\rm Ce}(A)$ is a Boolean algebra with a denumerable number of atoms. Then

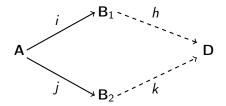
$$\mathsf{A} = \prod_{e \in At(\mathsf{A})} \mathsf{A}_e$$

is a decomposition as product of directly indecomposable algebras.

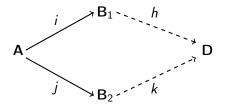
A V-formation is a 5-tuple (A, B_1, B_2, i, j) , where A, B_1, B_2 are similar algebras and i, j embeddings.

Amalgamation property

A V-formation is a 5-tuple ($\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2, i, j$), where $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2$ are similar algebras and i, j embeddings. A class \mathcal{K} of similar algebras has the amalgamation property, if for any V-formation there exists an algebra $\mathbf{D} \in \mathcal{K}$ e embeddings $h: \mathbf{B}_1 \rightarrow \mathbf{D}, k: \mathbf{B}_2 \rightarrow \mathbf{D}$ s.t. $k \circ j = h \circ i$



A V-formation is a 5-tuple ($\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2, i, j$), where $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2$ are similar algebras and i, j embeddings. A class \mathcal{K} of similar algebras has the amalgamation property, if for any V-formation there exists an algebra $\mathbf{D} \in \mathcal{K}$ e embeddings $h: \mathbf{B}_1 \rightarrow \mathbf{D}, k: \mathbf{B}_2 \rightarrow \mathbf{D}$ s.t. $k \circ j = h \circ i$



In particular \mathcal{K} has the strong amalgamation property if k and h can be taken s.t. $k \circ j(\mathbf{A}) = h(\mathbf{B}_1) \cap k(\mathbf{B}_2)$.

Amalgamation property for orthogroupoids

Theorem

The variety of orthogroupoid has the strong amalgamation property.

Amalgamation property for orthogroupoids

Theorem

The variety of orthogroupoid has the strong amalgamation property.

Sketch of the proof

Given a V-formation, let $D = B_1 \cup B_2$, $x'^D = x'^{B_i}$ and

$$x \oplus y = \left\{ egin{array}{cc} x + ^{B_i}y, & ext{if } x, y \in B_i; \ 1, & ext{otherwise.} \end{array}
ight.$$

 $D = \langle D, \oplus, ', 1 \rangle$ is an orthogroupoid. Assuming with no loss of generality $B_1 \cap B_2 = A$ one gets the conclusion.

Thanks for your attention!!