Orthogonal relational systems

Stefano Bonzio
University of Cagliari

TACL 2015

Joint work with I.Chajda and A.Ledda

Outline

- Orthogonal relational systems and associated orthogroupoids

Outline

- Orthogonal relational systems and associated orthogroupoids
- Decomposition of a variety of orthogroupoids
- Amalgamation property

Outline

- Orthogonal relational systems and associated orthogroupoids
- Decomposition of a variety of orthogroupoids
- Amalgamation property

Motivation: generalising the theory of partially ordered sets and pre-ordered sets.

Relational system

Relational system with 1 and involution
$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle$ where

- A is a non empty set;
- R is a binary relation on A;

Relational system

Relational system with 1 and involution

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle$ where

- A is a non empty set;
- R is a binary relation on A;
${ }^{\prime}: A \rightarrow A$, s.t. $\left(x^{\prime}\right)^{\prime}=x$ and, if $(x, y) \in R$ then $\left(y^{\prime}, x^{\prime}\right) \in R$;

Relational system

Relational system with 1 and involution
$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle$ where

- A is a non empty set;
- R is a binary relation on A;
$0^{\prime}: A \rightarrow A$, s.t. $\left(x^{\prime}\right)^{\prime}=x$ and, if $(x, y) \in R$ then $\left(y^{\prime}, x^{\prime}\right) \in R$;
- $(x, 1) \in R$ for any $x \in A$.

Relational system

Relational system with 1 and involution

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle$ where

- A is a non empty set;
- R is a binary relation on A;
${ }^{\prime}$ ' $A \rightarrow A$, s.t. $\left(x^{\prime}\right)^{\prime}=x$ and, if $(x, y) \in R$ then $\left(y^{\prime}, x^{\prime}\right) \in R$;
- $(x, 1) \in R$ for any $x \in A$.

Upper cone

$U_{R}(a, b)=\{x \in A \mid(a, x) \in R$ and $(b, x) \in R\}$ is the upper cone of $a, b \in A$ (with respect to R).

Orthogonal relational system

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle . a, b \in A$ are orthogonal $(a \perp b)$ whenever $\left(a, b^{\prime}\right) \in R$.

Orthogonal relational system

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle . a, b \in A$ are orthogonal $(a \perp b)$ whenever $\left(a, b^{\prime}\right) \in R$.

Supremal elements

An element $w \in U_{R}(a, b)$ is supremal if, for every $z \in U_{R}(a, b)$, with $z \neq w,(w, z) \in R$.

Orthogonal relational system

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle . a, b \in A$ are orthogonal $(a \perp b)$ whenever $\left(a, b^{\prime}\right) \in R$.

Supremal elements

An element $w \in U_{R}(a, b)$ is supremal if, for every $z \in U_{R}(a, b)$, with $z \neq w,(w, z) \in R$.

Orthogonal relational system

The relational system \mathbf{A} is orthogonal iff:

Orthogonal relational system

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle . a, b \in A$ are orthogonal $(a \perp b)$ whenever $\left(a, b^{\prime}\right) \in R$.

Supremal elements

An element $w \in U_{R}(a, b)$ is supremal if, for every $z \in U_{R}(a, b)$, with $z \neq w,(w, z) \in R$.

Orthogonal relational system

The relational system A is orthogonal iff:

- $U_{R}\left(x, x^{\prime}\right)=\{1\}$ for any $x \in A$;

Orthogonal relational system

$\mathbf{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle . a, b \in A$ are orthogonal $(a \perp b)$ whenever $\left(a, b^{\prime}\right) \in R$.

Supremal elements

An element $w \in U_{R}(a, b)$ is supremal if, for every $z \in U_{R}(a, b)$, with $z \neq w,(w, z) \in R$.

Orthogonal relational system

The relational system A is orthogonal iff:

- $U_{R}\left(x, x^{\prime}\right)=\{1\}$ for any $x \in A$;
- For every $x \perp y, x \neq 0 \neq y$ there exists a supremal element x, y in $U_{R}(x, y)$.

From relational systems to groupoids

From relational systems to groupoids

Induced groupoids

Let $\mathbf{A}=\langle A, R\rangle$ a relational system. We define the induced groupoid $\mathbf{G}(A)=\langle A,+\rangle$

- if $(x, y) \in R$ then $x+y=y$;
- if $(x, y) \notin R$ and $(y, x) \in R$ then $x+y=x$;
- if $(x, y) \notin R$ and $(y, x) \notin R$ then $x+y=y+x \in U_{R}(x, y)$.

From relational systems to groupoids

Induced groupoids

Let $\mathbf{A}=\langle A, R\rangle$ a relational system. We define the induced groupoid $\mathbf{G}(A)=\langle A,+\rangle$

- if $(x, y) \in R$ then $x+y=y$;
- if $(x, y) \notin R$ and $(y, x) \in R$ then $x+y=x$;
- if $(x, y) \notin R$ and $(y, x) \notin R$ then $x+y=y+x \in U_{R}(x, y)$.

Obs: the groupoid induced by a relational system is not unique!!

Orthogroupoid

An orthogroupoid is an algebra $\mathbf{G}=\left\langle G,+,^{\prime}, 1\right\rangle$ of type $(2,1,0)$

Orthogroupoid

An orthogroupoid is an algebra $\mathbf{G}=\left\langle G,+,^{\prime}, 1\right\rangle$ of type $(2,1,0)$ satisfying the following:
(a) $x^{\prime \prime}=x$;
(b) $0+x=x$ and $1+x=1$, where $0=1^{\prime}$;
(c) $x+x^{\prime}=1$;
(d) if $x+z=z$ and $x^{\prime}+z=z$ then $z=1$;
(e) $\left(\left((z+y)^{\prime}+(z+x)\right)^{\prime}+(z+y)^{\prime}\right)+z^{\prime}=z^{\prime}$;
(f) $x+(x+y)=x+y$ and $y+(x+y)=x+y$.

Orthogroupoid

An orthogroupoid is an algebra $\mathbf{G}=\left\langle G,+,^{\prime}, 1\right\rangle$ of type $(2,1,0)$ satisfying the following:
(a) $x^{\prime \prime}=x$;
(b) $0+x=x$ and $1+x=1$, where $0=1^{\prime}$;
(c) $x+x^{\prime}=1$;
(d) if $x+z=z$ and $x^{\prime}+z=z$ then $z=1$;
(e) $\left(\left((z+y)^{\prime}+(z+x)\right)^{\prime}+(z+y)^{\prime}\right)+z^{\prime}=z^{\prime}$;
(f) $x+(x+y)=x+y$ and $y+(x+y)=x+y$.

Any orthogroupoid induces a relational system $\mathbf{A}(G)=\left\langle G, R_{G}\right\rangle$, where $(a, b) \in R_{G}$ if and only if $a+b=b$.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: $x+1=1+x$.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: $x+1=1+x$.

Theorem 1

Let $\mathbf{D}=\left\langle D,+,{ }^{\prime}, 1\right\rangle$ be an orthogroupoid and R the induced relation. Then the relational system $\mathbf{A}(D)=\left\langle D, R,{ }^{\prime}, 1\right\rangle$ is orthogonal and R is reflexive.

Some properties

Proposition

Orthogroupoids form an equational class. Quasi-identity (d) may be equivalently replaced by: $x+1=1+x$.

Theorem 1

Let $\mathbf{D}=\left\langle D,+,{ }^{\prime}, 1\right\rangle$ be an orthogroupoid and R the induced relation. Then the relational system $\mathbf{A}(D)=\left\langle D, R,{ }^{\prime}, 1\right\rangle$ is orthogonal and R is reflexive.

Theorem 2

Let $\mathrm{A}=\left\langle A, R,{ }^{\prime}, 1\right\rangle$ be an orthogonal relational system with R reflexive and transitive. Then any induced groupoid is an orthogroupoid.

Church algebras

"Church algebras" are algebras equipped with a term operation $q(x, y, z)$ s.t.

$$
\begin{aligned}
& q(1, x, y)=x \\
& q(0, x, y)=y
\end{aligned}
$$

Church algebras

"Church algebras" are algebras equipped with a term operation $q(x, y, z)$ s.t.

$$
\begin{aligned}
& q(1, x, y)=x \\
& q(0, x, y)=y
\end{aligned}
$$

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory algebras.

Church algebras

"Church algebras" are algebras equipped with a term operation $q(x, y, z)$ s.t.

$$
\begin{aligned}
& q(1, x, y)=x \\
& q(0, x, y)=y
\end{aligned}
$$

Examples of Church algebras

Boolean algebras, Heyting algebras, rings with unit, combinatory algebras.

In a Church algebra the following operations are definable

$$
\begin{gathered}
x \wedge y=q(x, y, 0) \\
x \vee y=q(x, 1, y) \\
x^{*}=q(x, 0,1)
\end{gathered}
$$

Central elements

Definition

An element e in a Church algebra \mathbf{A} is central if $\theta(e, 0), \theta(e, 1)$ form a pair of factor congruences on \mathbf{A}.

Central elements

Definition

An element e in a Church algebra \mathbf{A} is central if $\theta(e, 0), \theta(e, 1)$ form a pair of factor congruences on \mathbf{A}.

Theorem (Salibra, Ledda, Paoli and Kowalski)

Let \mathbf{A} a Church algebra. Then $\operatorname{Ce}(\mathbf{A})=\left\langle\operatorname{Ce}(A), \wedge, \vee,{ }^{*}, 0,1\right\rangle$ is a Boolean algebra isomorphic to the Boolean algebra of factor congruences of \mathbf{A}.

Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also $x+0=0+x$.

Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also $x+0=0+x$.

Defining an operation a la De Morgan: $x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$ we get

Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also $x+0=0+x$.

Defining an operation a la De Morgan: $x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$ we get

Proposition

The variety of 0 -commutative orthogroupoid is a Church variety, with witnessing term $q(x, y, z)=(x+z) \cdot\left(x^{\prime}+y\right)$.

Church algebras and orthogroupoids

0-commutative orthogroupoid

A 0-commutative orthogroupoid in an orthogroupoid satisfying also $x+0=0+x$.

Defining an operation a la De Morgan: $x \cdot y=\left(x^{\prime}+y^{\prime}\right)^{\prime}$ we get

Proposition

The variety of 0 -commutative orthogroupoid is a Church variety, with witnessing term $q(x, y, z)=(x+z) \cdot\left(x^{\prime}+y\right)$.

Proposition

Let \mathbf{A} be 0 -commutative orthogroupoid and $\operatorname{Ce}(A)$ the set of central elements. Then $\operatorname{Ce}(\mathbf{A})=\left\langle\operatorname{Ce}(A),+, \cdot{ }^{\prime}, 0,1\right\rangle$ is a Boolean algebra.

A decomposition theorem

Let \mathbf{A} be a Church algebra of type $\nu, e \in A$ a central element, it is possible to define $\mathbf{A}_{e}=\left(A_{e} ; g_{e}\right)_{g \in \nu}$:

$$
A_{e}=\{e \wedge b: b \in A\} ; \quad g_{e}(e \wedge \bar{b})=e \wedge g(e \wedge \bar{b})
$$

A decomposition theorem

Let \mathbf{A} be a Church algebra of type $\nu, e \in A$ a central element, it is possible to define $\mathbf{A}_{e}=\left(A_{e} ; g_{e}\right)_{g \in \nu}$:

$$
A_{e}=\{e \wedge b: b \in A\} ; \quad g_{e}(e \wedge \bar{b})=e \wedge g(e \wedge \bar{b})
$$

Theorem

Let \mathbf{A} a 0 -commutative orthogroupoid s.t. $\operatorname{Ce}(\mathbf{A})$ is a Boolean algebra with a denumerable number of atoms. Then

$$
\mathbf{A}=\prod_{e \in A t(\mathbf{A})} \mathbf{A}_{e}
$$

is a decomposition as product of directly indecomposable algebras.

Amalgamation property

A V-formation is a 5-tuple $\left(A, B_{1}, B_{2}, i, j\right)$, where A, B_{1}, B_{2} are similar algebras and i, j embeddings.

Amalgamation property

A V-formation is a 5-tuple $\left(\mathbf{A}, \mathbf{B}_{1}, \mathbf{B}_{2}, i, j\right)$, where $\mathbf{A}, \mathrm{B}_{1}, \mathrm{~B}_{2}$ are similar algebras and i, j embeddings.
A class \mathcal{K} of similar algebras has the amalgamation property, if for any V -formation there exists an algebra $\mathbf{D} \in \mathcal{K}$ e embeddings $h: \mathbf{B}_{1} \rightarrow \mathbf{D}, k: \mathbf{B}_{2} \rightarrow \mathbf{D}$ s.t. $k \circ j=h \circ i$

Amalgamation property

A V-formation is a 5-tuple $\left(\mathbf{A}, \mathbf{B}_{1}, \mathbf{B}_{2}, i, j\right)$, where $\mathbf{A}, \mathbf{B}_{1}, \mathbf{B}_{2}$ are similar algebras and i, j embeddings.
A class \mathcal{K} of similar algebras has the amalgamation property, if for any V -formation there exists an algebra $\mathbf{D} \in \mathcal{K}$ e embeddings $h: \mathbf{B}_{1} \rightarrow \mathbf{D}, k: \mathbf{B}_{2} \rightarrow \mathbf{D}$ s.t. $k \circ j=h \circ i$

In particular \mathcal{K} ha the strong amalgamation property if k and h can be taken s.t. $k \circ j(\mathbf{A})=h\left(\mathbf{B}_{1}\right) \cap k\left(\mathbf{B}_{2}\right)$.

Amalgamation property for orthogroupoids

Theorem

The variety of orthogroupoid has the strong amalgamation property.

Amalgamation property for orthogroupoids

Theorem

The variety of orthogroupoid has the strong amalgamation property.

Sketch of the proof

Given a V-formation, let $D=B_{1} \cup B_{2}, x^{\prime D}=x^{\prime B_{i}}$ and

$$
x \oplus y= \begin{cases}x+{ }^{B_{i}} y, & \text { if } x, y \in B_{i} \\ 1, & \text { otherwise }\end{cases}
$$

$\mathbf{D}=\left\langle D, \oplus,^{\prime}, 1\right\rangle$ is an orthogroupoid.
Assuming with no loss of generality $B_{1} \cap B_{2}=A$ one gets the conclusion.

Thanks for your attention!!

