Coherence for Categories of Posets with Applications

M. Andrew Moshier¹

June 2015

Chapman University

CECAT

¹Thanks to Alex Kurz and Peter Jipsen for stimulating this line of work.

Motivation

- Partially ordered sets are the basic structures of algebraic logic:
 - A set (of "propositions")
 - An "entailment" relation between them: $p \Rightarrow q$
- Additional logical structure: connectives with rules.
- Want to put this onto a category-theoretic footing.

Order Enriched Categories

Definition

Order Enriched Category: a category in which hom sets are partially ordered and composition is monotonic in both arguments.

Examples

- Pos itself
- Any category that is concrete over Pos
- ▶ Rel morphisms ordered by ⊆
- ▶ Pos* posets with weakening relations: $R: A \hookrightarrow B$ s.t.

$$a \le a' R b' \le b$$
 implies $a R b$

DLat* – bounded dist. lattices with weakening relations
R: A → B that are also sublattices of A × B

Map-like Behavior of Weakening Relations

Between posets, two weakening relations arise naturally from a monotonic function.

For $f: A \rightarrow B$, define

- $\hat{f}: A \hookrightarrow B$ by $a \hat{f} b$ iff $f(a) \leq b$
- $\check{f}: B \hookrightarrow A$ by $b \check{f}$ $a \text{ iff } b \leq f(a)$.

Lemma

For any monotonic function $f: A \rightarrow B$,

$$id_B \leq \check{f}$$
; \hat{f} and \hat{f} ; $\check{f} \leq id_A$

Definition

In any poset enriched category A,

- A map is a morphism with a lower adjoint.
- ▶ Map(A) is the subcategory of maps.

From map-like behavior to honest functions

Lemma

The categories Map(Pos*) and Pos are equivalent.

Proof.

For function $f: A \to B$, we have \hat{f} adjoint to \hat{f} . For an adjoint pair of weakening relations (R^*, R_*) , define

$$f_m(a) = b \text{ iff a } R^* b R_* a.$$

Note: An analogous fact is true for

- DLat* and DLat
- Set* (also known as Rel) and Set (discrete partial orders)
- many others.

Cartesian Bicategories

Definition (Carboni & Walter)

A cartesian bicategory is

- Poset enriched
- Symmetric monoidal: ⊗, I with the usual natural isos
- ▶ ⊗ is monotonic on hom sets
- every object is equipped with a comonoid:
 - $\hat{\delta}_A: A \to A \otimes A$
 - $\hat{\kappa}_A : A \to \mathbb{I}$
- all morphims are lax homomorphisms for the comonoid:

$$R$$
; $\hat{\delta}_B \leq \hat{\delta}_A$; $(R \otimes R)$
 R ; $\hat{\kappa}_B \leq \hat{\kappa}_A$

- $\rightarrow \hat{\delta}_A$ and $\hat{\kappa}_A$ are maps [they have adjoints].
- $\hat{\delta}_{\mathbf{A}} : \check{\delta}_{\mathbf{A}} = \mathrm{id}_{\mathbf{A}}$

Pos*, Lat*, DLat*, BA* and Set* are cartesian bicategories

In Pos*

- ▶ Cartesian product $A \otimes B$ and $\mathbb{I} = \{\star\}$ yield the symmetric monoidal structure in all cases.
- The relations
 - $a \hat{\delta}_A(b,c)$ if and only if a < b and a < c
 - \triangleright $a \hat{\kappa} \star (all a)$

determine cartesian bicategory structure (\leq is equality in Set*)

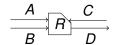
- ▶ Also Pos* is *compact closed*: The order dual A^{∂} of a poset is again such an object. One has to check that these are duals in the correct sense.
- ▶ In Set*, $A^{\partial} = A$.
- ► In Lat*, DLat* and BA*, same as in Pos*.

String Diagrams For Symmetric Monoidal Categories

Symmetric monoidal (and compact closed) categories have a coherence theorem based on string diagrams

A diagram of $A \otimes B \otimes C^{\partial}$:

A diagram of $R: A \otimes B \hookrightarrow C^{\partial} \otimes D$:

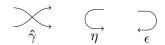


Theorem (Joyal & Street)

Two diagrams denote the same morphism in all compact closed categories iff they are homotopically equivalent (in \mathbb{R}^4).

Some Details of Diagrams

Symmetry is "crossed wires". Unit and counit are "u-turns".



So the compact closed structure is reflected in various equations:

Bicartesian Enrichment

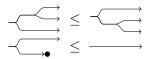
Diagrams for the diagonals

Map axioms

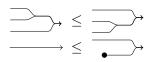
More Axioms (and Lemmas)

Comonoid/monoid

Comonoid Axioms



Monoid lemmas



Split monicity axiom for δ

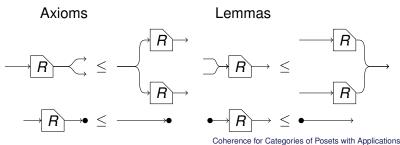
$$\longrightarrow$$
 \leq \longrightarrow

Lax Naturality Axioms and lemmas

Weak Frobenius Axiom (laxity for δ wrt δ)

$$\leq$$

Laxity for basic morphisms



Coherence Theorems

Theorem

Let \leq be the least pre-order on string diagrams including the axioms and closed under composition and \otimes (stacking). Then the poset reflection of \leq determines an initial cartesian bicategory (for a given set of basic objects and morphisms).

Theorem

The same construction works for compact closed cartesian bicategories.

Theorem

The same construction also works when \leq is augmented with an inequational theory (a set of pairs of diagrams).

Lattice-like Objects in Cartesian Bicategories

Meets and joins

And object is meet semilattice-like if $\hat{\delta}_A$ is a comap (it is already being a map).

So there is a morphism \(\simeq \) satisfying

It is easy to show that \land is idempotent, associative and commutative and deflating: $\rightarrow \land \land \rightarrow \le \longrightarrow$

▶ Dually, A is join semilattice-like if δ_A is a map.

More on Lattices

Lemma

In Pos:

- A poset P is an actual meet semilattice iff it is meet semilattice-like.
- A poset P is an actual join semilattice iff it is join semilattice-like.

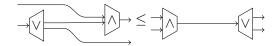
Moreover

- ▶ Boundedness is characterized by $\hat{\kappa}_A$ being a comap (\top) or $\check{\kappa}_A$ being a map (\bot).
- What about distributivity?

Distributivity

Lemma

A lattice-like object in a cartesian bicategory is distributive (i.e., \land distributes over δ) if and only if

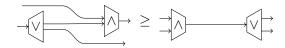


The proof is entirely "stringy". That is, we can use only the string rewriting in the initial bicartesian category of string diagrams.

Complementedness

Lemma

In Pos*, if an object is a distributive lattice, then it is complemented if and only if



Remark

- ▶ This condition is dual to the Frobenius Law (FL) for the bialgebra $(\hat{\delta}, \check{\delta}, \hat{\kappa}, \check{\kappa})$.
- If FL holds for all objects, the bicartesian category is a regular allegory.
- "Complemented distributive lattice" is dual to "discrete". [I do not yet know how to make this precise.]

Other Examples and Consreuctions

Examples

- Compact pospaces (Gehrke mentioned them yesterday) by taking closed weakening relations as morphisms. Then maps are bijective with continuous monotonic functions.
- Proximity lattices (not quite discussed yesterday).
- ▶ Rel all objects satisfy Frobenius Law

Constructions

- Map-comma: Objects are maps into a base B. Morphisms are lax homomorphisms.
- T-algebras for a lax monad on A (?).
- Karoubi
- ► (Pos*)^{Aop} "presheaves" over Pos*.

Thanks