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Boolean Powers

If B is a Boolean algebra and A is an algebra of some type, then the
(bounded) Boolean power of A by B is the algebra C (X ,A) of
continuous functions from the Stone space X of B to the discrete
space A.

Boolean powers have had applications in universal algebra and model
theory.

Boolean powers of commutative rings (including Z) appeared in work
of Conrad and Ribenboim in studying `-groups, and in work of
Bergman and Rota. We have axiomatized them for an arbitrary base
ring.
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Boolean powers of a commutative ring

For each commutative ring A, the A-algebra C (X ,A) has the
following properties:

1 Each characteristic function of a clopen subset of X is an idempotent.

2 Each element is an A-linear combination of such characteristic
functions.

3 These characteristic functions e are faithful; that is, they satisfy
ae = 0 implies a = 0.

There may be other idempotents of C (X ,A) beyond these
characteristic functions. For example, if e 6= 0, 1 is idempotent in A,
then the constant function x 7→ e is idempotent in C (X ,A).
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Specker A-algebras

If S is a commutative ring with 1, we denote by Id(S) the Boolean
algebra of idempotents of S .

Definition. A commutative A-algebra S is a Specker A-algebra if

1 S is generated by a Boolean subalgebra B of Id(S),

2 Each nonzero e ∈ B is faithful.

Theorem. Let S be a commutative A-algebra. Then S is a Boolean
power of A iff it is a Specker A-algebra.
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Examples

• If X is a Stone space, then the R-subalgebra of C (X ,R) generated by
the continuous characteristic functions is a Specker R-algebra and is
C (X ,Rdisc).

• If F is a field and S is a commutative F -algebra, then the
F -subalgebra of S generated by Id(S) is a Specker F -algebra.

• More generally, if S is a torsion free A-algebra with A an integral
domain, then the subalgebra of S generated by Id(S) is a Specker
A-algebra.
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Moving to Compact Hausdorff Spaces

The Boolean power construction leads to a category equivalence
between Boolean algebras and Specker A-algebras when A is an
integral domain. This essentially extends Stone duality.

Because the category of compact Hausdorff spaces is so important in
many situations, it is desirable to have an analogue of the Boolean
power construction in this context.

If X is compact Hausdorff, we may not get a representative algebra by
considering C (X ,A). In particular, C ([0, 1],Rdisc) = R.

There are several dualities involving compact Hausdorff spaces. We
found that de Vries duality was particularly appropriate for us.
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de Vries Algebras

de Vries algebras can be motivated by the following example: If X is
compact Hausdorff, then the set RO(X ) of regular open subsets of X
is a complete Boolean algebra via the operations

∨
Ui = Int(Cl(

⋃
Ui )),

∧
Ui = Int(

⋂
Ui ),

¬U = Int(X − U).

It has a canonical proximity U ≺ V iff Cl(U) ⊆ V .
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A de Vries algebra is a pair (B,≺) with B a complete Boolean
algebra and ≺ a proximity on B. The relation ≺ satisfies

1 1 ≺ 1.

2 a ≺ b implies a ≤ b.

3 a ≤ b ≺ c ≤ d implies a ≺ d .

4 a ≺ b, c implies a ≺ b ∧ c .

5 a ≺ b implies ¬b ≺ ¬a.

6 a ≺ b implies there is c ∈ B such that a ≺ c ≺ b.

7 a 6= 0 implies there is 0 6= b ∈ B such that b ≺ a.
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Theorem (de Vries). There is a dual equivalence between de Vries
algebras and compact Hausdorff spaces.

One functor sends a space X to (RO(X ),≺). Going backwards is
accomplished by defining end filters (or ideals) of a de Vries algebra,
topologizing the set of ends, and seeing that the result is a compact
Hausdorff space.

We “recover” Stone duality by recognizing, for a Stone space X ,
clopen subsets U are characterized by U ≺ U. Thus,
{U ∈ RO(X ) : U ≺ U} is the dual Boolean algebra to X .
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We use de Vries duality to see how to replace C (X ,A) by a more
representative algebra.

In Boolean powers, characteristic functions of clopen sets play an
important role. Given de Vries duality, it is reasonable to consider
characteristic functions of regular opens.
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Normal Functions

Dilworth described the MacNeille completion of C (X ,R) in terms of
normal functions. If f is bounded, let f ∗ be the smallest upper
semicontinuous function above f and f∗ the largest lower
semicontinuous function below f . Then f is normal if f = (f ∗)∗.

A characteristic function χU is normal iff U is regular open.
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If f : X → R is finitely valued, then the following are equivalent.

1 f is normal.

2 f −1(a,∞) is regular open for each a ∈ R.

3 f −1[a,∞) is regular open for each a ∈ R.

This motivates the following definition for an arbitrary totally ordered
integral domain.

We call a finitely valued f : X → A normal if f −1(↑a) is regular open
for each a ∈ A.

Let FN(X ,A) be the set of all finitely valued normal functions from X
to A.
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Normalization

A finitely valued function f has a normalization f #:

Let
a0 < a1 < · · · < an be its values. Let Ui = Int(Cl(f −1(↑ai ))). Then
f # is defined by f #(x) = ai iff x ∈ Ui − Ui+1. We have
(f #)−1(↑ai ) = Ui .

If U is a subset of X , then the normalization of χU is χInt(Cl(U)).
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Algebraic Structure of FN(X ,A)

The set FN(X ,A) is a lattice via the operations

f ∨ g = sup(f , g)#

f ∧ g = inf(f , g).

If λ is an n-ary operation on A, then we extend it to FN(X ,A) by
first extending it pointwise, then defining

λ#(f1, . . . , fn) := λ(f1, . . . , fn)#.

In particular, we can define +, ·, and − on FN(X ,A) and get a
commutative f-ring.
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de Vries Powers

Define f ≺ g on FN(X ,A) if

Cl(f −1(↑a)) ⊆ g−1(↑a)

for all a ∈ A.

Definition. The de Vries power of A by X is (FN(X ,A),≺).

FN(X ,A) is a Specker A-algebra; one way to see this is to recognize
that it is the Boolean power of A by the Gleason cover of X .
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The relation ≺ defined above on FN(X ,A) satisfies order-theoretic
properties:

1 f ≺ g implies f ≤ g .

2 f ≤ g ≺ h ≤ k implies f ≺ k .

3 f ≺ g , h implies f ≺ g ∧ h.

4 f , g ≺ h implies f ∨ g ≺ h.

5 f ≺ g implies there is h ∈ FN(X ,A) with f ≺ h ≺ g .
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≺ satisfies ring-theoretic properties:

1 0 ≺ 0 and 1 ≺ 1.

2 f ≺ g implies −g ≺ −f .

3 f ≺ g and h ≺ k imply f + h ≺ g + k .

4 f , g , h, k ≥ 0 with f ≺ g and h ≺ k imply fh ≺ gk.

5 f ≺ g implies af ≺ ag for each 0 < a.

6 af ≺ ag for some 0 < a implies f ≺ g .

7 f > 0 implies there is 0 < g with g ≺ f .
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Properties of de Vries Powers

• If X is a Stone space, we can recover the Boolean power C (X ,A) as

{f ∈ FN(X ,A) : f ≺ f }.

• FN(X ,A) is a Specker A-algebra.

• Idempotents of FN(X ,A) correspond to regular open subsets of X .

• It follows that idempotents form a complete Boolean algebra.
Therefore, FN(X ,A) is a Baer ring.
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Proximity Specker A-algebras

The previous slide motivates the following definitions.

Let S be a torsion-free f -algebra over A. Then ≺ is a proximity if it
satisfies the axioms of the relation on FN(X ,A) we defined above.

A pair (S ,≺) is a proximity A-algebra if S is a torsion-free f -algebra
over A and ≺ is a proximity on S .

If X is compact Hausdorff, then (FN(X ,A),≺) is a proximity Baer
Specker A-algebra.
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The de Vries power construction defines a functor from compact
Hausdorff spaces to proximity Baer Specker A-algebras.

We can go backwards in several equivalent ways. One way is to send
(S ,≺) to the de Vries dual of (Id(S),≺).

Another way is to send S to the space of minimal prime ideals with
the Zariski topology.

A third way is to introduce end ideals. The three approaches yield the
same space.
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Theorem. There is a category equivalence between compact
Hausdorff spaces and proximity Baer Specker A-algebras.

Corollary. The category of proximity Baer Specker A-algebras is
equivalent to the category of de Vries algebras.

As Boolean powers generalize Stone duality, de Vries powers
generalize de Vries duality.
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Recall the Katětov-Tong theorem: If f , g are bounded real-valued
functions on X with f ∗ ≤ g∗, then there is a continuous h with
f ≤ h ≤ g .

If f , g ∈ FN(X ,R) with f ≺ g , then f ∗ ≤ g∗. However, a continuous
h with f ≤ h ≤ g need not be finitely valued.

Thus, the in between axiom doesn’t follow from Katětov-Tong, so we
need another approach.
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It is natural to write elements as linear combinations of pairwise
disjoint idempotents, this is not convenient for proximities. We
instead use the notion of a decreasing decomposition, which is
related to Mundici’s good sequences.

Let S be a Specker A-algebra. If s ∈ S , then we may write
s = a0 + a1e1 + · · ·+ anen with ai ≥ 0 if i ≥ 1 and
e1 ≥ e2 ≥ · · · ≥ en ∈ Id(S).

This representation is well behaved with respect to normalization. It
is also convenient in working with proximities.
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