Proof by Order

George Metcalfe

Mathematical Institute University of Bern

TACL 2015, Ischia, 23rd June 2015

George Metcalfe (University of Bern)

Proof and Order

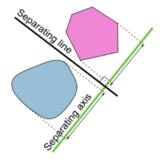
23 June 2015 1 / 23

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (Gordan 1873)

Given $M \in \mathbb{R}^{m \times n}$, exactly one of the following systems has a solution: (a) $y^T M > 0$ for some $y \in \mathbb{R}^m$

(b) $Mx = 0, x \ge 0, x \ne 0$ for some $x \in \mathbb{R}^n$.



How do proof and order interact in lattice-ordered groups?

• • • • • • • • • • • •

A **partially ordered group** (or **po-group**) consists of a group **G** equipped with a partial order \leq satisfying for all $a, b, c \in G$,

$$a \le b \implies ac \le bc$$
 and $ca \le cb$.

A partially ordered group **G** is

- an ordered group (or o-group) if \leq is total
- a lattice-ordered group (or ℓ -group) if \leq is a lattice order.

A **partially ordered group** (or **po-group**) consists of a group **G** equipped with a partial order \leq satisfying for all $a, b, c \in G$,

$$a \le b \implies ac \le bc$$
 and $ca \le cb$.

A partially ordered group G is

- an ordered group (or o-group) if \leq is total
- a lattice-ordered group (or ℓ -group) if \leq is a lattice order.

A **partially ordered group** (or **po-group**) consists of a group **G** equipped with a partial order \leq satisfying for all $a, b, c \in G$,

$$a \leq b \implies ac \leq bc$$
 and $ca \leq cb$.

A partially ordered group G is

- an ordered group (or o-group) if \leq is total
- a lattice-ordered group (or ℓ -group) if \leq is a lattice order.

A lattice-ordered group (or *l*-group) is also an algebraic structure

$$\mathbf{L} = (L, \wedge, \vee, \cdot, ^{-1}, \boldsymbol{e})$$

satisfying the following conditions:

•
$$(L, \cdot, -1, e)$$
 is a group

- (L, \land, \lor) is a lattice (with $a \le b \Leftrightarrow a \land b = a$)
- $a(b \lor c)d = abd \lor acd$ for all $a, b, c, d \in L$.

It follows also that **L** is distributive and satisfies $e \le a \lor a^{-1}$.

Syntax

Let us call a variable *x* and its inverse x^{-1} **literals**, and consider terms built from literals and operation symbols *e*, \land , \lor , and \cdot .

We also define inductively an inverse operation:

$$\overline{e} = e \qquad \overline{t_1 \cdot t_2} = \overline{t_2} \cdot \overline{t_1}$$

$$\overline{x} = x^{-1} \qquad \overline{t_1 \wedge t_2} = \overline{t_1} \vee \overline{t_2}$$

$$\overline{x^{-1}} = x \qquad \overline{t_1 \vee t_2} = \overline{t_1} \wedge \overline{t_2}.$$

For any term *t*, there exist *I*, J_i ($i \in I$) and **group terms** t_{ij} such that in any ℓ -group **G**,

$$\mathbf{G} \models t \approx \bigwedge_{i \in I} \bigvee_{j \in J_i} t_{ij}.$$

Let us call a variable *x* and its inverse x^{-1} **literals**, and consider terms built from literals and operation symbols *e*, \land , \lor , and \cdot .

We also define inductively an inverse operation:

$$\overline{e} = e \qquad \overline{t_1 \cdot t_2} = \overline{t_2} \cdot \overline{t_1}$$

$$\overline{x} = x^{-1} \qquad \overline{t_1 \wedge t_2} = \overline{t_1} \vee \overline{t_2}$$

$$\overline{x^{-1}} = x \qquad \overline{t_1} \vee \overline{t_2} = \overline{t_1} \wedge \overline{t_2}.$$

For any term *t*, there exist *I*, J_i ($i \in I$) and **group terms** t_{ij} such that in any ℓ -group **G**,

$$\mathbf{G} \models t \approx \bigwedge_{i \in I} \bigvee_{j \in J_i} t_{ij}.$$

Let us call a variable *x* and its inverse x^{-1} **literals**, and consider terms built from literals and operation symbols *e*, \land , \lor , and \cdot .

We also define inductively an inverse operation:

$$\overline{e} = e \qquad \overline{t_1 \cdot t_2} = \overline{t_2} \cdot \overline{t_1}$$

$$\overline{x} = x^{-1} \qquad \overline{t_1 \wedge t_2} = \overline{t_1} \vee \overline{t_2}$$

$$\overline{x^{-1}} = x \qquad \overline{t_1} \vee \overline{t_2} = \overline{t_1} \wedge \overline{t_2}.$$

For any term *t*, there exist *I*, J_i ($i \in I$) and **group terms** t_{ij} such that in any ℓ -group **G**,

$$\mathbf{G} \models t \approx \bigwedge_{i \in I} \bigvee_{j \in J_i} t_{ij}.$$

Moreover, for ℓ -group terms *s*, *t* and any ℓ -group **G**,

$$\mathbf{G} \models \mathbf{s} \approx t \qquad \Longleftrightarrow \qquad \mathbf{G} \models \mathbf{e} \leq (\overline{\mathbf{s}} \cdot \mathbf{t}) \land (\overline{\mathbf{t}} \cdot \mathbf{s}).$$

So to check the validity of ℓ -group equations, it suffices to check the validity of equations $e \le t$ where *t* is a *join of group terms*.

The **integers** provide an important example of an ℓ -group:

$$\mathbf{Z} = (\mathbb{Z}, \min, \max, +, -, \mathbf{0}).$$

Indeed, this algebra generates the variety A of **abelian** ℓ -groups.

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Interpreted in Z, this is (almost)...

Theorem (Gordan 1873)

Given $M \in \mathbb{R}^{m \times n}$, exactly one of the following systems has a solution: (a) $y^T M > 0$ for some $y \in \mathbb{R}^m$

(b) $Mx = 0, x \ge 0, x \ne 0$ for some $x \in \mathbb{R}^n$.

< ロ > < 同 > < 回 > < 回 >

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Interpreted in Z, this is (almost)...

Theorem (Gordan 1873)

Given $M \in \mathbb{R}^{m \times n}$, exactly one of the following systems has a solution: (a) $y^T M > 0$ for some $y \in \mathbb{R}^m$

(b) $Mx = 0, x \ge 0, x \ne 0$ for some $x \in \mathbb{R}^n$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Interpreted in Z, this is (almost)...

Theorem (Gordan 1873)

Given $M \in \mathbb{R}^{m \times n}$, exactly one of the following systems has a solution:

(a) $y^T M > 0$ for some $y \in \mathbb{R}^m$

(b)
$$Mx = 0, x \ge 0, x \ne 0$$
 for some $x \in \mathbb{R}^n$.

イロト イポト イヨト イヨト 二日

The **positive cone** $P = \{a \in G : a \ge e\}$ of a po-group **G** satisfies

- (i) $PP \subseteq P$
- (ii) $P \cap \overline{P} = \{e\},\$

and if **G** is an o-group, also (iii) $G = P \cup \overline{P}$

Conversely, if a subset P of an abelian group **G** satisfies (i)-(ii), then **G** is partially ordered (totally ordered if P also satisfies (iii)) by

$$a \leq b \Leftrightarrow b\overline{a} \in P.$$

イロト イ押ト イヨト イヨト

The **positive cone** $P = \{a \in G : a \ge e\}$ of a po-group **G** satisfies

- (i) $PP \subseteq P$
- (ii) $P \cap \overline{P} = \{e\},$
- and if **G** is an o-group, also (iii) $G = P \cup \overline{P}$.

Conversely, if a subset P of an abelian group **G** satisfies (i)-(ii), then **G** is partially ordered (totally ordered if P also satisfies (iii)) by

$$a \leq b \Leftrightarrow b\overline{a} \in P.$$

・ロト ・ 同ト ・ ヨト ・ ヨ

The **positive cone** $P = \{a \in G : a \ge e\}$ of a po-group **G** satisfies

- (i) $PP \subseteq P$
- (ii) $P \cap \overline{P} = \{e\},\$

and if **G** is an o-group, also

(iii) $G = P \cup \overline{P}$.

Conversely, if a subset P of an abelian group **G** satisfies (i)-(ii), then **G** is partially ordered (totally ordered if P also satisfies (iii)) by

$$a \leq b \quad \Leftrightarrow \quad b\overline{a} \in P.$$

Theorem (Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to a total order of **G**. Equivalently, given $P \subseteq G$ satisfying

```
(i) PP \subseteq P

(ii) P \cap \overline{P} = \{e\},

there exists Q \subseteq G with P \subseteq Q satisfying (i), (ii), and

(iii) G = Q \cup \overline{Q}.
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Fuchs 1963)

Every partial order of a torsion-free abelian group **G** extends to a total order of **G**. Equivalently, given $P \subseteq G$ satisfying

(i)
$$PP \subseteq P$$

(ii) $P \cap \overline{P} = \{e\}$,
there exists $Q \subseteq G$ with $P \subseteq Q$ satisfying (i), (ii), and
(iii) $G = Q \cup \overline{Q}$.

The following are equivalent for group terms t_1, \ldots, t_n :

(1) $A \models e \le t_1 \lor \ldots \lor t_n$ (2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \leq st$ implies A $\models e \leq s \lor t$. (1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \leq t_1 \lor \ldots \lor t_n$ fails in the o-group **F**, so A $\models e \leq t_1 \lor \ldots \lor t_n$.

3

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \leq st$ implies A $\models e \leq s \lor t$.

(1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \leq t_1 \vee \ldots \vee t_n$ fails in the o-group **F**, so $A \not\models e \leq t_1 \vee \ldots \vee t_n$.

イロト イヨト イヨト イヨト

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \le st$ implies A $\models e \le s \lor t$. (1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \le t_1 \lor \ldots \lor t_n$ fails in the o-group **F**, so A $\models e \le t_1 \lor \ldots \lor t_n$.

< □ > < 同 > < 回 > < 回 > .

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \le t_1 \lor \ldots \lor t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \le st$ implies A $\models e \le s \lor t$. (1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \le t_1 \lor \ldots \lor t_n$ fails in the o-group **F**, so A $\models e \le t_1 \lor \ldots \lor t_n$.

< □ > < 同 > < 回 > < 回 > .

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \leq t_1 \vee \ldots \vee t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \le st$ implies A $\models e \le s \lor t$. (1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \le t_1 \lor \ldots \lor t_n$ fails in the o-group **F**, so A $\models e \le t_1 \lor \ldots \lor t_n$.

The following are equivalent for group terms t_1, \ldots, t_n :

(1)
$$A \models e \le t_1 \lor \ldots \lor t_n$$

(2) $A \models e \approx t_1^{\lambda_1} \cdots t_n^{\lambda_n}$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

Proof.

(2) \Rightarrow (1) Easy, using the fact that A $\models e \le st$ implies A $\models e \le s \lor t$. (1) \Rightarrow (2) Let *P* be the subsemigroup of the free ω -generated abelian group **F** generated by $e, \overline{t_1}, \ldots, \overline{t_n}$. If (2) fails, *P* defines a partial order on **F**, which, as **F** is torsion-free, extends to a total order on **F**. Then $e \le t_1 \lor \ldots \lor t_n$ fails in the o-group **F**, so A $\nvDash e \le t_1 \lor \ldots \lor t_n$.

A **sequent** Γ is a finite sequence of literals t_1, \ldots, t_n with inverse

$$\overline{t_1,\ldots,t_n} = \overline{t_n},\ldots,\overline{t_1},$$

interpreted as the group term $t_1 \cdot \ldots \cdot t_n$ for n > 0, and as *e* for n = 0.

A hypersequent is a finite set of sequents, written

 $\Gamma_1 \mid \ldots \mid \Gamma_n,$

and interpreted, when non-empty, as $\Gamma_1 \vee \ldots \vee \Gamma_n$.

A **sequent** Γ is a finite sequence of literals t_1, \ldots, t_n with inverse

$$\overline{t_1,\ldots,t_n} = \overline{t_n},\ldots,\overline{t_1},$$

interpreted as the group term $t_1 \cdot \ldots \cdot t_n$ for n > 0, and as *e* for n = 0.

A hypersequent is a finite set of sequents, written

 $\Gamma_1 \mid \ldots \mid \Gamma_n$,

and interpreted, when non-empty, as $\Gamma_1 \vee \ldots \vee \Gamma_n$.

A Hypersequent Calculus for Abelian *l*-Groups

 $\mathsf{A} \models \mathbf{e} \leq \mathcal{G} \iff \mathcal{G}$ is derivable using the rules

$$\frac{1}{\Delta,\overline{\Delta}} (\mathsf{ID}) \qquad \frac{\Pi,\Delta,\Gamma,\Sigma}{\Pi,\Gamma,\Delta,\Sigma} (\mathsf{EX}) \qquad \frac{\mathcal{G}}{\mathcal{G}\mid\mathcal{H}} (\mathsf{EW}) \qquad \frac{\mathcal{G}\mid\Gamma,\Delta}{\mathcal{G}\mid\Gamma\mid\Delta} (\mathsf{SPLIT})$$

This is a one-sided "bare bones" version of a calculus in

Sequent and Hypersequent Calculi for Abelian and Łukasiewicz Logics. G. Metcalfe, N. Olivetti, and D. Gabbay. *ACM TOCL* 6(3) (2005), 578–613.

< ロ > < 同 > < 回 > < 回 >

A Hypersequent Calculus for Abelian *l*-Groups

 $\mathsf{A} \models \mathbf{e} \leq \mathcal{G} \iff \mathcal{G}$ is derivable using the rules

$$\frac{1}{\Delta,\overline{\Delta}} (\mathsf{ID}) \qquad \frac{\Pi,\Delta,\Gamma,\Sigma}{\Pi,\Gamma,\Delta,\Sigma} (\mathsf{EX}) \qquad \frac{\mathcal{G}}{\mathcal{G}\mid\mathcal{H}} (\mathsf{EW}) \qquad \frac{\mathcal{G}\mid\Gamma,\Delta}{\mathcal{G}\mid\Gamma\mid\Delta} (\mathsf{SPLIT})$$

This is a one-sided "bare bones" version of a calculus in

Sequent and Hypersequent Calculi for Abelian and Łukasiewicz Logics. G. Metcalfe, N. Olivetti, and D. Gabbay. *ACM TOCL* 6(3) (2005), 578–613.

Let V be a variety of semilinear involutive commutative residuated lattices satisfying $na = a^n$ for each $n \in \mathbb{N}^+$. Then the following are equivalent for multiplicative terms t_1, \ldots, t_n :

(1) $V \models e \leq t_1 \vee \ldots \vee t_n$

(2) $V \models e \leq \lambda_1 t_1 \oplus \cdots \oplus \lambda_n t_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

In particular, for the variety of **Sugihara monoids**, we obtain a version of the hypersequent calculus for the logic **R-Mingle** defined in

A. Avron. A constructive analysis of RM. *Journal of Symbolic Logic* 52 (1987), 939–951.

Let V be a variety of semilinear involutive commutative residuated lattices satisfying $na = a^n$ for each $n \in \mathbb{N}^+$. Then the following are equivalent for multiplicative terms t_1, \ldots, t_n :

(1)
$$\mathsf{V} \models \boldsymbol{e} \leq t_1 \lor \ldots \lor t_n$$

(2) $V \models e \leq \lambda_1 t_1 \oplus \cdots \oplus \lambda_n t_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

In particular, for the variety of **Sugihara monoids**, we obtain a version of the hypersequent calculus for the logic **R-Mingle** defined in

A. Avron. A constructive analysis of RM. *Journal of Symbolic Logic* 52 (1987), 939–951.

・ロト ・ 四ト ・ ヨト ・ ヨト …

Let V be a variety of semilinear involutive commutative residuated lattices satisfying $na = a^n$ for each $n \in \mathbb{N}^+$. Then the following are equivalent for multiplicative terms t_1, \ldots, t_n :

(1)
$$\mathsf{V} \models \boldsymbol{e} \leq t_1 \lor \ldots \lor t_n$$

(2) $V \models e \leq \lambda_1 t_1 \oplus \cdots \oplus \lambda_n t_n$ for some $\lambda_1, \ldots, \lambda_n \in \mathbb{N}$ not all 0.

In particular, for the variety of **Sugihara monoids**, we obtain a version of the hypersequent calculus for the logic **R-Mingle** defined in

A. Avron. A constructive analysis of RM. *Journal of Symbolic Logic* 52 (1987), 939–951.

What happens for (possibly non-abelian) *l*-groups?

イロト イヨト イヨト イヨ

The order-preserving bijections on a chain Ω with function composition and inverse form a group **Aut**(Ω) lattice-ordered by

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \text{ for all } a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into $Aut(\Omega)$ for some chain Ω .

Theorem (Holland 1976)

The variety LG of ℓ -groups is generated by Aut(\mathbb{R}).

The order-preserving bijections on a chain Ω with function composition and inverse form a group **Aut**(Ω) lattice-ordered by

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \text{ for all } a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into $Aut(\Omega)$ for some chain Ω .

Theorem (Holland 1976)

The variety LG of ℓ -groups is generated by Aut(\mathbb{R}).

・ロト ・ 四ト ・ ヨト ・ ヨト …

The order-preserving bijections on a chain Ω with function composition and inverse form a group **Aut**(Ω) lattice-ordered by

$$f \leq g \qquad \Longleftrightarrow \qquad f(a) \leq g(a) \text{ for all } a \in \Omega.$$

Theorem (Holland 1963)

Every ℓ -group embeds into $Aut(\Omega)$ for some chain Ω .

Theorem (Holland 1976)

The variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$.

< ロ > < 同 > < 回 > < 回 >

A **partially right ordered group** consists of a group **G** equipped with a partial order \leq satisfying for all $a, b, c \in G$,

$$a \leq b \implies ac \leq bc,$$

called a **right ordered group** if \leq is also total.

A (partial) right order is determined by its **positive cone** *P*, i.e.

 $a \leq b \Leftrightarrow b\overline{a} \in P.$

イロト イ押ト イヨト イヨト

A **partially right ordered group** consists of a group **G** equipped with a partial order \leq satisfying for all $a, b, c \in G$,

$$a \leq b \implies ac \leq bc,$$

called a **right ordered group** if \leq is also total.

A (partial) right order is determined by its **positive cone** *P*, i.e.

$$a \leq b \quad \Leftrightarrow \quad b\overline{a} \in P.$$

Validity in *l*-Groups (1)

Let **F** denote the free ω -generated group, and let S(X) denote the **subsemigroup** of a group **G** generated by a set *X* of elements of *G*.

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that **Aut**(**F**) $\nvDash e \le t_1 \lor \ldots \lor t_n$, i.e., (a) fails. The other part can be proved algebraically or proof-theoretically...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that **Aut**(**F**) $\nvDash e \le t_1 \lor \ldots \lor t_n$, i.e., (a) fails. The other part can be proved algebraically or proof-theoretically...

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that **Aut**(**F**) $\nvDash e \le t_1 \lor \ldots \lor t_n$, i.e., (a) fails. The other part can be proved algebraically or proof-theoretically...

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that $Aut(F) \not\models e \leq t_1 \lor \ldots \lor t_n$, i.e., (a) fails. The other part can be proved algebraically or proof-theoretically...

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that $Aut(F) \not\models e \leq t_1 \lor \ldots \lor t_n$, i.e., (a) fails.

The other part can be proved algebraically or proof-theoretically.

イロト イポト イヨト イヨト 二日

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that $Aut(F) \not\models e \leq t_1 \lor \ldots \lor t_n$, i.e., (a) fails.

The other part can be proved algebraically or proof-theoretically. .

イロト イポト イヨト イヨト 二日

Theorem

For group terms t_1, \ldots, t_n , exactly one of the following holds:

(a) LG
$$\models e \leq t_1 \vee \ldots \vee t_n$$
.

(b) $S(e, \overline{t_1}, \ldots, \overline{t_n})$ extends to the positive cone of a right order on **F**.

Proof.

If (b) holds, then **F** admits a right order whose positive cone includes $\overline{t_1}, \ldots, \overline{t_n}$, and it follows that $Aut(F) \not\models e \leq t_1 \lor \ldots \lor t_n$, i.e., (a) fails. The other part can be proved algebraically or proof-theoretically...

イロン イ理 とくほ とくほ とう

A partial right order of a group **G** with positive cone *P* extends to a right order of **G** if and only if for all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ such that $e \notin S(\{a_1^{\delta_1}, \ldots, a_n^{\delta_n}\} \cup (P \setminus \{e\}))$.

Let us call a group term *t* valid if $e \approx t$ is valid in all groups.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1) LG $\models e \leq t_1 \vee \ldots \vee t_n$.

(2) There exist non-valid group terms s_1, \ldots, s_m such that for all $\delta_1, \ldots, \delta_n \in \{-1, 1\}$, some $u \in S(t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m})$ is valid.

<ロ> <問> <問> < 回> < 回> 、

A partial right order of a group **G** with positive cone *P* extends to a right order of **G** if and only if for all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ such that $e \notin S(\{a_1^{\delta_1}, \ldots, a_n^{\delta_n}\} \cup (P \setminus \{e\}))$.

Let us call a group term *t* valid if $e \approx t$ is valid in all groups.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1) LG $\models e \leq t_1 \vee \ldots \vee t_n$.

(2) There exist non-valid group terms s_1, \ldots, s_m such that for all $\delta_1, \ldots, \delta_n \in \{-1, 1\}$, some $u \in S(t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m})$ is valid.

<ロ> <問> <問> < 回> < 回> 、

A partial right order of a group **G** with positive cone *P* extends to a right order of **G** if and only if for all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ such that $e \notin S(\{a_1^{\delta_1}, \ldots, a_n^{\delta_n}\} \cup (P \setminus \{e\}))$.

Let us call a group term *t* valid if $e \approx t$ is valid in all groups.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1) LG $\models e \leq t_1 \vee \ldots \vee t_n$.

(2) There exist non-valid group terms s_1, \ldots, s_m such that for all $\delta_1, \ldots, \delta_n \in \{-1, 1\}$, some $u \in S(t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m})$ is valid.

A partial right order of a group **G** with positive cone *P* extends to a right order of **G** if and only if for all $a_1, \ldots, a_n \in G \setminus \{e\}$, there exist $\delta_1, \ldots, \delta_n \in \{-1, 1\}$ such that $e \notin S(\{a_1^{\delta_1}, \ldots, a_n^{\delta_n}\} \cup (P \setminus \{e\}))$.

Let us call a group term *t* valid if $e \approx t$ is valid in all groups.

Theorem

The following are equivalent for group terms t_1, \ldots, t_n :

(1) LG $\models e \leq t_1 \vee \ldots \vee t_n$.

(2) There exist non-valid group terms s_1, \ldots, s_m such that for all $\delta_1, \ldots, \delta_n \in \{-1, 1\}$, some $u \in S(t_1, \ldots, t_n, s_1^{\delta_1}, \ldots, s_m^{\delta_m})$ is valid.

A Hypersequent Calculus for *l*-Groups

 $\mathsf{LG} \models e \leq \mathcal{G} \iff \mathcal{G}$ is derivable using the rules

$$\frac{\overline{\Delta, \overline{\Delta}} (ID)}{\frac{\mathcal{G}, \Gamma}{\mathcal{G}, \Delta} (SPLIT)} \xrightarrow{\frac{\mathcal{G}, \Gamma}{\mathcal{G}, \Delta}} \left(\begin{array}{c} (CYCLE) & \frac{\mathcal{G}}{\mathcal{G} \mid \mathcal{H}} (EW) \end{array} \right)$$
$$\frac{\mathcal{G} \mid \Gamma, \Delta}{\mathcal{G} \mid \Gamma \mid \Delta} (SPLIT) \qquad \frac{\mathcal{G} \mid \Delta \quad \mathcal{G} \mid \overline{\Delta}}{\mathcal{G}} (*)$$
$$\Delta \text{ not valid}$$

This is (a version of) a hypersequent calculus defined for ℓ -groups in

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. Submitted.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Hypersequent Calculus for *l*-Groups

 $\mathsf{LG} \ \models \ \textit{e} \leq \mathcal{G} \quad \Longleftrightarrow \quad \mathcal{G} \ \text{ is derivable using the rules}$

$$\frac{\overline{\Delta}, \overline{\Delta}}{\overline{\Delta}} (ID) \qquad \frac{\Delta, \Gamma}{\Gamma, \Delta} (CYCLE) \qquad \frac{\mathcal{G}}{\mathcal{G} \mid \mathcal{H}} (EW)$$
$$\frac{\mathcal{G} \mid \Gamma, \Delta}{\mathcal{G} \mid \Gamma \mid \Delta} (SPLIT) \qquad \frac{\mathcal{G} \mid \Delta \quad \mathcal{G} \mid \overline{\Delta}}{\mathcal{G}} (*)$$
$$\Delta \text{ not valid}$$

This is (a version of) a hypersequent calculus defined for ℓ -groups in

Proof Theory for Lattice-Ordered Groups. N. Galatos and G. Metcalfe. Submitted.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- prove that the variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$
- establish co-NP completeness of the equational theory of ℓ -groups
- obtain (algorithmically) proofs in equational logic.
- We have also obtained (syntactically) an **analytic** calculus for ℓ -groups.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- prove that the variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$
- establish co-NP completeness of the equational theory of ℓ-groups
- obtain (algorithmically) proofs in equational logic.
- We have also obtained (syntactically) an **analytic** calculus for ℓ -groups.

- prove that the variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$
- $\bullet\,$ establish co-NP completeness of the equational theory of $\ell\text{-groups}$
- obtain (algorithmically) proofs in equational logic.

We have also obtained (syntactically) an **analytic** calculus for ℓ -groups.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- prove that the variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$
- establish co-NP completeness of the equational theory of ℓ -groups
- obtain (algorithmically) proofs in equational logic.

We have also obtained (syntactically) an **analytic** calculus for ℓ -groups.

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- prove that the variety LG of ℓ -groups is generated by $Aut(\mathbb{R})$
- establish co-NP completeness of the equational theory of ℓ -groups
- obtain (algorithmically) proofs in equational logic.

We have also obtained (syntactically) an **analytic** calculus for ℓ -groups.

- Can we use ordering theorems to obtain proof systems for other varieties of lattice-ordered groups and related structures?
- Can we use these proof systems to establish further generation, decidability, and complexity results?

- Can we use ordering theorems to obtain proof systems for other varieties of lattice-ordered groups and related structures?
- Can we use these proof systems to establish further generation, decidability, and complexity results?