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A Theorem of the Alternative

Theorem (Gordan 1873)
Given M ∈ Rm×n, exactly one of the following systems has a solution:
(a) yT M > 0 for some y ∈ Rm

(b) Mx = 0, x ≥ 0, x 6= 0 for some x ∈ Rn.
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This Talk

How do proof and order interact in lattice-ordered groups?
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Partially Ordered Groups

A partially ordered group (or po-group) consists of a group G
equipped with a partial order ≤ satisfying for all a,b, c ∈ G,

a ≤ b =⇒ ac ≤ bc and ca ≤ cb.

A partially ordered group G is

an ordered group (or o-group) if ≤ is total

a lattice-ordered group (or `-group) if ≤ is a lattice order.
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Lattice-Ordered Groups

A lattice-ordered group (or `-group) is also an algebraic structure

L = (L,∧,∨, ·,−1,e)

satisfying the following conditions:

(L, ·,−1,e) is a group

(L,∧,∨) is a lattice (with a ≤ b ⇔ a ∧ b = a)

a(b ∨ c)d = abd ∨ acd for all a,b, c,d ∈ L.

It follows also that L is distributive and satisfies e ≤ a ∨ a−1.
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Syntax

Let us call a variable x and its inverse x−1 literals, and consider terms
built from literals and operation symbols e, ∧, ∨, and ·.

We also define inductively an inverse operation:

e = e t1 · t2 = t2 · t1

x = x−1 t1 ∧ t2 = t1 ∨ t2

x−1 = x t1 ∨ t2 = t1 ∧ t2.

For any term t , there exist I, Ji (i ∈ I) and group terms tij such that in
any `-group G,

G |= t ≈
∧
i∈I

∨
j∈Ji

tij .

George Metcalfe (University of Bern) Proof and Order 23 June 2015 6 / 23



Syntax

Let us call a variable x and its inverse x−1 literals, and consider terms
built from literals and operation symbols e, ∧, ∨, and ·.

We also define inductively an inverse operation:

e = e t1 · t2 = t2 · t1

x = x−1 t1 ∧ t2 = t1 ∨ t2

x−1 = x t1 ∨ t2 = t1 ∧ t2.

For any term t , there exist I, Ji (i ∈ I) and group terms tij such that in
any `-group G,

G |= t ≈
∧
i∈I

∨
j∈Ji

tij .

George Metcalfe (University of Bern) Proof and Order 23 June 2015 6 / 23



Syntax

Let us call a variable x and its inverse x−1 literals, and consider terms
built from literals and operation symbols e, ∧, ∨, and ·.

We also define inductively an inverse operation:

e = e t1 · t2 = t2 · t1

x = x−1 t1 ∧ t2 = t1 ∨ t2

x−1 = x t1 ∨ t2 = t1 ∧ t2.

For any term t , there exist I, Ji (i ∈ I) and group terms tij such that in
any `-group G,

G |= t ≈
∧
i∈I

∨
j∈Ji

tij .

George Metcalfe (University of Bern) Proof and Order 23 June 2015 6 / 23



Rewriting Equations

Moreover, for `-group terms s, t and any `-group G,

G |= s ≈ t ⇐⇒ G |= e ≤ (s · t) ∧ (t · s).

So to check the validity of `-group equations, it suffices to check the
validity of equations e ≤ t where t is a join of group terms.
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Abelian `-Groups

The integers provide an important example of an `-group:

Z = (Z,min,max,+,−,0).

Indeed, this algebra generates the variety A of abelian `-groups.
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A Theorem of the Alternative Revisited

Theorem
The following are equivalent for group terms t1, . . . , tn:
(1) A |= e ≤ t1 ∨ . . . ∨ tn

(2) A |= e ≈ tλ1
1 · · · t

λn
n for some λ1, . . . , λn ∈ N not all 0.

Interpreted in Z, this is (almost). . .

Theorem (Gordan 1873)
Given M ∈ Rm×n, exactly one of the following systems has a solution:
(a) yT M > 0 for some y ∈ Rm

(b) Mx = 0, x ≥ 0, x 6= 0 for some x ∈ Rn.
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Positive Cones

The positive cone P = {a ∈ G : a ≥ e} of a po-group G satisfies

(i) PP ⊆ P
(ii) P ∩ P = {e},

and if G is an o-group, also
(iii) G = P ∪ P.

Conversely, if a subset P of an abelian group G satisfies (i)-(ii), then
G is partially ordered (totally ordered if P also satisfies (iii)) by

a ≤ b ⇔ ba ∈ P.
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Ordering Abelian Groups

Theorem (Fuchs 1963)
Every partial order of a torsion-free abelian group G extends to a total
order of G. Equivalently, given P ⊆ G satisfying

(i) PP ⊆ P
(ii) P ∩ P = {e},

there exists Q ⊆ G with P ⊆ Q satisfying (i), (ii), and
(iii) G = Q ∪Q.
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Validity in Abelian `-groups

Theorem
The following are equivalent for group terms t1, . . . , tn:
(1) A |= e ≤ t1 ∨ . . . ∨ tn

(2) A |= e ≈ tλ1
1 · · · t

λn
n for some λ1, . . . , λn ∈ N not all 0.

Proof.
(2)⇒(1) Easy, using the fact that A |= e ≤ st implies A |= e ≤ s ∨ t .
(1)⇒(2) Let P be the subsemigroup of the free ω-generated abelian
group F generated by e, t1, . . . , tn. If (2) fails, P defines a partial order
on F, which, as F is torsion-free, extends to a total order on F. Then
e ≤ t1 ∨ . . . ∨ tn fails in the o-group F, so A 6|= e ≤ t1 ∨ . . . ∨ tn.
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Sequents and Hypersequents

A sequent Γ is a finite sequence of literals t1, . . . , tn with inverse

t1, . . . , tn = tn, . . . , t1,

interpreted as the group term t1 · . . . · tn for n > 0, and as e for n = 0.

A hypersequent is a finite set of sequents, written

Γ1 | . . . | Γn,

and interpreted, when non-empty, as Γ1 ∨ . . . ∨ Γn.
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A Hypersequent Calculus for Abelian `-Groups

A |= e ≤ G ⇐⇒ G is derivable using the rules

∆,∆
(ID) Π,∆, Γ,Σ

Π, Γ,∆,Σ
(EX)

G
G | H (EW)

G | Γ,∆

G | Γ | ∆
(SPLIT)

This is a one-sided “bare bones” version of a calculus in

Sequent and Hypersequent Calculi for Abelian and Łukasiewicz Logics.
G. Metcalfe, N. Olivetti, and D. Gabbay. ACM TOCL 6(3) (2005), 578–613.
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More Generally. . .

Theorem
Let V be a variety of semilinear involutive commutative residuated
lattices satisfying na = an for each n ∈ N+. Then the following are
equivalent for multiplicative terms t1, . . . , tn:

(1) V |= e ≤ t1 ∨ . . . ∨ tn

(2) V |= e ≤ λ1t1 ⊕ · · · ⊕ λntn for some λ1, . . . , λn ∈ N not all 0.

In particular, for the variety of Sugihara monoids, we obtain a version
of the hypersequent calculus for the logic R-Mingle defined in

A. Avron. A constructive analysis of RM.
Journal of Symbolic Logic 52 (1987), 939–951.

George Metcalfe (University of Bern) Proof and Order 23 June 2015 15 / 23



More Generally. . .

Theorem
Let V be a variety of semilinear involutive commutative residuated
lattices satisfying na = an for each n ∈ N+. Then the following are
equivalent for multiplicative terms t1, . . . , tn:

(1) V |= e ≤ t1 ∨ . . . ∨ tn

(2) V |= e ≤ λ1t1 ⊕ · · · ⊕ λntn for some λ1, . . . , λn ∈ N not all 0.

In particular, for the variety of Sugihara monoids, we obtain a version
of the hypersequent calculus for the logic R-Mingle defined in

A. Avron. A constructive analysis of RM.
Journal of Symbolic Logic 52 (1987), 939–951.

George Metcalfe (University of Bern) Proof and Order 23 June 2015 15 / 23



More Generally. . .

Theorem
Let V be a variety of semilinear involutive commutative residuated
lattices satisfying na = an for each n ∈ N+. Then the following are
equivalent for multiplicative terms t1, . . . , tn:

(1) V |= e ≤ t1 ∨ . . . ∨ tn

(2) V |= e ≤ λ1t1 ⊕ · · · ⊕ λntn for some λ1, . . . , λn ∈ N not all 0.

In particular, for the variety of Sugihara monoids, we obtain a version
of the hypersequent calculus for the logic R-Mingle defined in

A. Avron. A constructive analysis of RM.
Journal of Symbolic Logic 52 (1987), 939–951.

George Metcalfe (University of Bern) Proof and Order 23 June 2015 15 / 23



But Now. . .

What happens for (possibly non-abelian) `-groups?
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Automorphism `-Groups

The order-preserving bijections on a chain Ω with function composition
and inverse form a group Aut(Ω) lattice-ordered by

f ≤ g ⇐⇒ f (a) ≤ g(a) for all a ∈ Ω.

Theorem (Holland 1963)
Every `-group embeds into Aut(Ω) for some chain Ω.

Theorem (Holland 1976)
The variety LG of `-groups is generated by Aut(R).
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Partially Right-Ordered Groups

A partially right ordered group consists of a group G equipped with a
partial order ≤ satisfying for all a,b, c ∈ G,

a ≤ b =⇒ ac ≤ bc,

called a right ordered group if ≤ is also total.

A (partial) right order is determined by its positive cone P, i.e.

a ≤ b ⇔ ba ∈ P.
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Validity in `-Groups (1)

Let F denote the free ω-generated group, and let S(X ) denote the
subsemigroup of a group G generated by a set X of elements of G.

Theorem
For group terms t1, . . . , tn, exactly one of the following holds:

(a) LG |= e ≤ t1 ∨ . . . ∨ tn.

(b) S(e, t1, . . . , tn) extends to the positive cone of a right order on F.

Proof.
If (b) holds, then F admits a right order whose positive cone includes
t1, . . . , tn, and it follows that Aut(F) 6|= e ≤ t1 ∨ . . . ∨ tn, i.e., (a) fails.
The other part can be proved algebraically or proof-theoretically. . .
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Validity in `-Groups (2)

Theorem (Kopytov and Medvedev 1994)
A partial right order of a group G with positive cone P extends to a
right order of G if and only if for all a1, . . . ,an ∈ G \{e}, there exist
δ1, . . . , δn ∈ {−1,1} such that e 6∈ S({aδ1

1 , . . . ,a
δn
n } ∪ (P \{e})).

Let us call a group term t valid if e ≈ t is valid in all groups.

Theorem
The following are equivalent for group terms t1, . . . , tn:

(1) LG |= e ≤ t1 ∨ . . . ∨ tn.

(2) There exist non-valid group terms s1, . . . , sm such that for all
δ1, . . . , δn ∈ {−1,1}, some u ∈ S(t1, . . . , tn, s

δ1
1 , . . . , s

δm
m ) is valid.
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A Hypersequent Calculus for `-Groups

LG |= e ≤ G ⇐⇒ G is derivable using the rules

∆,∆
(ID) ∆, Γ

Γ,∆
(CYCLE)

G
G | H (EW)

G | Γ,∆

G | Γ | ∆
(SPLIT)

G | ∆ G | ∆

G (∗)

∆ not valid

This is (a version of) a hypersequent calculus defined for `-groups in

Proof Theory for Lattice-Ordered Groups.
N. Galatos and G. Metcalfe. Submitted.
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Applications

We have used this calculus for `-groups to

prove that the variety LG of `-groups is generated by Aut(R)

establish co-NP completeness of the equational theory of `-groups

obtain (algorithmically) proofs in equational logic.

We have also obtained (syntactically) an analytic calculus for `-groups.
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Concluding Questions

Can we use ordering theorems to obtain proof systems for other
varieties of lattice-ordered groups and related structures?

Can we use these proof systems to establish further generation,
decidability, and complexity results?
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