Algorithmic Correspondence and Proof Theory for Strict Implication¹

Zhiguang Zhao
This is a joint work in process with Minghui Ma (China)

Delft University of Technology, Delft, The Netherlands

TACL, 2015

¹The original title was *Strict Implication Logics and Lambek Calculi*. We changed into the current title which is more precise.

Outline

- 1. Weak strict implication logics
- 2. Bounded distributive lattices with implication
- 3. Algorithmic correspondence theory
- 4. Conservativity
- 5. Gentzen-style Sequent Calculi

♠1. Weak strict implication logics

Strict implication $\phi \to \psi := \Box(\phi \supset \psi)$

- 1. Intuitionistic logic and subintuitionistic logics.
 - G. Corsi. Weak logics with strict implication. Zeitschrift für mathematische Logik u. Grundlagen d, 33:389–406, 1987.
 - 1.2 K. Došen. Modal translations in K and D. In *Diamonds and Defaults*, 103–127. Kluwer Academic Publishers, 1993.
 - 1.3 A. Visser. A propositional logic with explicit fixed points. *Studia Logica*, 40(2):155–175, 1981.
- 2. The local consequence relation:
 - 2.1 S.Celani and R. Jansana. A closer look at some subintuitionistic logics. *Notre Dame Journal of Formal Logic* 42, 225–255, 2003.
 - 2.2 S. Celani and R. Jansana. Bounded distributive lattices with strict implication. *Mathematical Logic Quarterly*, 51(3):219–246, 2005.

Language and Semantics

The set of all *strict implication formulas*, also called *terms*, \mathcal{L}_{term} is defined inductively by the following rule:

$$\mathcal{L}_{term} \ni \phi ::= \boldsymbol{\rho} \mid \bot \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi),$$

where $p \in \text{Prop. Define } \top := \bot \to \bot$, $\neg \phi := \phi \to \bot$, and $\phi \equiv \psi := (\phi \to \psi) \land (\psi \to \phi)$.

Sequent:

$$\Gamma \vdash \phi$$

where Γ is a finite (possibly empty) set of formulas.

Kripke Semantics

Frame: $\mathcal{F}=(W,R)$ where $W\neq\emptyset$ and $R\subseteq W^2$. Model: $\mathcal{M}=(W,R,V)$ where $V:\operatorname{Prop}\to\mathcal{P}(W)$ is arbitrary valuation. The *satisfaction relation* $\mathcal{M},w\models\phi$:

- 1. \mathcal{M} , $w \models p$ iff $w \in V(p)$.
- 2. $\mathcal{M}, \mathbf{w} \not\models \bot$.
- 3. $\mathcal{M}, \mathbf{w} \models \phi \land \psi \text{ iff } \mathcal{M}, \mathbf{w} \models \phi \text{ and } \mathcal{M}, \mathbf{w} \models \psi.$
- **4**. $\mathcal{M}, \mathbf{w} \models \phi \lor \psi$ iff $\mathcal{M}, \mathbf{w} \models \phi$ or $\mathcal{M}, \mathbf{w} \vdash \psi$.
- 5. $\mathcal{M}, \mathbf{w} \models \phi \rightarrow \psi$ iff $\forall \mathbf{u} \in \mathbf{W}(\mathbf{wRu} \& \mathcal{M}, \mathbf{u} \models \phi \Rightarrow \mathcal{M}, \mathbf{u} \models \psi)$.

Let $V(\phi) = \{ w \in W \mid \mathcal{M}, w \models \phi \}$. For any set Σ of formulas, let $V(\Sigma) = \bigcap \{ V(\phi) \mid \phi \in \Sigma \}$.

- 1. Validity $\mathcal{F} \models \Gamma \vdash \phi$: $V(\Gamma) \subseteq V(\phi)$ for any valuation V in \mathcal{F} .
- 2. Local consequence relation, $\Sigma \models_{\mathcal{K}}^{l} \phi$: for every valuation V in any frame in \mathcal{K} , $V(\Sigma) \subseteq V(\phi)$.

Weak Strict Implication Logics

Definition (Cenali & Jansana 2003)

A weak strict implication logic is a set of sequents L which contains all instances of the following axiom schemata:

(M1)
$$\phi \to \psi, \phi \to \chi \vdash \phi \to (\psi \land \chi)$$
 (M2) $\phi \to \chi, \psi \to \chi \vdash (\phi \lor \psi) \to \chi$
(Slly) $\phi \to \psi, \psi \to \chi \vdash \phi \to \psi$ (Id) $\phi \vdash \phi$

and is closed under the following rules:

$$\begin{split} \frac{\Gamma \vdash \phi}{\Gamma, \psi \vdash \phi}(w) & \frac{\Gamma \vdash \bot}{\Gamma \vdash \phi}(\bot R) & \frac{\Gamma, \phi, \psi \vdash \delta}{\Gamma, \phi \land \psi \vdash \delta}(\land L) & \frac{\Gamma \vdash \phi \quad \Gamma \vdash \psi}{\Gamma \vdash \phi \land \psi}(\land R) \\ & \frac{\Gamma, \phi \vdash \chi \quad \Gamma, \psi \vdash \chi}{\Gamma, \phi \lor \psi \vdash \chi}(\land L) & \frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} & \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}(\lor R) \\ & \frac{\phi \vdash \psi}{\emptyset \vdash \phi \to \psi}(DT_0) & \frac{\Gamma \vdash \phi \quad \Gamma, \phi \vdash \psi}{\Gamma \vdash \psi}(cut) \end{split}$$

Weak Strict Implication Logics

- 1. The minimal weak strict implication logic is denoted by wK_{σ} .
- Deductive consequence relation For every set of formulas
 Φ ∪ {φ} ⊆ L_{term}, we say that φ is a *deductive consequence* of Φ in L (notation: Φ ⊢_L φ) if there exists a finite subset Δ ⊆ Φ such that the sequent Δ ⊢ φ is derivable in L.
- 3. Strong Completeness A weak strict implication logic L is said to be *strongly complete* with respect to a class of frames \mathcal{K} if for every set of formulas $\Sigma \cup \{\phi\}$, $\Sigma \vdash_{\mathsf{L}} \phi$ iff $\Sigma \models_{\mathcal{K}}^{l} \phi$.

Some weak strict implication logics

Theorem (Celani and Jansana 2003)

The least weak strict implication logic wK $_{\sigma}$ is strongly complete with respect to the class of all frames.

Sequent	First-order correspondent
$(wD) \neg \top \vdash \bot$	∀x∃yRxy
$\pmod{p} \land (p ightarrow q) dash q$	∀ <i>xRxx</i>
$(\text{w4}) \ p \rightarrow q \vdash r \rightarrow (p \rightarrow q)$	$\forall xyz((Rxy \land Rxz) \supset Ryz)$
$(\text{wB}) \ p \vdash q \lor \neg (p \to q)$	$\forall xy(Rxy \supset Ryx)$
$(w3) \emptyset \vdash ((r \land (p \rightarrow q)) \rightarrow s) \lor$	$\forall xyz((Rxy \land Rxz) \supset (Ryz \lor Rzy))$
$((p \land (r \to s)) \to q)$	

Theorem

Every weak strict implication logics generated by sequents in above Table is strongly complete with respect to its frames.

♠2. Bounded distributive lattices with implication

Definition

An algebra $\mathfrak{A}=(A,\wedge,\vee,\perp,\top,\rightarrow)$ is called a *bounded distributive lattice with implication* (BDI) if its (\wedge,\vee,\perp,\top) -reduct is a bounded distributive lattice and \rightarrow is a binary operation on A satisfying the following conditions for all $a,b,c\in A$:

(C1)
$$(a \rightarrow b) \land (a \rightarrow c) = a \rightarrow (b \land c),$$

(C2)
$$(a \rightarrow c) \land (b \rightarrow c) = (a \lor b) \rightarrow c$$
.

(C3)
$$a \rightarrow \top = \top = \bot \rightarrow a$$
.

Bounded distributive lattices with implication

Definition (Celani & Jansana 2005)

A BDI $(A, \land, \lor, \bot, \top, \rightarrow)$ is called a *weak Heyting algebra* (WHA) if the following conditions are satisfied for all $a, b, c \in A$:

(C3)
$$\top = a \rightarrow a$$

(C4)
$$(a \rightarrow b) \land (b \rightarrow c) \leq (a \rightarrow c)$$

Let WH be the class of all WHAs.

Algebraic sequent system using simple sequents

Definition

The algebraic sequent system S_{BDI} consists of the following axiom schemata and rules:

$$\phi \vdash \phi, \quad \phi \vdash \top, \quad \bot \vdash \phi, \quad \top \vdash \alpha \to \top, \quad \top \vdash \bot \to \alpha$$

$$(D) \phi \land (\psi \lor \gamma) \vdash (\phi \land \psi) \lor (\phi \land \gamma),$$

$$(M1) (\phi \to \psi) \land (\phi \to \gamma) \vdash (\phi \to \gamma), \quad (M2) (\phi \to \gamma) \land (\psi \to \gamma) \vdash (\phi \lor \psi) \to \gamma,$$

$$(M3) \frac{\phi \vdash \psi}{\gamma \to \phi \vdash \gamma \to \psi}, \quad (M4) \frac{\phi \vdash \psi}{\psi \to \gamma \vdash \phi \to \gamma}, \quad (\text{cut}) \frac{\phi \vdash \psi \quad \psi \vdash \gamma}{\phi \vdash \gamma},$$

$$(\land L) \frac{\phi_i \vdash \psi}{\phi_1 \land \phi_2 \vdash \psi}, (\land R) \frac{\gamma \vdash \phi \quad \gamma \vdash \psi}{\gamma \vdash \phi \land \psi}, (\lor L) \frac{\phi \vdash \gamma \quad \psi \vdash \gamma}{\phi \lor \psi \vdash \gamma}, (\lor R) \frac{\psi \vdash \phi_i}{\psi \vdash \phi_1 \lor \phi_2}.$$

The *i* in (\wedge L) is equal to 1 or 2.

Weak Heyting Algebras

The algebraic sequent system $S_{WH} = S_{BDI} +$

(I)
$$\psi \vdash \phi \to \phi$$
, (Tr) $(\phi \to \psi) \land (\psi \to \gamma) \vdash \phi \to \gamma$.

Theorem (Completeness)

For any $\phi \vdash \psi \in \mathcal{L}$ and $\mathcal{K} \in \{\mathsf{BDI}, \mathsf{WH}\}$, $\phi \vdash_{\mathsf{S}_{\mathcal{K}}} \psi$ iff $\mathcal{K} \models \phi \vdash \psi$.

Theorem

For every sequent $\Gamma \vdash \phi \in \mathcal{L}_{S}$, $\Gamma \vdash_{\mathsf{wK}_{\sigma}} \phi$ iff $\bigwedge \Gamma \vdash_{\mathsf{S}_{\mathsf{WH}}} \phi$.

Canonical extension of BDI

A *canonical extension* of a lattice *L* is a dense and compact completion of *L*. [Gehrke and Harding 2001].

Definition

Let $f: L \to M$ be any map from a lattice L to M. Define its canonical π -extension $f^{\pi}: L^{\delta} \to M^{\delta}$ by setting:

$$f^{\pi}(u) = \bigwedge \{ \bigvee \{ f(a) : a \in L \& x \leq a \leq y \} : K(L^{\delta}) \ni x \leq u \leq y \in O(L^{\delta}) \}.$$

where $K(L^{\delta})$ and $O(L^{\delta})$ are sets of closed and open elements.

Proposition (Gehrke and Harding 2001)

Let $f:L\to M$ be an order-preserving map from a lattice L to M. Then f^π is order-preserving, and for all $u\in L^\delta$ and $y\in O(L^\delta)$,

$$f^{\pi}(y) = \bigvee \{f(a) : L \ni a \leq y\}, \quad f^{\pi}(u) = \bigwedge \{f^{\pi}(y) : u \leq y \in O(L^{\delta})\}.$$

Canonical extension

The canonical extension of a BDI (A, \rightarrow) is $(A^{\delta}, \rightarrow^{\pi})$. We say that a class of algebras is *canonical* if it is closed under taking canonical extensions.

Theorem

BDI is canonical.

♠3. Algorithmic correspondence theory

Some references:

- 1. W. Conradie and A. Palmigiano. Algorithmic correspondence and canonicity for distributive modal logic. *Annals of Pure and Applied Logic*, 163(3): 338-376, 2012.
- 2. W. Conradie, S. Ghilardi and A. Palmigiano. Unified correspondence. In A. Baltag and S. Smets (eds.) *Johan van Benthem on Logic and Information Dynamics*, pages, 933-976, Springer, 2014.

Expanded languages

$$\begin{split} \mathcal{L}_{\textit{term}} \ni \phi &::= \top \mid \bot \mid p \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \\ \mathcal{L}^{+}_{\textit{term}} \ni \phi &::= \top \mid \bot \mid p \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\phi \lor \phi) \\ \mathcal{L}^{*}_{\textit{term}} \ni \phi &::= \top \mid \bot \mid p \mid \mathbf{i} \mid \mathbf{m} \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi) \mid (\phi \lor \phi) \end{aligned}$$

where $p \in \text{Prop}$, $\mathbf{i} \in \text{NOM}$ and $\mathbf{m} \in \text{CONOM}$. Nominals range over completely join-prime elements. Co-nominals range over completely meet-prime elements of a canonical extension.

Terms	inequalities (sequents)	quasi-inequalities (sequent rules)
$\mathcal{L}_{\textit{term}}$	\mathcal{L}	$\mathcal{L}_{ extit{duasi}}$
$\mathcal{L}^+_{\mathit{term}}$	\mathcal{L}^+	$\mathcal{L}_{ extit{quas}i}^{\dotplus}$
$\mathcal{L}^*_{\mathit{term}}$	\mathcal{L}^*	$\mathcal{L}_{ ext{quasi}}^{*}$

Expanded languages

Definition

Given a BDI (A, \rightarrow) , its canonical is $(A^{\delta}, \rightarrow^{\pi})$, define

$$u \cdot {}^{\delta} v = \bigwedge \{ w \in A^{\delta} \mid v \leq u \rightarrow^{\pi} w \}.$$

One can also define $u \leftarrow^{\delta} v = \bigvee \{w \in A^{\delta} \mid w \cdot^{\delta} v \leq u\}.$

Fact (Residuation)

$$u \cdot^{\delta} v \leq w \text{ iff } v \leq u \rightarrow^{\pi} w \text{ iff } u \leq w \leftarrow^{\pi} v$$

Inductive inequalities

Inductive inequalities are defined as standard. We need the classification of all nodes in a signed generation tree.

Table: Classification of nodes

Choice	Universal
$+$ \vee, \rightarrow	$ + \rightarrow $
$ \wedge, \rightarrow$	

Inductive inequalities

Definition

Given an order type ϵ and an irreflexive and transitive order Ω on the variable p_1,\ldots,p_n , the (negative or positive) generation tree $*\phi$ $(*\in\{+,1\})$ of a formula $\phi(p_1,\ldots,p_n)$ is (Ω,ϵ) -inductive if, on every ϵ -critical branch with leaf p_i for $1 \leq i \leq n$, every choice node with a universal node as ancestor is binary, and hence labelled with $*(\phi \circ \psi)$, and

- (i) $\epsilon^{\partial}(*\phi)$;
- (ii) $p_i <_{\Omega} p_i$ for every p_i occurring in ϕ .

An inequality $\phi \leq \psi$ is (Ω,ϵ) -inductive if the trees $+\phi$ and $-\psi$ are both (Ω,ϵ) -inductive. An inequality $\phi \leq \psi$ is inductive if it is (Ω,ϵ) -inductive for some Ω and ϵ . When an inequality $\phi \leq \psi$ is inductive, we also say that the corresponding sequent $\phi \vdash \psi$ is inductive.

Stage 1. Preprocessing & first approximation

Stage 2. Reduction Elimination Cycle

Stage 3. Output (pure quasi-inequality)

Stage 1. Main Rules

▶ Spliting rules:

$$\frac{\phi \le \psi \land \gamma}{\phi \le \psi \quad \phi \le \gamma} \text{ (\landSp)} \quad \frac{\phi \lor \psi \le \gamma}{\phi \le \gamma \quad \psi \le \gamma} \text{ (\lorSp)}$$

Approximation

$$\frac{\phi_i \le \psi_i}{i_0 \le \phi_i \quad \psi_i \le m_0}$$
 (Ap)

Stage 2. Rules (a) Residuation rules:

$$\frac{\phi \cdot \psi \le \gamma}{\phi \le \psi \to \gamma}$$
 (Res)

(b) Approximation rule:

$$\frac{\phi \to \psi \le m}{i \le \phi \quad i \to \psi \le m} \ (\to \operatorname{Ap1}) \quad \frac{\phi \to \psi \le m}{\psi \le n \quad \phi \to n \le m} \ (\to \operatorname{Ap2})$$

$$\frac{\phi \cdot \psi \le m}{i \le \phi \quad i \cdot \psi \le m} \ (\cdot \operatorname{Ap1}) \quad \frac{\phi \cdot \psi \le m}{i \le \psi \quad \phi \cdot i \le m} \ (\cdot \operatorname{Ap2})$$

- (c) Ackermann rules:
 - ▶ The right Ackermann rule (RAck):

$$\begin{cases} \phi_1 \leq p \\ \vdots \\ \phi_n \leq p \\ \psi_1 \leq \gamma_1 \\ \vdots \\ \psi_m \leq \gamma_m \end{cases} \text{ is replaced with } \begin{cases} \psi_1(\bigvee_{i=1}^n \phi_i/p) \leq \gamma_1(\bigvee_{i=1}^n \phi_i/p) \\ \vdots \\ \psi_m(\bigvee_{i=1}^n \phi_i/p) \leq \gamma_m(\bigvee_{i=1}^n \phi_i/p) \end{cases}$$

where (i) p does not occur in ϕ_i for $1 \le i \le n$; (ii) $\psi_j \le \gamma_j$ is negative in p for $1 \le j \le m$.

► The left Ackermann rule (LAck):

```
 \begin{cases} & p \leq \phi_1 \\ & \vdots \\ & p \leq \phi_n \\ & \psi_1 \leq \gamma_1 \end{cases} \quad \text{is replaced with} \\ \begin{cases} & \psi_1(\bigwedge_{i=1}^n \phi_i/p) \leq \gamma_1(\bigwedge_{i=1}^n \phi_i/p) \\ & \vdots \\ & \psi_m(\bigwedge_{i=1}^n \phi_i/p) \leq \gamma_m(\bigwedge_{i=1}^n \phi_i/p) \end{cases}
```

where (i) p does not occur in ϕ_i for $1 \le i \le n$; (ii) each $\psi_j \le \gamma_j$ positive in p for $1 \le j \le m$.

Example of StrictALBA

 $(p \rightarrow q) \land (q \rightarrow r) \leq p \rightarrow r$. StrictALBA proceeds as follows:

$$\frac{(p \rightarrow q) \land (q \rightarrow r) \leq p \rightarrow r}{\forall i \forall m (i \leq (p \rightarrow q) \land (q \rightarrow r) \& p \rightarrow r \leq m \Rightarrow i \leq m)} (Ap)}{\forall i \forall m (i \leq p \rightarrow q \& i \leq q \rightarrow r \& p \rightarrow r \leq m \Rightarrow i \leq m)} (Ap)} (Ap)$$

$$\frac{\forall i \forall m (i \leq p \rightarrow q \& i \leq q \rightarrow r \& p \rightarrow r \leq m \Rightarrow i \leq m)}{\forall i \forall m (p \cdot i \leq q \& q \cdot i \leq r \& p \rightarrow r \leq m \Rightarrow i \leq m)} (Ap)} (Ap)$$

$$\frac{\forall i \forall m (j \leq p \& j \cdot i \leq q \& q \cdot i \leq r \& p \rightarrow r \leq m \Rightarrow i \leq m)}{\forall i \forall m (j \cdot i \leq q \& q \cdot i \leq r \& j \rightarrow r \leq m \Rightarrow i \leq m)} (Ap)} (Ap)$$

$$\frac{\forall i \forall m (j \cdot i \leq q \& q \cdot i \leq r \& j \rightarrow r \leq m \Rightarrow i \leq m)}{\forall i \forall m (j \rightarrow ((j \cdot i) \cdot i) \leq m \Rightarrow i \leq m)} (Ap)} (Ap)$$

First-order correspondent

Definition

- (1) $\mathcal{M}, w \models \mathbf{i} \text{ iff } V(\mathbf{i}) = \{w\}.$
- (2) $\mathcal{M}, w \models \mathbf{m} \text{ iff } V(\mathbf{m}) = W \{w\}.$
- (3) $\mathcal{M}, w \models p \text{ iff } w \in V(p).$
- (4) $\mathcal{M}, w \not\models \bot$.
- (5) $\mathcal{M}, \mathbf{w} \models \phi \land \psi$ iff $\mathcal{M}, \mathbf{w} \models \phi$ and $\mathcal{M}, \mathbf{w} \models \psi$.
- (6) $\mathcal{M}, \mathbf{w} \models \phi \lor \psi \text{ iff } \mathcal{M}, \mathbf{w} \models \phi \text{ or } \mathcal{M}, \mathbf{w} \models \psi.$
- (7) $\mathcal{M}, \mathbf{w} \models \phi \rightarrow \psi \text{ iff } \forall \mathbf{u} \in \mathbf{W}(\mathbf{wRu} \& \mathcal{M}, \mathbf{u} \models \phi \Rightarrow \mathcal{M}, \mathbf{u} \models \psi).$
- (8) $\mathcal{M}, \mathbf{w} \models \phi \cdot \psi \text{ iff } \exists \mathbf{u} \in \mathbf{W}(\mathbf{u}\mathbf{R}\mathbf{w} \& \mathcal{M}, \mathbf{w} \models \phi \& \mathcal{M}, \mathbf{u} \models \psi).$

First-order correspondents

Given a frame $\mathcal{F}=(\textit{W},\textit{R})$, define a binary operator \cdot on $\mathcal{P}(\textit{W})$ by setting

$$X \cdot Y = \{ w \in W \mid \exists u (uRw \& w \in X \& u \in Y) \}$$

Then we have $[\![\phi \cdot \psi]\!]_{\mathcal{M}} = [\![\phi]\!]_{\mathcal{M}} \cdot [\![\psi]\!]_{\mathcal{M}}$. Moreover, we have the following fact:

Proposition

For any $X, Y, Z \in \mathcal{P}(W)$, $X \cdot Y \subseteq Z$ iff $Y \subseteq X \rightarrow Z$.

First-order correspondents

Obviously, the output pure quasi-inequality $\forall ij \forall m(j \rightarrow ((j \cdot i) \cdot i) \leq m \Rightarrow i \leq m)$ is equivalent to $\forall ij (j \cdot i \leq (j \cdot i) \cdot i)$. Notice that $z \in \{x\} \cdot \{y\}$ iff Ryx. Then the first-order condition is calculated as follows:

$$\forall ij(j \cdot i \leq (j \cdot i) \cdot i) \Leftrightarrow \forall xy(\{x\} \cdot \{y\} \subseteq (\{x\} \cdot \{y\}) \cdot \{y\})$$

$$\Leftrightarrow \forall xyz(z \in \{x\} \cdot \{y\} \supset z \in (\{x\} \cdot \{y\}) \cdot \{y\})$$

$$\Leftrightarrow \forall xyz(Ryx \supset \exists u(Ruz \land z \in (\{x\} \cdot \{y\}) \land u \in \{y\}))$$

$$\Leftrightarrow \forall xyz(Ryx \supset (Ryz \land z \in (\{x\} \cdot \{y\}))$$

$$\Leftrightarrow \forall xyz(Ryx \supset (Ryx \land Ryx))$$

which is a tautology. The sequent $p \to q, q \to r \vdash p \to r$ is an axiom of wK_{σ}.

First-order correspondents

Example: $p, p \rightarrow q \vdash q$. By StrictALBA one gets

$$\forall i (i \leq i \cdot i)$$

The first-order condition is calculated as follows:

$$\forall i (i \le i \cdot i) \Leftrightarrow \forall x (\{x\} \subseteq \{x\} \cdot \{x\})$$
$$\Leftrightarrow \forall x z (z \in \{x\} \supset z \in \{x\} \cdot \{x\})$$
$$\Leftrightarrow \forall x Rxx$$

It follows that the sequent $p \land (p \rightarrow q) \vdash q$ defines the class of all reflexive frames.

Canonicity of Inductive Inequalities

Theorem

All inductive \mathcal{L}_{term} -inequalities are canonical.

Proof.

We can use the U-shaped argument represented below to show that from $\mathfrak{A}\models\phi\leq\psi$ we can get $\mathfrak{A}^{\delta}\vdash\phi\leq\psi$:

$$\begin{split} \mathfrak{A} \models_{\mathfrak{A}} \phi \leq \psi & \mathfrak{A}^{\delta} \vdash \phi \leq \psi \\ \mathfrak{A}^{\delta} \vdash_{\mathfrak{A}} \mathsf{ALBA}(\phi \leq \psi) & \Leftrightarrow & \mathfrak{A}^{\delta} \vdash \mathsf{ALBA}(\phi \leq \psi). \end{split}$$

See [Conradie and Palmigiano 2012].

♠4. Conservativity

The Lambek calculi we considered are non-associative extensions of DFNL⁺.

Lattice-ordered residuated groupoid

Definition

A bounded distributive lattice-ordered residuated groupoid (BDRG) is an algebra $\mathfrak{A}=(A,\wedge,\vee,\top,\perp,\rightarrow,\cdot,\leftarrow)$ where $(A,\wedge,\vee,\top,\perp)$ is a bounded distributive lattice, and $\cdot,\rightarrow,\leftarrow$ are binary operations on A satisfying the following residuation law for all $a,b,c\in A$:

(RES)
$$a \cdot b \le c$$
 iff $b \le a \rightarrow c$ iff $a \le c \leftarrow b$.

Let BDRG be the class of all BDRGs.

DFNL^+

Definition (Buskowski 2006)

An algebraic sequent calculus DFNL^+ for BDRG consists of the following axiom schemata and rules:

(Id)
$$\phi \vdash \phi$$
, $(\top) \phi \vdash \top$, $(\bot) \bot \vdash \phi$, (D) $\phi \land (\psi \lor \gamma) \vdash (\phi \land \psi) \lor (\phi \land \gamma)$,

$$(\land L) \frac{\phi_i \vdash \psi}{\phi_1 \land \phi_2 \vdash \psi} (i = 1, 2), \quad (\land R) \frac{\gamma \vdash \phi}{\gamma \vdash \phi \land \psi},$$

$$(\lor L) \frac{\phi \vdash \gamma}{\phi \lor \psi \vdash \gamma}, \quad (\lor R) \frac{\psi \vdash \phi_i}{\psi \vdash \phi_1 \lor \phi_2} (i = 1, 2), \quad (\text{cut}) \frac{\phi \vdash \psi}{\phi \vdash \gamma},$$

$$(\text{Res1}) \frac{\phi \cdot \psi \vdash \gamma}{\psi \vdash \phi \Rightarrow \psi}, \quad (\text{Res2}) \frac{\psi \vdash \phi \Rightarrow \psi}{\phi \vdash \psi \vdash \gamma}, \quad (\text{Res3}) \frac{\phi \cdot \psi \vdash \gamma}{\phi \vdash \psi}, \quad (\text{Res4}) \frac{\phi \vdash \gamma \leftarrow \psi}{\phi \vdash \psi \vdash \gamma}.$$

Consequence relation for DFNL⁺

Definition

An \mathcal{L}^+ -supersequent is an expression of the form $\Phi \Rightarrow \chi \vdash \delta$ (consequence relation) where $\Phi \cup \{\chi \vdash \delta\} \subseteq \mathcal{L}^+$.

Theorem (Strong completeness)

For every \mathcal{L}^+ -supersequent sequents $\Phi \Rightarrow \chi \vdash \psi$, $\vdash_{\mathsf{DFNL}^+} \Phi \Rightarrow \chi \vdash \delta$ iff $\mathsf{BDRG} \models \Phi \Rightarrow \chi \vdash \delta$.

Conservativity: from S_{BDI} to DFNL⁺

Lemma

For every BDRG $(A, \rightarrow, \cdot, \leftarrow)$, its $(\land, \lor, \bot, \top, \rightarrow)$ -reduct is a BDI.

Lemma

For any BDI (A, \rightarrow) , the algebra $(A^{\delta}, \rightarrow^{\pi}, \cdot^{\delta}, \leftarrow^{\pi})$ is a BDRG.

Theorem (conservativity)

For every sequent $\phi \vdash \psi \in \mathcal{L}$, $\phi \vdash_{\mathsf{S}_{\mathsf{BDI}}} \psi$ iff $\phi \vdash_{\mathsf{DFNL}^+} \psi$.

Proof.

Let $\phi \vdash \psi \in \mathcal{L}$. Obviously, $\phi \vdash_{\mathsf{S}_{\mathsf{BDI}}} \psi$ implies $\phi \vdash_{\mathsf{DFNL}^+} \psi$. Conversely, assume $\phi \not\vdash_{\mathsf{S}_{\mathsf{BDI}}} \psi$. By the completeness of $\mathsf{S}_{\mathsf{BDI}}$, there exist an BDI $\mathfrak{A} = (A, \to)$ and an assignment μ such that $\mu(\phi) \not\leq \mu(\psi)$. Consider $\mathfrak{A}^{\delta} = (A^{\delta}, \to^{\pi}, \cdot^{\delta}, \leftarrow^{\delta})$. Then $\mathfrak{A}^{\delta}, \mu \not\models \phi \vdash \psi$. Then BDRG $\not\models \phi \vdash \psi$. By the completeness of DFNL $^+$, $\phi \not\vdash_{\mathsf{DFNI}^+} \psi$.

Conservativity

Residuated weak Heyting algebra: BDRG satisfying

(w)
$$a \cdot b \leq a$$
, (ct) $a \cdot b \leq (a \cdot b) \cdot b$

 $S_{RWH} = DFNL^{+} +$

$$\phi \cdot \psi \vdash \phi, \quad \phi \cdot \psi \leq (\phi \cdot \psi) \cdot \psi$$

Lemma

For every RWH-algebra $\mathfrak{A}=(A,\wedge,\vee,\perp,\top,\rightarrow,\cdot,\leftarrow)$, its $(\wedge,\vee,\perp,\top,\rightarrow)$ -reduct is a WH-algebra.

Lemma

For any WH-algebra (A, \rightarrow) , $(A^{\delta}, \rightarrow^{\pi}, \cdot^{\delta}, \leftarrow^{\pi})$ is a RWH-algebra.

Theorem (conservativity)

For every sequent $\phi \vdash \psi \in \mathcal{L}$, $\phi \vdash_{\mathsf{S}_{\mathsf{WH}}} \psi$ iff $\phi \vdash_{\mathsf{RWH}} \psi$.

Conservativity

Extensions of S_{BDI} and DFNL⁺:

Example

- 1. (Tr) $(p \rightarrow q) \land (q \rightarrow r) \vdash p \rightarrow r$ corresponds to (Tr') $p \cdot q \vdash (p \cdot q) \cdot q$, i.e., they define the same class of BDRGs.
- 2. (*W*) $q \vdash p \rightarrow p$ corresponds to (*W'*) $p \cdot q \vdash p$.
- 3. $S_{WH} = S_{BDI} + (W) + (Tr)$ is conservatively extended to $DFNL^+ + (Tr') + (W')$

An Ackermann Lemma Based Calculus to calculate the algebraic correspondence between sequents.

Definition

The Ackermann lemma based supersequent calculus ALC:

(1) Splitting rules:

$$(\land S) \ \frac{\gamma \vdash \phi, \gamma \vdash \psi, \Gamma \Rightarrow \chi \vdash \delta}{\gamma \vdash \phi \land \psi, \Gamma \Rightarrow \chi \vdash \delta} \quad (\land S \uparrow) \ \frac{\gamma \vdash \phi \land \psi, \Gamma \Rightarrow \chi \vdash \delta}{\gamma \vdash \phi, \gamma \vdash \psi, \Gamma \Rightarrow \chi \vdash \delta}$$

$$(\lor S) \ \frac{\phi \vdash \gamma, \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \lor \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \quad (\lor S \uparrow) \ \frac{\phi \lor \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \gamma, \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}$$

(2) Residuation rules:

$$\begin{split} & (\text{ReL1}) \ \frac{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\psi \vdash \phi \to \gamma, \Gamma \Rightarrow \chi \vdash \delta} & (\text{ReL1}\uparrow) \ \frac{\psi \vdash \phi \to \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \\ & (\text{ReL2}) \ \frac{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \gamma \leftarrow \psi, \Gamma \Rightarrow \chi \vdash \delta} & (\text{ReL2}\uparrow) \ \frac{\phi \vdash \gamma \leftarrow \psi, \Gamma \Rightarrow \chi \vdash \delta}{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \\ & (\text{ReR1}) \ \frac{\Gamma \Rightarrow \phi \cdot \psi \vdash \gamma}{\Gamma \Rightarrow \psi \vdash \phi \to \gamma} & (\text{ReR1}\uparrow) \ \frac{\Gamma \Rightarrow \psi \vdash \phi \to \gamma}{\Gamma \Rightarrow \phi \cdot \psi \vdash \gamma} \\ & (\text{ReR2}) \ \frac{\Gamma \Rightarrow \phi \cdot \psi \vdash \gamma}{\Gamma \Rightarrow \phi \vdash \gamma \leftarrow \psi} & (\text{ReR2}\uparrow) \ \frac{\Gamma \Rightarrow \phi \vdash \gamma \leftarrow \psi}{\Gamma \Rightarrow \phi \cdot \psi \vdash \gamma} \end{split}$$

(3) Approximation rules:

$$(AAp1) \frac{\rho \vdash \phi, \Gamma \Rightarrow \rho \vdash \psi}{\Gamma \Rightarrow \phi \vdash \psi} \quad (AAp1\uparrow) \frac{\Gamma \Rightarrow \phi \vdash \psi}{\rho \vdash \phi, \Gamma \Rightarrow \rho \vdash \psi}$$

$$(AAp2) \frac{\psi \vdash \rho, \Gamma \Rightarrow \phi \vdash \rho}{\Gamma \Rightarrow \phi \vdash \psi} \quad (AAp2\uparrow) \frac{\Gamma \Rightarrow \phi \vdash \psi}{\psi \vdash \rho, \Gamma \Rightarrow \phi \vdash \rho}$$

$$(\rightarrow Ap1) \frac{\rho \vdash \phi, \rho \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \quad (\rightarrow Ap1\uparrow) \frac{\phi \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\rho \vdash \phi, \rho \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}$$

$$(\rightarrow Ap2) \frac{\psi \vdash \rho, \phi \rightarrow \rho \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \quad (\rightarrow Ap2\uparrow) \frac{\phi \rightarrow \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\psi \vdash \rho, \phi \rightarrow \rho \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}$$

$$(\rightarrow Ap3) \frac{\phi \vdash \rho, \gamma \vdash \rho \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta}{\gamma \vdash \phi \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta} \quad (\rightarrow Ap3\uparrow) \frac{\gamma \vdash \phi \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \rho, \gamma \vdash \rho \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta}$$

$$(\rightarrow Ap4) \frac{\rho \vdash \psi, \gamma \vdash \phi \rightarrow \rho, \Gamma \Rightarrow \chi \vdash \delta}{\gamma \vdash \phi \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta} \quad (\rightarrow Ap4\uparrow) \frac{\gamma \vdash \phi \rightarrow \psi, \Gamma \Rightarrow \chi \vdash \delta}{\rho \vdash \psi, \gamma \vdash \phi \rightarrow \rho, \Gamma \Rightarrow \chi \vdash \delta}$$

$$\begin{array}{l} \text{(·Ap1)} \ \frac{\rho \vdash \psi, \phi \vdash \rho \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \psi \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta} & \text{(·Ap1↑)} \ \frac{\phi \vdash \psi \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\rho \vdash \psi, \phi \vdash \rho \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta} \\ \text{(·Ap2)} \ \frac{\rho \vdash \gamma, \phi \vdash \psi \cdot \rho, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \psi \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta} & \text{(·Ap2↑)} \ \frac{\phi \vdash \psi \cdot \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\rho \vdash \gamma, \phi \vdash \psi \cdot \rho, \Gamma \Rightarrow \chi \vdash \delta} \\ \text{(·Ap3)} \ \frac{\phi \vdash \rho, \rho \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} & \text{(·Ap3↑)} \ \frac{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \vdash \rho, \rho \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \\ \text{(·Ap4)} \ \frac{\psi \vdash \rho, \phi \cdot \rho \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} & \text{(·Ap4↑)} \ \frac{\phi \cdot \psi \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta}{\psi \vdash \rho, \phi \cdot \rho \vdash \gamma, \Gamma \Rightarrow \chi \vdash \delta} \\ \text{where } \rho, q \text{ do not occur in the conclusion.} \end{array}$$

(4) Ackermann rules:

(RAck)
$$\frac{\Gamma[\bigvee_{i=1}^{n} \phi_{i}/p], \Gamma' \Rightarrow (\chi \vdash \delta)^{*}}{\phi_{1} \vdash p, \dots, \phi_{n} \vdash p, \Gamma, \Gamma' \Rightarrow \chi \vdash \delta}$$
(RAck↑)
$$\frac{\phi_{1} \vdash p, \dots, \phi_{n} \vdash p, \Gamma, \Gamma' \Rightarrow \chi \vdash \delta}{\Gamma[\bigvee_{i=1}^{n} \phi_{i}/p], \Gamma' \Rightarrow (\chi \vdash \delta)^{*}}$$

where (i) p does not occur in Γ' or ϕ_i for $1 \le i \le n$; (ii) $\Gamma = \{\psi_j \vdash \gamma_j \mid \psi_j(+p), \gamma_j(-p), 1 \le j \le m\}$ and

$$\Gamma[\bigvee_{i=1}^{n} \phi_i/p] = \{\psi_j[\bigvee_{i=1}^{n} \phi_i/p] \vdash \gamma_j[\bigvee_{i=1}^{n} \phi_i/p] \mid \psi_j \vdash \gamma_j \in \Gamma\}$$

and (iii) either p does not occur in $\chi \vdash \delta$ and $(\chi \vdash \delta)^* = x \vdash \delta$, or $\chi \vdash \delta$ is negative in p and $(\chi \vdash \delta)^* = \chi[\bigvee_{i=1}^n \phi_i/p] \vdash \delta[\bigvee_{i=1}^n \phi_i/p]$.

(LAck)
$$\frac{\Gamma[\bigwedge_{i=1}^{n} \phi_{i}/p], \Gamma' \Rightarrow (\chi \vdash \delta)^{*}}{p \vdash \phi_{1}, \dots, p \vdash \phi_{n}, \Gamma, \Gamma' \Rightarrow \chi \vdash \delta}$$
(LAck↑)
$$\frac{p \vdash \phi_{1}, \dots, p \vdash \phi_{n}, \Gamma, \Gamma' \Rightarrow \chi \vdash \delta}{\Gamma[\bigwedge_{i=1}^{n} \phi_{i}/p], \Gamma' \Rightarrow (\chi \vdash \delta)^{*}}$$

where (i) p does not occur in Γ' or ϕ_i for $1 \le i \le n$; (ii) $\Gamma = \{\psi_j \vdash \gamma_j \mid \psi_j(-p), \gamma_j(+p), 1 \le j \le m\}$ and

$$\Gamma[\bigwedge_{i=1}^{n} \phi_i/p] = \{\psi_j[\bigwedge_{i=1}^{n} \phi_i/p] \vdash \gamma_j[\bigwedge_{i=1}^{n} \phi_i/p] \mid \psi_j \vdash \gamma_j \in \Gamma\}$$

and (iii) either p does not occur in $\chi \vdash \delta$ and $(\chi \vdash \delta)^* = x \vdash \delta$, or $\chi \vdash \delta$ is positive in p and $(\chi \vdash \delta)^* = \chi[\bigwedge_{i=1}^n \phi_i/p] \vdash \delta[\bigwedge_{i=1}^n \phi_i/p]$.

Algebraic correspondence

Algebraic correspondence between \mathcal{L} and sequents in \mathcal{L}^{\bullet} :

$$\mathcal{L}_{\textit{term}}^{\bullet} \ni \phi ::= p \mid \top \mid \bot \mid (\phi \cdot \phi)$$

Definition

Given sequents $\phi \vdash \psi \in \mathcal{L}$ and $\chi \vdash \delta \in \mathcal{L}^{\bullet}$, we say that $\phi \vdash \psi$ corresponds to $\chi \vdash \delta$ over BDRG if they define the same class of BDRGs.

Fact

Given sequents $\phi \vdash \psi \in \mathcal{L}$ and $\chi \vdash \delta \in \mathcal{L}^{\bullet}$, if the following rule

$$\frac{\Rightarrow \phi \vdash \psi}{\Rightarrow \chi \vdash \delta}(r)$$

is derivable in ALC, then $\phi \vdash \psi$ corresponds to $\chi \vdash \delta$.

Examples

(Tr) One proof is as follows:

$$\frac{\Rightarrow (p \rightarrow q) \land (q \rightarrow r) \vdash (p \rightarrow r)}{s \vdash (p \rightarrow q) \land (q \rightarrow r) \Rightarrow s \vdash p \rightarrow r} \xrightarrow{\text{(AAp1↑)}} \frac{s \vdash (p \rightarrow q) \land (q \rightarrow r) \Rightarrow s \vdash p \rightarrow r}{(\land S \uparrow)} \xrightarrow{p \cdot s \vdash q, q \cdot s \vdash r \Rightarrow p \cdot s \vdash r} \xrightarrow{\text{(AAp2)}} \frac{p \cdot s \vdash q \Rightarrow p \cdot s \vdash q \cdot s}{\Rightarrow p \cdot s \vdash (p \cdot s) \cdot s} \xrightarrow{\text{(RAck↑)}}$$

Conservativity

Theorem (Conservativity)

Assume that Φ is a set of inductive sequents in \mathcal{L} , and $\Psi \subseteq \mathcal{L}^{\bullet}$ is the set of correspondents of sequents in Φ . Then the algebraic sequent system DFNL⁺(Ψ) is a conservative extension of $\mathsf{S}_{\mathsf{BDI}}(\Phi)$.

♠5. Gentzen-style sequent calculi

Cut-free Gentzen-style sequent calculus for DFNL+

The Gentzen-style sequent calculus G_{DFNL+}:

$$(\operatorname{Id}) \phi \vdash \phi, \quad (\top) \Gamma \vdash \top, \quad (\bot) \Gamma[\bot] \vdash \phi,$$

$$(\to L) \frac{\Delta \vdash \phi \quad \Gamma[\psi] \vdash \gamma}{\Gamma[\Delta \odot (\phi \to \psi)] \vdash \gamma}, \quad (\to R) \frac{\phi \odot \Gamma \vdash \psi}{\Gamma \vdash \phi \to \psi},$$

$$(\leftarrow L) \frac{\Gamma[\phi] \vdash \gamma \quad \Delta \vdash \psi}{\Gamma[(\phi \leftarrow \psi) \odot \Delta] \vdash \gamma}, \quad (\leftarrow R) \frac{\Gamma \odot \psi \vdash \phi}{\Gamma \vdash \phi \leftarrow \psi},$$

$$(\bot L) \frac{\Gamma[\phi \odot \psi] \vdash \gamma}{\Gamma[\phi \cdot \psi] \vdash \gamma}, \quad (\cdot R) \frac{\Gamma \vdash \phi \quad \Delta \vdash \psi}{\Gamma \odot \Delta \vdash \phi \cdot \psi},$$

$$(\land L) \frac{\Gamma[\phi \odot \psi] \vdash \gamma}{\Gamma[\phi \land \psi] \vdash \gamma}, \quad (\land R) \frac{\Gamma \vdash \phi \quad \Delta \vdash \psi}{\Gamma \odot \Delta \vdash \phi \land \psi},$$

$$(\lor L) \frac{\Gamma[\phi] \vdash \gamma, \quad \Gamma[\psi] \vdash \gamma}{\Gamma[\phi \lor \psi] \vdash \gamma}, \quad (\lor R) \frac{\Gamma \vdash \phi_i}{\Gamma \vdash \phi_i \lor \phi_2} (i = 1, 2),$$

$$(\diamondsuit C) \frac{\Gamma[\Delta \odot \Delta] \vdash \phi}{\Gamma[\Delta] \vdash \phi}, \quad (\diamondsuit W) \frac{\Gamma[\Delta] \vdash \phi}{\Gamma[\Delta \odot \Delta] \vdash \phi}, \quad (\diamondsuit E) \frac{\Gamma[\Delta \odot \Lambda] \vdash \phi}{\Gamma[\Lambda \odot \Delta] \vdash \phi},$$

$$(\diamondsuit As) \frac{\Gamma[(\Delta_1 \odot \Delta_2) \odot \Delta_3] \vdash \phi}{\Gamma[\Delta_1 \odot (\Delta_2 \odot \Delta_3)] \vdash \phi}.$$

Cut-free sequent calculus for extensions of DFNL⁺

Given $\chi \vdash \delta \in \mathcal{L}^{\bullet}$, define the rule

$$\frac{\delta[\Delta_1/p_1,\ldots,\Delta_n/p_n]\Rightarrow\phi}{\chi[\Delta_1/p_1,\ldots,\Delta_n/p_n]\Rightarrow\phi}(\odot\sigma)$$

where $\delta[\Delta_1/p_1,\ldots,\Delta_n/p_n$ and $\chi[\Delta_1/p_1,\ldots,\Delta_n/p_n]$ are obtained from δ and χ by substituting Δ_i for p_i , and \odot for \cdot uniformly.

Example

For $p \cdot q \vdash (p \cdot q) \cdot q$, we have the following rule:

$$\frac{\left(\Delta\odot\Sigma\right)\odot\Sigma\Rightarrow\phi}{\Delta\odot\Sigma\Rightarrow\phi}$$

Gentzen-style Sequent Calculi

For any set of sequents $\Psi \subseteq \mathcal{L}^{\bullet}$, let $\odot \Psi = \{ \odot \sigma \mid \sigma \in \Psi \}$ and $G_{DFNL^+}(\odot \Psi)$ be the Gentzen-style sequent system obtained from G_{DFNL^+} by adding rules in $(\odot \Psi)$.

Theorem

For any set of sequents $\Psi \subseteq \mathcal{L}^{\bullet}$, the (cut) rule is admissible in the Gentzen-style sequent system $G_{DFNL^{+}}(\odot \Psi)$.

Theorem

For any set of sequents $\Psi \subseteq \mathcal{L}^{\bullet}$, the following hold:

- (1) $\Gamma \vdash_{\mathsf{G}_{\mathsf{DENI}} + (\odot \Psi)} \phi \text{ iff } \mathsf{Alg}(\Psi) \models \Gamma \vdash \phi.$
- (2) if every subformula of δ is a subformula of χ for each sequent $\chi \vdash \delta \in \Psi$, then $\mathsf{G}_{\mathsf{DFNL}^+}(\odot \Psi)$ has the subformula property.

Gentzen-style sequent calculi

Further Work

- 1. Extend the algebraic correspondence between \mathcal{L} and \mathcal{L}^{\bullet} .
- 2. Logics weaker than S_{BDI} and Lambek Calculi below DFNL⁺.
- 3. The relational semantics for S_{BDI}.
- 4. Duality theory that generalises [Celani & Jansana 2005]

Thanks for your attention!