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& 1. Weak strict implication logics

Strict implication ¢ — v := 0O(¢ D )
1. Intuitionistic logic and subintuitionistic logics.

1.1 G. Corsi. Weak logics with strict implication. Zeitschrift fiir
mathematische Logik u. Grundlagen d, 33:389-406, 1987.

1.2 K. Dosen. Modal translations in K and D. In Diamonds and
Defaults, 103—127. Kluwer Academic Publishers, 1993.

1.3 A. Visser. A propositional logic with explicit fixed points. Studia
Logica, 40(2):155—175, 1981.

2. The local consequence relation:

2.1 S.Celani and R. Jansana. A closer look at some subintuitionistic
logics. Notre Dame Journal of Formal Logic 42, 225-255, 2003.

2.2 S. Celani and R. Jansana. Bounded distributive lattices with strict
implication. Mathematical Logic Quarterly, 51(3):219-246, 2005.



Language and Semantics

The set of all strict implication formulas, also called terms, Lierm is
defined inductively by the following rule:

Lierm2> ¢ u=p| L[ (6N Q)| (dV )| (¢ — 0),

where p € Prop. Define T:=1 — 1, -¢:=¢ — L, and
p=v:=(o > Y)A (Y= 9).
Sequent:

M=o

where [ is a finite (possibly empty) set of formulas.



Kripke Semantics

Frame: F = (W, R) where W # () and R C W?2.
Model: M = (W, R, V) where V : Prop — P(W) is arbitrary
valuation. The satisfaction relation M, w |= ¢:

1.
2.

Let

M,w = piff w e V(p).
Mow B~ L.

B MwEAYIFF M, wEdand M, w = .

4.

5. MiwkE¢—yiff vue W(wRU & M, u = ¢ = M, u = 1).
V(gp) ={we W | M,w = ¢}. For any set & of formulas, let

MwEVYIff M,w = dor M,wh .

V(E) =MN{V(9) | ¢ € 2}.

1.
2.

Validity 7 =T = ¢: V(I') C V(¢) for any valuation V in F.

Local consequence relation, ¥ =4 ¢: for every valuation V in
any frame in IC, V(X) C V(9¢).



Weak Strict Implication Logics

Definition (Cenali & Jansana 2003)

A weak strict implication logic is a set of sequents L which contains all
instances of the following axiom schemata:

M) p =, ¢ = xFod—=(PAX) M2)dp— X, = xF(dVY) =X

(Slly) ¢ =, = xF¢—¢ (d) ko
and is closed under the following rules:

Mo Me1 RVASE) Tk¢ T
Foro™ TR Foisr s oAy R
Fokx Tk x [ e
rovery Y Frove treve®

oEY

ko Tory
TFooo 0l TRy e

cut



Weak Strict Implication Logics

1. The minimal weak strict implication logic is denoted by wK,.

2. Deductive consequence relation For every set of formulas
dU{o} C Lierm, We say that ¢ is a deductive consequence of ¢
in L (notation: ® | ¢) if there exists a finite subset A C ¢ such
that the sequent A F ¢ is derivable in L.

3. Strong Completeness A weak strict implication logic L is said to

be strongly complete with respect to a class of frames K if for
every set of formulas £ U {¢}, ¥ I ¢ iff £ =% ¢.



Some weak strict implication logics

Theorem (Celani and Jansana 2003)

The least weak strict implication logic wK,, is strongly complete with
respect to the class of all frames.

Sequent First-order correspondent

(wD)-TFL vx3yRxy

(wT)pA(p—q)Fq VXRxx

wHyp—qgtkr—=(p—9q) Vxyz((Rxy A Bxz) > Ryz)

(WB)pFaqV—(p—q) Vxy(Rxy > Ryx)

(w3)0 = ((rA(p—q)) — s)V | Vxyz((Rxy A BRxz) D (Ryz Vv Rzy))
((pA(r—s)) = q)

Theorem
Every weak strict implication logics generated by sequents in above
Table is strongly complete with respect to its frames.



#2. Bounded distributive lattices with implication

Definition

An algebra 20 = (A, A, Vv, L, T, —) is called a bounded distributive
lattice with implication (BDI) if its (A, Vv, L, T)-reduct is a bounded
distributive lattice and — is a binary operation on A satisfying the
following conditions for all a, b, ¢ € A:

(C1) (a—=b)Ar(a—c)=a—(bArc),

(C2) (a—=c)n(b—c)=(aVvb)—c.

Ch a—>T=T=1L—a



Bounded distributive lattices with implication

Definition (Celani & Jansana 2005)
A BDI (A /A, Vv, L, T,—) is called a weak Heyting algebra (WHA) if the
following conditions are satisfied for all a, b, ¢ € A:

(C3) T=a—a
(C4) (a—=b)A(b—=c)<(a—C0)
Let WH be the class of all WHAs.



Algebraic sequent system using simple sequents

Definition
The algebraic sequent system Sgp, consists of the following axiom
schemata and rules:

oo, oFT, LbF¢, TFHa—-T, THL—oa

D) oA (@ V) (@AP)V(¢A7),
M1) (¢ = D)A(@ =N E (6 =), M2) (¢ = NA[W =) F (6VY) =7,

oEY orY oFY Yoy
M ==y M asaresy W TR
oty TF¢ v oFy YFy Yo

B Gnger e VN g Y Tavery T g ve

The iin (AL) is equal to 1 or 2.



Weak Heyting Algebras

The algebraic sequent system Sy = Sgpi+

MyvtEo—=0, (Tr)(@—=Y)A (Y =)o —.
Theorem (Completeness)
Forany ¢t € L and K € {BDI,WH}, ¢ s ¢ iff K |= ¢ F 1.

Theorem
For every sequentT - ¢ € L, T Fuk, ¢ iff AT s, ¢



Canonical extension of BDI

A canonical extension of a lattice L is a dense and compact
completion of L. [Gehrke and Harding 2001].

Definition
Let f: L — M be any map from a lattice L to M. Define its canonical
m-extension ™ : L° — M?° by setting:

r(u)= A\{\/{f(a):acL&x<a<y}:K(L°)3x<u<yecO(L)}
where K(L°) and O(L’) are sets of closed and open elements.

Proposition (Gehrke and Harding 2001)

Letf: L — M be an order-preserving map from a lattice L to M. Then
f™ is order-preserving, and for all u € L° and y € O(L?),

r(y)=\V{f(@:Lsa<y}, (u)=\{f"(y):u<yeOlL’)}



Canonical extension

The canonical extension of a BDI (A, —) is (A%, —™). We say that a
class of algebras is canonical if it is closed under taking canonical
extensions.

Theorem
BDI is canonical.



& 3. Algorithmic correspondence theory

Some references:

1. W. Conradie and A. Palmigiano. Algorithmic correspondence and
canonicity for distributive modal logic. Annals of Pure and
Applied Logic, 163(3): 338-376, 2012.

2. W. Conradie, S. Ghilardi and A. Palmigiano. Unified
correspondence. In A. Baltag and S. Smets (eds.) Johan van
Benthem on Logic and Information Dynamics, pages, 933-976,
Springer, 2014.



Expanded languages

Liem> ¢ =T | LIp|(¢A)[(6V)[(d—¢)
Logm>¢u=T|LIp[(6A)[(6V )| (= ¢)[(s-9)
Liem> ¢ =T | LIpli|m[(6Ad)|(6VI)|(d—¢)|(d-0)

where p € Prop, i € NOM and m € CONOM. Nominals range over

completely join-prime elements. Co-nominals range over completely
meet-prime elements of a canonical extension.

Terms

Eterm

+
‘Cterm
L

term

inequalities (sequents)
L
E+
£>k

quasi-inequalities (sequent rules)
Equasi




Expanded languages

Definition
Given a BDI (A, —), its canonical is (A%, —7), define

ulv=NweA |v<u—-"w}

One can also define u +° v=\/{we A’ |w-° v < u}.

Fact (Residuation)
udv<wiffv<u—-"wiffu<w<+"v



Inductive inequalities

Inductive inequalities are defined as standard. We need the
classification of all nodes in a signed generation tree.

Table: Classification of nodes

Choice Universal
+ V,—> |+ —
- A




Inductive inequalities

Definition
Given an order type e and an irreflexive and transitive order  on the
variable py, ..., pp, the (negative or positive) generation tree x¢

(x € {+,1}) of aformula ¢(ps, ..., pn) is (2, €)-inductive if, on every
e-critical branch with leaf p; for 1 < i < n, every choice node with a
universal node as ancestor is binary, and hence labelled with
*(¢ o)), and

(i) €(x);

(i) p; <q p;i for every p; occurring in ¢.
An inequality ¢ < ¢ is (Q, €)-inductive if the trees +¢ and —1 are both
(2, €)-inductive. An inequality ¢ < ¢ is inductive if it is (2, €)-inductive
for some Q and e. When an inequality ¢ < ¢ is inductive, we also say
that the corresponding sequent ¢ v is inductive.



The algorithm StrictALBA

Stage 1. Preprocessing & first approximation

|

Stage 2. Reduction Elimination Cycle

|

Stage 3. Output (pure quasi-inequality)



The algorithm StrictALBA

Stage 1. Main Rules
» Spliting rules:

¢ <A~y (ASP) PVY <~y
p<Y 9=y p<v <y
» Approximation
¢i < i (Ap)

o < ¢i i< mg

(VvSp)



The algorithm StrictALBA

Stage 2. Rules (a) Residuation rules:

VST ey
p<th—=n
(b) Approximation rule:
¢—>p<m ¢p—>p<m
i<¢ i—yPp<m = a0l) v<n ¢—-n<m (= 4p2)
p-p<m p-p<m

Ap1 .
<o ru=m MV Ty gim



The algorithm StrictALBA

(c) Ackermann rules:
» The right Ackermann rule (RAck):

p1<p

: ) WiV 61/P) < 11V 61/P)
z:’ P :1 is replaced with { :

. - ¢m(\//,‘7:1 oi/p) < 'Ym(\/,"7:1 ®i/P)
Um < Ym

where (i) p does not occur in ¢; for 1 <7 < n; (i) ¢; < ; is negative in
pfor1 <j<m



The algorithm StrictALBA

» The left Ackermann rule (LAck):
p < ¢4

o 1ALy 9i/P) < 1 (ALy 6i/P)
P<dn s replaced with ¢ :

1 < n n
. 1/’m(/\/:1 ¢1/P) < ’Ym(/\i:1 (bi/p)

Ym < Ym
where (i) p does not occur in ¢; for 1 < i < n; (i) each 1); < ~; positive
inpfor1 <j<m.



Example of StrictALBA

(p— q)A(g—r) < p— r. StrictALBA proceeds as follows:

PN (@—>r)<p—r
YVmi<(p—gA(@—=r&p—-r<m=i<m)
VWmi<p—-q&i<qg-or&p—-r<m=i<m)

Vivm(p-i<q& q-i<r&p—-r<m=i<m)
ViNm(j<p&j-i<q&q- i<r&p—-r<m=i<m)
Vivm(j-i<gq&q-i<r&j—r<m=i<m)

ViNm((j- i) i<r&j—r<m=i<m)
Vivm(ji— (G- - <m=i<m)

(Ap)
(ASp)
(Res)
(-Apl)
(RACk)
(RACKk)
(RACK)




First-order correspondent

Definition

1) M,w Eiiff V(i) = {w}.

2) M,wEmiff V(im)=W — {w}.

3) M,w = piff we V(p).

4) M,w = L.

5 M,wE oA iff M,w il ¢and M, w | .

6) M,wEoVyiff MwE¢or M, w k=,

7) MiwE¢—uiffYvue WwRu& M,ulk ¢ = M,u k= ).
)

(
(
(
(
(
(
(
8) M,wE¢-¢iff Jue W(uRw & M,w = ¢ & M, u = ).



First-order correspondents

Given a frame F = (W, R), define a binary operator - on P(W) by
setting
X-Y={weW|3uuRw& we X&uecY)}

Then we have [¢ - Y]m = [¢]am - [¢]m-
Moreover, we have the following fact:

Proposition
Forany X,Y,ZcP(W),X-YCZiffYCX = Z.



First-order correspondents

Obviously, the output pure quasi-inequality
Vilvm(j — ((j- 1) - /) < m=-i < m)isequivalentto Vij(j- i < (j-i)-i).
Notice that z € {x} - {y} iff Ryx. Then the first-order condition is

calculated as follows:

Vi i< ()-0)
=
=
=
=

Yxy({x}-{y} < ({Ix}-{y}) - {y})

Vxyz(z e {x}-{y} > ze({x}-{y})-{y})
Vxyz(Ryx > Ju(Ruz Az € ({x} - {y}) Aue{y})
Vxyz(Ryx 5 (Ryz Az € ({x} - {y}))

Vxyz(Ryx O (Ryx A Ryx))

which is a tautology. The sequentp — q,q — r = p — ris an axiom

of wK,.



First-order correspondents

Example: p,p — g+ q. By StrictALBA one gets
Vi(i <i-i)
The first-order condition is calculated as follows:

Vi(i <i-i) < vYx({x} C{x} -{x})
& Yxz(z e {x} Dze {x} {x})
& VxRxx

It follows that the sequent p A (p — q) - g defines the class of all
reflexive frames.



Canonicity of Inductive Inequalities

Theorem
All inductive Lrm-inequalities are canonical.

Proof.
We can use the U-shaped argument represented below to show that
from 2L |= ¢ < ¢ we can get 2° F ¢ <

Ao ¢ < AW o<y
) (3
A o ALBA(¢ <)) <« A0 ALBA(¢ < o).

See [Conradie and Palmigiano 2012]. O



&4. Conservativity

Algebraic Lambek Gentzen-style
system Calculus Sequent Calculus
SwH SRwH GRrwH
SBD| _— DFNL+ e GDFNL+

The Lambek calculi we considered are non-associative extensions of
DFNL™.



Lattice-ordered residuated groupoid

Definition

A bounded distributive lattice-ordered residuated groupoid (BDRG) is
an algebra 2l = (A, A, Vv, T, L, —, -, <) where (A,A,V, T, L)isa
bounded distributive lattice, and -, —, +— are binary operations on A
satisfying the following residuation law for all a, b, ¢ € A:

(RES)a-b<ciffb<a—ciffa<c« b.

Let BDRG be the class of all BDRGs.



DFNL™*

Definition (Buskowski 2006)
An algebraic sequent calculus DFNL™ for BDRG consists of the

following axiom schemata and rules:
(Id) oo, (T)orET, (L)LEo, D)oA[WVY)E(GAY)V(PAY),

oiFy TEe AFY

M) G ngar g V=120 R g™
oy Yoy Yo oFY Yoy
ST Ry P =), e O
oYy YEo =9 el PEY Y
m, (ReSZ) W, (Res3) m7 (Res4) W

)

(VL)

(Resl)



Consequence relation for DFNL™"

Definition
An LT-supersequent is an expression of the form ® = x ~ §
(consequence relation) where ® U {x 4} C L+.

Theorem (Strong completeness)

For every L -supersequent sequents ® = x - 1, Fpeni+ @ = x H 6
iffBDRG E & = x F 4.



Conservativity: from Sgp; to DFNL™

Lemma
For every BDRG (A, —, -, <), its (A, V, L, T,—)-reduct is a BDI.

Lemma
For any BDI (A, —), the algebra (A°, —™,-° +™) is a BDRG.

Theorem (conservativity)
For every sequent ¢ -1 € L, ¢ Fs,p, ¥ iff ¢ FpenLs .

Proof.

Let ¢ -1 € L. Obviously, ¢ g, ¥ implies ¢ Fpeyi+ 1. Conversely,
assume ¢ /s, ¥. By the completeness of Sgpy, there exist an BDI

2A = (A,—) and an assignment p such that u(¢) £ u(v). Consider

A = (A%, =79 +9). Then A%, u [~ ¢ F . Then BDRG [~ ¢ + 4. By
the completeness of DFNL™, ¢ bpeni+ 9. O



Conservativity

Residuated weak Heyting algebra: BDRG satisfying
(wya-b<a, (ct)ya-b<(a-b)-b
Sgrwr = DFNL*+
oo, oY <(o-¢)-0

Lemma
For every RWH-algebra 2l = (A, AV, L, T,—,-,«), its
(A, Vv, L, T, —)-reduct is a WH-algebra.

Lemma
For any WH-algebra (A, —), (A%, —™,.9 «<™) is a RWH-algebra.

Theorem (conservativity)
Forevery sequent ¢ -1 € L, ¢ ks, ¥ iff ¢ FrwH 9.



Conservativity

Algebraic Lambek Gentzen-style
system Calculus Sequent Calculus
SwH SrRwH GrwH
SBDI —_— DFNLJr GDFNU



Ackermann Lemma Based Calculus

Extensions of Sgp; and DFNL™*:
Example
1. (Tr) (p— gq) A (g — r) - p— rcorresponds to
(TMYp-qF(p-q)-q,ie., they define the same class of BDRGs.
2. (W) gt p— pcorrespondsto (W) p-gt p.

3. Swh = Sgpi + (W) + (Tr) is conservatively extended to
DENL* + (7r') + (W)

An Ackermann Lemma Based Calculus to calculate the algebraic
correspondence between sequents.



Ackermann Lemma Based Calculus

Definition
The Ackermann lemma based supersequent calculus ALC:
(1) Splitting rules:

Yo, yEY, T =xFo
yEOANY,T=xEd

¢y, Yy =xE0d
oVYEy,T=xkd

YyEPoAY, T = xF0d
yE¢ Y, T =xFd

(AS) (AST)

oVY g, T=xkFd

(v$) GF 7T = XF o

(vs1)




Ackermann Lemma Based Calculus

(2) Residuation rules:

Y= T=xkFd

by T =>xFo
(ReR1) 4~ 0¥ F 7

(ReR2) ~ @ ¥ 7

Fr=yF¢—n

Fr=o¢kF~vy+1

Yo —vyT=xFd
¢~y T=xkEJd
v, IT=xFJ
oY~y =xFI
Fr=yvk-¢—vy
Too vy
= ¢kF~vy+
N=¢-¢vF~vy

(ReL11)

(ReL21)

(ReR17)

(ReR21)



Ackermann Lemma Based Calculus

(3) Approximation rules:

(AApl)

(AAp2)

pr¢,T=pky
r=¢r

vEpl=obFp
r=o¢kvy

pté¢,p—o by T =xbE4

(— Apl)

=Yy T=xFS
YpEPp,d > pEy,T=xkE6

(— Ap2)

=Yy, FT=xFd
pEpYFPpo YT =xES

(— Ap3)

YhE¢ =, T=xFS§
pryFo—=pl=xk3$

(— Ap4)

TFéd o T =xFo

r=¢kFy
W o=
(Aap2p) — =¥

YyEp,l=¢kp
by, T=xkS§
pEo,p—vEy,IT=xkEd
¢ =Y~y TT=xFS
YEp ¢ —>pEy,T=xks
yHE¢ =P, T =xkFS
oEpyFp—=Y, I =xkd
yE¢ =P, T =xkFJS
pEY, vy —=pl=xkES$

(— Aplt)

(= Ap21)

(— Ap37)

(— Ap4t)



Ackermann Lemma Based Calculus

: Fapony,T Fé
(_Apl)pFw,czﬁFp 7, F=xkd (-Apl1) prY-y T =x

oYy, T =xkFd

H p,T = xF

prEY,oFp-y,T=xFd
oYy, T=xFS

oY -y, T =>xFd

prEv, oY -p,T = xFd
Yy TT=xkF6

(-Ap3) 2 (-Ap31)

- Yy, T=>xFd

pEpp-PEyT=xF0d
-Yvby I =xkd

(aph) PEPOLITI S TS (apa)

where p, g do not occur in the conclusion.

YvEPpo-pEy, T = x4



Ackermann Lemma Based Calculus

(4) Ackermann rules:
MV ¢i/pLT = (x - 6)"
¢1 '_p7-~~7¢n'_p>r,r/:>X|_5
1P, P, T T = xES
RAck .
(RAKT) =, 6ol T = (b
where (i) p does not occur in " or ¢; for 1 < i < n; (ii)
M= {¢j b [ ¥j(+p),7(=p),1 <j < m} and

(RACK)

[\ ¢i/p = {1\ ¢i/pl =3I\ éi/pl | i - € T}

i=1 i=1 i=1

and (iii) either p does not occurin x -d and (x F d)* =xF d,or x F 4
is negative in pand (x + 6)* = x[Vi_; ¢i/p] - 5[V ¢i/p].



Ackermann Lemma Based Calculus

FAL: #1/p),T" = (x F6)*
pEo1,....,pF o, I, T"=xF§
pE&1,...,pF ¢n, [, = xF§

FIAL; 6i/PL T = (x - 6)*
where (i) p does not occur in " or ¢; for 1 < i < n; (ii)
M= {4y b [ ¥(=p),(+p), 1 <j < m}and

(LAck)

(LAck?)

r[/\ i/p] = {w,[/\ i/p] - w[/\ ¢i/pl | ¢t €T}

i=1 i=1

and (iii) either p does not occurin x -d and (x F 8)* =xF§,0r x F 4
is positive in p and (x - 8)* = x[Ar_; ¢i/P) F 6[A\i_q 6i/P)-



Algebraic correspondence

Algebraic correspondence between £ and sequents in L£°:
t.erm9¢:3:p|T|J—|(¢'¢)

Definition

Given sequents ¢ -1 € Land y - § € L®, we say that ¢ - ¢
corresponds to x + 6 over BDRG if they define the same class of
BDRGs.

Fact

Given sequents o =1 € L and x F 6 € L®, if the following rule
= ok
=xkd (r)

is derivable in ALC, then ¢ \ 1 corresponds to x F 6.



Examples

(Tr) One proof is as follows:

= P—=qA(@=2>nF(p—T)
SstE(p—=gA(@g—=r)=skFp—r
skFp—q,sk-Fq—>r=skp—r
p-sk-q,q-skr=p-str
p-skFgq=p-sk-q-s
=p-sk(p-s)-s

(AAp1T)

(AST)

(ReL1%, ReR11)
(AAp2)

(RAck?)




Conservativity

Theorem (Conservativity)

Assume that ¢ is a set of inductive sequents in L, andV C L® is the
set of correspondents of sequents in ®. Then the algebraic sequent
system DFNL" (W) is a conservative extension of Sgp(®).



&5. Gentzen-style sequent calculi

Algebraic Lambek Gentzen-style
system Calculus Sequent Calculus
SwH SrRwH GrwH
SBDI —_— DFNLJr GDFNU



Cut-free Gentzen-style sequent calculus for DFNL™*
The Gentzen-style sequent calculus Gpgni+:
() gr-¢, (T)FET, (L)T[LIFg,

At o T~ PO

Chmeeoury CNrsse

O WA
() (eSO oy LSS

M(A1 O A2) ® Asz] ¢

(©As) MNAT ® (A2 ® Az)| - ¢




Cut-free sequent calculus for extensions of DFNL*

Given y 6 € L*, define the rule

6[A1/p17 .. ~7An/pn] = ¢(®O’)
X[A1/p1""7An/pn] = ¢
where 6[A1/py,...,An/pnand x[A+1/p1, ..., An/pp] are obtained
from § and x by substituting A; for p;, and © for - uniformly.
Example
Forp-qgt (p- Q) q, we have the following rule:

(AGX)oXr=9¢
AOXr=9¢




Gentzen-style Sequent Calculi

For any set of sequents W C L*, let oV = {G0o | 0 € ¥} and
Gpen+(OV) be the Gentzen-style sequent system obtained from
GpenL+ by adding rules in (V).

Theorem

For any set of sequents W C L*, the (cut) rule is admissible in the
Gentzen-style sequent system Gpgn+ (OV).

Theorem

For any set of sequents V C L*, the following hold:

(1) [ l_GDFNL+(®\U) (b IffA|g(\|J) ': M= ¢

(2) if every subformula of 6 is a subformula of x for each sequent
x F & € Y, then Gpeni+ (OW) has the subformula property.



Gentzen-style sequent calculi

Algebraic Lambek Gentzen-style sequent
system (L) Calculus (L£°®) calculus (L£°®)
SwH SrRwH GrwH

| | |

Sgp) ———— DFNLT ——— Gpene+



Further Work

1. Extend the algebraic correspondence between £ and L°.
2. Logics weaker than Sgp; and Lambek Calculi below DFNL™.

3. The relational semantics for Sgp.
4. Duality theory that generalises [Celani & Jansana 2005]



Thanks for your attention!
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