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Canonical extensions via natural dualities

To study lattice-based algebras two valuable tools have been
developed:

the theory of topological dualities, and in particular the
theory of natural dualities, and

the theory of canonical extensions.
In our joint work with Andrew Craig, Brian Davey, Maria
Gouveia and Hilary Priestley in recent years we have presented
a new approach to canonical extensions of lattice-based
algebras – in the spirit of the natural dualities.
This can be achieved by using: (i) in distributive case: Priestley
duality as a natural duality, and (ii) in non-distributive case:
a topological representation of BLs due to M. Ploščica (1995)
which presents the classical one due to A. Urquhart (1978)
in the spirit of the natural dualities.
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Origins of canonical extensions

Canonical extensions originated in famous 1951-52 papers of
B. Jónsson and A. Tarski, Boolean algebras with operators:

Definition
Let B be a Boolean algebra (with operators) and let XB be the
Stone space dual to B, i.e., XB is the set of ultrafilters of B with
an appropriate topology. (Stone duality tells us that we may
identify the Boolean algebra B with the Boolean algebra of
clopen subsets of the Stone space XB.)

The canonical extension Bδ of B is the Boolean algebra ℘(XB)
of all subsets of the set XB of ultrafilters of B (with the operators
extended in a natural way).

Thus, roughly speaking, Jónsson and Tarski obtained Bδ from
the Stone space XB by forgetting the topology.
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Forty Years Later

Forty years later, the concept has been extended by
several authors (M. Gehrke, J. Harding, B. Jónsson,
A. Palmigiano, Y. Venema,...) to distr. lattice-based
algebras and more generally to lattice-based algebras.

An equational class of algebras is said to be canonical if it
is closed under the formation of canonical extensions.
When the members of the class of lattice-based algebras
are the algebraic models of a logic, canonicity leads to
completeness results for the associated logic.
That is partly why the canonical extensions are important
and have been of a great interest during the last two
decades.
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Canonical extensions of BDLs

Canonical extensions of bounded distributive lattices were
introduced by Gehrke and Jónsson, 1994:

Definition
Let L be a bounded distributive lattice and let XL be the
Priestley space dual to L, i.e., XL is the set of prime filters of L
with an appropriate topology. (Priestley duality tells us that we
may identify the lattice L with the lattice of clopen up-sets of the
Priestley space XL.)
The canonical extension Lδ of L is the doubly algebraic
distributive lattice Up(XL) of all up-sets of the ordered set
〈XL;⊆〉 of prime filters of L.

Thus, again, Lδ is obtained from the Priestley space XL by
forgetting the topology.
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Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.
C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.
C is called a compact completion of L if, for every filter F
of L and every ideal J of L, we have

∧
F 6

∨
J implies

F ∩ J 6= ∅.



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.
C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.
C is called a compact completion of L if, for every filter F
of L and every ideal J of L, we have

∧
F 6

∨
J implies

F ∩ J 6= ∅.



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.

C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.
C is called a compact completion of L if, for every filter F
of L and every ideal J of L, we have

∧
F 6

∨
J implies

F ∩ J 6= ∅.



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.
C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.

C is called a compact completion of L if, for every filter F
of L and every ideal J of L, we have

∧
F 6

∨
J implies

F ∩ J 6= ∅.



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Going beyond BDLs

For the category L of arbitrary bounded lattices, Gehrke and
Harding (2001) suggested the following definitions:

Definition
Let C be a complete lattice and L be a sublattice of C.

C is called a completion of L.
C is called a dense completion of L if every element of C
can be expressed as a join of meets of elements of L and
as a meet of joins of elements of L.
C is called a compact completion of L if, for every filter F
of L and every ideal J of L, we have

∧
F 6

∨
J implies

F ∩ J 6= ∅.



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Canonical extensions of bounded lattices (CEs of BLs)

Gehrke and Harding (2001) proved:

Theorem
Let L be a bounded lattice.

L has a dense, compact completion C.
If C1 and C2 are dense, compact completions of L, then
C1 ∼= C2.

Abstractly, a canonical extension of a BL L has been
defined as a dense and compact completion of L.
Concretely, they constructed Lδ as the complete lattice of
Galois-closed sets of the polarity between the filter
lattice Filt(L) and the ideal lattice Idl(L) of L:

(F, I) ∈ R ⇐⇒ F ∩ I 6= ∅.
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Ploščica’s representation for bounded lattices

Let L be a bounded lattice. Ploščica’s dual of L is
D(L) = XL := (Lmp(L, 2),R, T )

where binary (reflexive)
relation R for f , g ∈ Lmp(L, 2) is defined as follows:

(f , g) ∈ R iff f−1(1) ∩ g−1(0) = ∅.
Equivalently, (f , g) ∈ R iff ∀ a ∈ dom f ∩ dom g, f (a) 6 g(a).
The topology T has as a subbasis of closed sets
{Va,Wa | a ∈ L }, with Va = { f ∈ Lmp(L, 2) | f (a) = 0 } and
Wa = { f ∈ Lmp(L, 2) | f (a) = 1 }.

Ploščica’s second dual of L is ED(L) := Gmp
T (XL, 2∼T ), the

set of all continuous maximal partial R-preserving maps
from XL = (Lmp(L, 2),R, T ) to 2∼T = ({0, 1},6, T ).

Theorem (Ploščica, 1995)

Let L ∈ L. Then L ∼= ED(L) via the map a 7→ ea where
ea : (XL, T )→ 2∼T is defined by ea(f ) = f (a).
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Ploščica’s second dual of L is ED(L) := Gmp
T (XL, 2∼T ), the

set of all continuous maximal partial R-preserving maps
from XL = (Lmp(L, 2),R, T ) to 2∼T = ({0, 1},6, T ).

Theorem (Ploščica, 1995)
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Ploščica’s representation for bounded lattices

Let L be a bounded lattice. Ploščica’s dual of L is
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set of all continuous maximal partial R-preserving maps
from XL = (Lmp(L, 2),R, T ) to 2∼T = ({0, 1},6, T ).

Theorem (Ploščica, 1995)

Let L ∈ L. Then L ∼= ED(L) via the map a 7→ ea where
ea : (XL, T )→ 2∼T is defined by ea(f ) = f (a).
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Let L ∈ L. Then L ∼= ED(L) via the map a 7→ ea where
ea : (XL, T )→ 2∼T is defined by ea(f ) = f (a).



Introduction CEs of BLs RS frames New: TiRS graphs, TiRS frames New: CEs of BLs General. Birkhoff

Example of the dual graph of a bounded lattice

a b c

1

0

L

fab

fac

fbc

fba

fca

fcb

XL

The modular lattice L = M3 and its graph XL = (Lmp(L, 2),R).

We define fxy ∈ Lmp(L, 2) by f−1
xy (1) = ↑x and f−1

xy (0) = ↓y.
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Perfect lattices and RS frames (Gehrke, 2006)

A perfect lattice C is a complete lattice s.t. for all c ∈ C,

c =
∨
{ j ∈ J∞(C) | j 6 c } =

∧
{m ∈ M∞(C) | c 6 m }.

A frame is a triple (X,Y,R), where X and Y are non-empty sets
and R ⊆ X × Y. For x ∈ X, y ∈ Y define

xR := { z ∈ Y | xRz } and Ry := { z ∈ X | zRy }.

RS frames have (S) (separation) and (R) (reduction) properties:
(S) for all x1, x2 ∈ X and y1, y2 ∈ Y,

(i) x1 6= x2 implies x1R 6= x2R;
(ii) y1 6= y2 implies Ry1 6= Ry2.

(R) (i) for every x ∈ X there exists y ∈ Y such that ¬(xRy) and
∀w ∈ X ((w 6= x & xR ⊆ wR)⇒ wRy);

(ii) for every y ∈ Y there exists x ∈ X such that ¬(xRy) and
∀z ∈ Y ((z 6= y & Ry ⊆ Rz)⇒ xRz).
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Duality: perfect lattices vs RS frames (Gehrke, 2006)

From perfect lattices to RS frames: Let C be a perfect lattice.
Then the mapping

C 7→ (J∞(C),M∞(C),6)

gives rise to an RS frame.

From RS frames to perfect lattices: Let F = (X,Y,R) be an RS
frame. A Galois connection between ℘(X) and ℘(Y) is defined
as follows for A ⊆ X, B ⊆ Y:

R.(A) = { y ∈ Y | ∀ a ∈ A, aRy } R/(B) = { x ∈ X | ∀b ∈ B, xRb }.

Then G(F) := {A ⊆ X | A = R/ ◦ R.(A) } is a perfect lattice.
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Defining RS graphs (Craig, Gouveia, MH, 2015)

Lemma
Let L be a bounded lattice and let XL = (Lmp(L, 2),R) = (X,R).
Then X satisfies the conditions below:
(S) for every f , g ∈ X, if f 6= g then f−1(1) 6= g−1(1) or

f−1(0) 6= g−1(0);
(R) (i) for all f , h ∈ X, if f−1(1) ( h−1(1) then h−1(1) ∩ f−1(0) 6= ∅;

(ii) for all g, h ∈ X, if g−1(0) ( h−1(0) then g−1(1) ∩ h−1(0) 6= ∅;

Hence we may rewrite the conditions (S) and (R) above, and
define them for any graph X = (X,R), as follows:
(S) for every x, y ∈ X, if x 6= y then xR 6= yR or Rx 6= Ry;
(R) (i) for all x, z ∈ X, if zR ( xR then (z, x) /∈ R;

(ii) for all y, z ∈ X, if Rz ( Ry then (y, z) /∈ R;
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The (Ti) property

Let X = (X,R) be a graph and consider the following property:
(Ti) for all x, y ∈ X, if (x, y) ∈ R, then there exists z ∈ X such that

zR ⊆ xR and Rz ⊆ Ry.

When R is reflexive, then (Ti) is equivalent to:
(Ti)′ for all x, y ∈ X, if (x, y) ∈ R, then there exists z such that

(x, z) ∈ R and (z, y) ∈ R and for every w ∈ X,
(z,w) ∈ R implies (x,w) ∈ R and
(w, z) ∈ R implies (w, y) ∈ R.

If R were a partial order we would say that the elements z
were in the interval [x, y].
For the elements z we will use the term transitive interval
elements (with respect to (x, y) ∈ R).

The (Ti) for frames is motivated by the (Ti) for graphs (paper).
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TiRS graphs and frames (Craig, Gouveia, MH, 2015)

Definition
A TiRS graph (frame) is a reflexive graph (frame) that satisfies
conditions (R), (S) and (Ti), i.e., it is a reflexive RS graph (RS
frame) that satisfies condition (Ti).

Proposition
For any bounded lattice L,

(i) its Ploščica’s dual D[(L) = (Lmp(L, 2),R) is a TiRS graph;
(ii) the frame F(L) = (FiltM(L), IdlM(L),R) is a TiRS frame.

Theorem
Let X = (X,R) be a TiRS graph and F = (X1,X2,R) be a TiRS
frame. There is a one-to-one correspondence between TiRS
graphs and TiRS frames. (Details in our paper.)
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Example of an RS graph which is not TiRS

a b c

1

0

L

fab

fac

fbc

fba

fca

fcb

X

fab fbc

fca

Y

Figure : The graph Y is an RS graph which is not TiRS.
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Ploščica–Gehrke in tandem (Craig, Gouveia, MH,
2015)

Lat
D(Ploscica)

- PlGr

PerLat

δ

?
�
G(Gehrke)

Gr(Frop)

[

?

Theorem

Let L be a bounded lattice and X = D[(L) be its dual
(Ploščica’s) TiRS graph. Let ρ(X) be the frame associated to X
and G(ρ(X)) be its corresponding (Gehrke’s) perfect lattice of
Galois-closed sets.
Then the lattice G(ρ(X)) is the canonical extension of L.
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CJIs, CMIs (Craig, Gouveia, MH, 2015)

Theorem
Let X = (X,E) be a reflexive (R) graph (in particular a TiRS
graph). Then the lattice C(X) = Gmp(X, 2∼) is a perfect lattice.
More precisely, for every ϕ ∈ C(X), we have

ϕ =
∨
{ Jx | Jx 6 ϕ } and ϕ =

∧
{My | ϕ 6 My } and

J∞(C(X)) = { Jx | x ∈ X } and M∞(C(X)) = {My | y ∈ X }

where the partial maps Jx,My : X → 2 are given by:

Jx(z) =


1 if zE ⊆ xE
0 if (x, z) /∈ E
− otherwise

and My(z) =


1 if (z, y) /∈ E
0 if Ez ⊆ Ey
− otherwise.
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Question
Is every TiRS graph X = (X,R) of the form
D[(L) = (Lmp(L, 2),R) for some bounded lattice L?

Answer
No. Every poset is a TiRS graph. A poset is said to be
representable if it is the underlying poset of some Priestley
space and hence the untopologized dual of some bounded
distributive lattice. It is known that non-representable posets
exist and hence non-representable TiRS graphs exist.

Problem
Which TiRS graphs arise as duals of bounded lattices?
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General. Birkhoff (Craig, Gouveia, MH, 2015)

Theorem
Every finite RS frame is a TiRS frame.

Theorem
There exists a dual representation of arbitrary finite lattices via
finite TiRS graphs generalizing Birkhoff’s representation.

Proof.

Finite lattices = Finite perfect lattices

Finite RS frames = Finite TiRS frames

Finite TiRS graphs
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