A categorical structure of realizers for the Minimalist Foundation

S.Maschio (joint work with M.E.Maietti)

TACL 2015
Ischia

The Minimalist Foundation

Many foundations in (constructive) mathematics...

The Minimalist Foundation

Many foundations in (constructive) mathematics...
\square

The Minimalist Foundation

Many foundations in (constructive) mathematics...
\Downarrow

Necessity of a common core:

The Minimalist Foundation

Many foundations in (constructive) mathematics...
\square

Necessity of a common core:
the minimalist foundation!

The Minimalist Foundation

Many foundations in (constructive) mathematics...
\square

Necessity of a common core:
the minimalist foundation!
(Maietti, Sambin 2005)

The formal system of the Minimalist Foundation (Maietti (2009)):

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;
- an intensional level (mTT): computational content of proofs;

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;
- an intensional level (mTT): computational content of proofs;
- an extensional level (emTT): where to develop ordinary mathematics.

The intensional level has four sorts of types:

The intensional level has four sorts of types:

- sets: basic $\mathrm{N}_{0}, \mathrm{~N}_{1}$ and constructors $\Pi, \Sigma,+$ and List, all small propositions;

The intensional level has four sorts of types:

- sets: basic $\mathrm{N}_{0}, \mathrm{~N}_{1}$ and constructors $\Pi, \Sigma,+$ and List, all small propositions;
- collections: all sets and propositions, the collection of (codes for) small propositions prop $_{s}, A \rightarrow$ prop $_{s}$ with A set, constructor Σ;

The intensional level has four sorts of types:

- sets: basic $\mathrm{N}_{0}, \mathrm{~N}_{1}$ and constructors Π, Σ, + and List, all small propositions;
- collections: all sets and propositions, the collection of (codes for) small propositions prop $_{s}, A \rightarrow$ prop $_{s}$ with A set, constructor Σ;
- propositions: \perp and closed under connectives $\wedge, \vee, \rightarrow$, collection bounded quantifiers and Id in collections.

The intensional level has four sorts of types:

- sets: basic $\mathrm{N}_{0}, \mathrm{~N}_{1}$ and constructors $\Pi, \Sigma,+$ and List, all small propositions;
- collections: all sets and propositions, the collection of (codes for) small propositions prop,$A \rightarrow$ prop $_{s}$ with A set, constructor Σ;
- propositions: \perp and closed under connectives $\wedge, \vee, \rightarrow$, collection bounded quantifiers and Id in collections.
- small propositions are like propositions with only set bounded quantifiers and Id relative to sets, it contains decodings $\tau(p)$ for $p \in$ prop $_{s}$.
$\mathbf{e m T T}=$ extensional version of $\mathbf{m T T}$
(includes extensionality of functions)
emTT = extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets
emTT = extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets
+ effective quotient sets
emTT = extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets
+ effective quotient sets
+ proof-irrelevance of propositions
$\mathbf{e m T T}=$ extensional version of $\mathbf{m T T}$
(includes extensionality of functions)
+ power-collections of sets
+ effective quotient sets
+ proof-irrelevance of propositions
it is interpreted in $\mathbf{m T} \mathbf{T}$ via a quotient completion

Realizability

Constructive mathematics $=$

Realizability

Constructive mathematics $=$ implicit computational mathematics $=$

Realizability

Constructive mathematics $=$ implicit computational mathematics $=$ abstract mathematics with computational interpretation

Realizability

Constructive mathematics $=$ implicit computational mathematics $=$ abstract mathematics with computational interpretation (realizability)

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
r \Vdash t=s \text { is } t=s \wedge r=0
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi
\end{aligned}
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right)
\end{aligned}
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right) \\
& r \Vdash \phi \rightarrow \psi \text { is } \forall x(x \Vdash \phi \rightarrow\{r\}(x) \Vdash \psi)
\end{aligned}
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right) \\
& r \Vdash \phi \rightarrow \psi \text { is } \forall x(x \Vdash \phi \rightarrow\{r\}(x) \Vdash \psi) \\
& r \Vdash \exists x \phi(x) \text { is } p_{2}(x) \Vdash \phi\left(p_{1}(x)\right)
\end{aligned}
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right) \\
& r \Vdash \phi \rightarrow \psi \text { is } \forall x(x \Vdash \phi \rightarrow\{r\}(x) \Vdash \psi) \\
& r \Vdash \exists x \phi(x) \text { is } p_{2}(x) \Vdash \phi\left(p_{1}(x)\right) \\
& r \Vdash \forall x \phi(x) \text { is } \forall x(\{r\}(x) \Vdash \phi(x))
\end{aligned}
$$

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right) \\
& r \Vdash \phi \rightarrow \psi \text { is } \forall x(x \Vdash \phi \rightarrow\{r\}(x) \Vdash \psi) \\
& r \Vdash \exists x \phi(x) \text { is } p_{2}(x) \Vdash \phi\left(p_{1}(x)\right) \\
& r \Vdash \forall x \phi(x) \text { is } \forall x(\{r\}(x) \Vdash \phi(x))
\end{aligned}
$$

mTT extends HA.

Kleene's realizability interpretation of connectives and quantifiers (for Heyting arithmetic)

$$
\begin{aligned}
& r \Vdash t=s \text { is } t=s \wedge r=0 \\
& r \Vdash \phi \wedge \psi \text { is } p_{1}(r) \Vdash \phi \wedge p_{2}(r) \Vdash \psi \\
& r \Vdash \phi \vee \psi \text { is }\left(p_{1}(r)=0 \wedge p_{2}(r) \Vdash \phi\right) \vee\left(p_{1}(r)=1 \wedge p_{2}(r) \Vdash \psi\right) \\
& r \Vdash \phi \rightarrow \psi \text { is } \forall x(x \Vdash \phi \rightarrow\{r\}(x) \Vdash \psi) \\
& r \Vdash \exists x \phi(x) \text { is } p_{2}(x) \Vdash \phi\left(p_{1}(x)\right) \\
& r \Vdash \forall x \phi(x) \text { is } \forall x(\{r\}(x) \Vdash \phi(x))
\end{aligned}
$$

mTT extends HA.
We model $\mathbf{m T}$ T by extending Kleene realizability interpretation.
$\widehat{\mathrm{D}}_{1}$
(1) Theory of Inductive definitions:
(1) Theory of Inductive definitions: consists of Peano Arithmetic
(1) Theory of Inductive definitions:
consists of Peano Arithmetic

+ fix points for positive paremeter-free operators
(1) Theory of Inductive definitions: consists of Peano Arithmetic + fix points for positive paremeter-free operators
(2) Same proof theoretical strength as first-order Martin Löf type theory with one universe
(1) Theory of Inductive definitions: consists of Peano Arithmetic + fix points for positive paremeter-free operators
(2) Same proof theoretical strength as first-order Martin Löf type theory with one universe

Collections of $\widehat{\mathrm{ID}}_{1}$

$$
A=\left(|A|, \sim_{A}\right)
$$

Collections of $\widehat{\mathrm{I}}_{1}$

$$
A=\left(|A|, \sim_{A}\right)
$$

$$
|A|=\left\{x \mid \phi_{A}(x)\right\} \text { is a (first-order) definable class of } \widehat{\mathrm{D}_{1}}
$$

Collections of $\widehat{\mathrm{I}}_{1}$

$$
\begin{gathered}
A=\left(|A|, \sim_{A}\right) \\
|A|=\left\{x \mid \phi_{A}(x)\right\} \text { is a (first-order) definable class of } \widehat{\mathrm{ID}_{1}}
\end{gathered}
$$

$x \in A$ is an abbreviation for $\phi_{A}(x)$.

Collections of $\widehat{\mathrm{I}}_{1}$

$$
\begin{gathered}
A=\left(|A|, \sim_{A}\right) \\
|A|=\left\{x \mid \phi_{A}(x)\right\} \text { is a (first-order) definable class of } \widehat{\mathbb{D}_{1}}
\end{gathered}
$$

$x \in A$ is an abbreviation for $\phi_{A}(x)$.
$x \sim_{A} y$ is a (first-order) $\widehat{\mathrm{ID}_{1}}$-definable equivalence relation on $|A|$

Operations

An arrow from A to B is an operation (a computable function):

Operations

An arrow from A to B is an operation (a computable function): NOT a function (a single valued relation)!!!

Operations

An arrow from A to B is an operation (a computable function): NOT a function (a single valued relation)!!!

$$
[\mathbf{n}]_{\equiv_{A, B}}: A \rightarrow B
$$

Operations

An arrow from A to B is an operation (a computable function): NOT a function (a single valued relation)!!!

$$
[\mathbf{n}]_{\equiv_{A, B}}: A \rightarrow B
$$

\mathbf{n} is a numeral

Operations

An arrow from A to B is an operation (a computable function): NOT a function (a single valued relation)!!!

$$
[\mathbf{n}]_{\equiv_{A, B}}: A \rightarrow B
$$

\mathbf{n} is a numeral

$$
x \sim_{A} y \vdash_{\mid \widehat{\mathrm{D}}_{1}}\{\mathbf{n}\}(x) \sim_{B}\{\mathbf{n}\}(y)
$$

Operations

An arrow from A to B is an operation (a computable function): NOT a function (a single valued relation)!!!

$$
[\mathbf{n}]_{\equiv_{A, B}}: A \rightarrow B
$$

\mathbf{n} is a numeral

$$
x \sim_{A} y \vdash_{\widehat{\mathrm{D}}_{1}}\{\mathbf{n}\}(x) \sim_{B}\{\mathbf{n}\}(y)
$$

$\mathbf{n} \equiv \equiv_{A, B} \mathbf{m}$ if and only if $x \varepsilon A \vdash_{\widehat{\mathbb{D}}_{1}}\{\mathbf{n}\}(x) \sim_{B}\{\mathbf{m}\}(x)$

Proof irrelevance

$$
\text { for all } A, f, g \quad A \underset{g}{\stackrel{f}{\longrightarrow}} P \Rightarrow f=g
$$

Proof irrelevance

$$
\text { for all } A, f, g \quad A \underset{g}{\stackrel{f}{\longrightarrow}} P \Rightarrow f=g
$$

equivalent to

Proof irrelevance

$$
\text { for all } A, f, g \quad A \underset{g}{\stackrel{f}{\longrightarrow}} P \Rightarrow f=g
$$

equivalent to

$$
x \varepsilon P \wedge y \varepsilon P \vdash_{\widehat{\mathrm{D}}_{1}} x \sim_{p} y
$$

Proof irrelevance

$$
\text { for all } A, f, g \quad A \underset{g}{\stackrel{f}{\Longrightarrow}} P \Rightarrow f=g
$$

equivalent to

$$
x \varepsilon P \wedge y \varepsilon P \vdash_{\widehat{\mathrm{D}}_{1}} x \sim_{p} y
$$

Propositions of $\widehat{\mathrm{ID}}_{1}={ }^{\text {def }}$ proof-irrelevant collections of $\widehat{\mathrm{ID}}_{1}$

Proof irrelevance

equivalent to

$$
x \varepsilon P \wedge y \varepsilon P \vdash_{\hat{\mathrm{D}}_{1}} x \sim_{P} y
$$

Propositions of $\widehat{\mathrm{ID}}_{1}={ }^{\text {def }}$ proof-irrelevant collections of $\widehat{\mathrm{ID}}_{1}$

Propositions \equiv trivial quotients of the collections of their realizers

Universes

An extended realizability interpretation of sets and small propositions of $\mathbf{m T T}$ can be encoded using fix points.

Universes

An extended realizability interpretation of sets and small propositions of $\mathbf{m T T}$ can be encoded using fix points.
\Downarrow
collections of $\widehat{\mathrm{ID}}_{1}$ of (codes for) sets and small propositions of $\mathbf{m T T}$: US and USP.

Universes

An extended realizability interpretation of sets and small propositions of mTT can be encoded using fix points.

$$
\Downarrow
$$

collections of $\widehat{\mathrm{ID}}_{1}$ of (codes for) sets and small propositions of $\mathbf{m T T}$: US and USP.

$$
\begin{gathered}
f=[\mathbf{a}]_{\equiv}: 1 \rightarrow \mathrm{US}(\mathrm{P}) \\
\text { is an operation } \\
\Downarrow \\
\tau(f):=\left(\{x \mid x \bar{\varepsilon}\{\mathbf{a}\}(0)\}, x \equiv_{\{\mathbf{a}\}(0)} y\right) \\
\text { is a collection (proposition). }
\end{gathered}
$$

Universes

An extended realizability interpretation of sets and small propositions of $\mathbf{m T T}$ can be encoded using fix points.

$$
\Downarrow
$$

collections of $\widehat{\mathrm{ID}}_{1}$ of (codes for) sets and small propositions of $\mathbf{m} \mathbf{T}$: US and USP.

$$
\begin{gathered}
f=[\mathbf{a}]_{\equiv}: 1 \rightarrow \mathrm{US}(\mathrm{P}) \\
\text { is an operation } \\
\Downarrow \\
\tau(f):=\left(\{x \mid x \bar{\varepsilon}\{\mathbf{a}\}(0)\}, x \equiv_{\{\mathbf{a}\}(0)} y\right) \\
\text { is a collection (proposition). }
\end{gathered}
$$

A set (small proposition) of $\widehat{\mathrm{D}}_{1}$ is a collection (proposition) of $\widehat{\mathrm{ID}}_{1}$ of the form $\tau(f)$ for $f: 1 \rightarrow \operatorname{US}(P)$.

first summary

Obtain a commutative diagram in Cat

first summary

Obtain a commutative diagram in Cat

Contexts

Define

Contexts

Define

a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont

Contexts

Define
a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{o p} \rightarrow \mathbf{C a t}$

Contexts

Define

a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{o p} \rightarrow$ Cat
in such a way that if Γ is in Cont:

Contexts

Define

a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{o p} \rightarrow$ Cat
in such a way that if Γ is in Cont:

$$
A \in \operatorname{Col}(\Gamma) \Leftrightarrow[\Gamma, A] \in \mathbf{C o n t}
$$

Contexts

Define
a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{o p} \rightarrow \mathbf{C a t}$
in such a way that if Γ is in Cont:

$$
A \in \operatorname{Col}(\Gamma) \Leftrightarrow[\Gamma, A] \in \mathbf{C o n t}
$$

$$
f: A \rightarrow B \text { in } \operatorname{Col}(\Gamma) \Leftrightarrow f: \mathbf{p r}_{[\Gamma, A]} \rightarrow \mathbf{p r}_{[\Gamma, B]} \text { in Cont } / \Gamma
$$

Contexts

Define

a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{O P} \rightarrow \mathbf{C a t}$
in such a way that if Γ is in Cont:

$$
A \in \operatorname{Col}(\Gamma) \Leftrightarrow[\Gamma, A] \in \mathbf{C o n t}
$$

$$
f: A \rightarrow B \text { in } \operatorname{Col}(\Gamma) \Leftrightarrow f: \mathbf{p r}_{[\Gamma, A]} \rightarrow \mathbf{p r}_{[\Gamma, B]} \text { in Cont } / \Gamma
$$

where $\mathbf{p r}_{[\Gamma, A]}$ is the projection from $[\Gamma, A]$ to Γ.

Contexts

Define

a category of contexts of $\widehat{\mathrm{ID}}_{1}$, Cont
a functor Col : Cont ${ }^{o p} \rightarrow \mathbf{C a t}$
in such a way that if Γ is in Cont:

$$
A \in \operatorname{Col}(\Gamma) \Leftrightarrow[\Gamma, A] \in \mathbf{C o n t}
$$

$$
f: A \rightarrow B \text { in } \operatorname{Col}(\Gamma) \Leftrightarrow f: \mathbf{p r}_{[\Gamma, A]} \rightarrow \mathbf{p r}_{[\Gamma, B]} \text { in Cont } / \Gamma
$$

where $\mathbf{p r}_{[\Gamma, A]}$ is the projection from $[\Gamma, A]$ to Γ.

We define appropriate functors Set, Prop, Prop $_{s}$.

$\mathrm{USP}_{c a t} \longleftrightarrow \mathrm{US}_{c a t} \quad$ in $\operatorname{Cat}(\mathcal{C})$

second summary

$\mathrm{USP}_{c a t} \longleftrightarrow \mathrm{US}_{c a t} \quad$ in $\operatorname{Cat}(\mathcal{C})$

$$
\begin{array}{r}
\mathcal{S} \equiv \operatorname{Set}([]) \equiv \Gamma\left(\mathrm{US}_{c a t}\right) \longleftrightarrow \mathcal{C} \equiv \operatorname{Col}([]) \equiv \text { Cont } \\
\uparrow \uparrow \mathcal{P}_{s} \equiv \operatorname{Prop}_{s}([]) \equiv \Gamma\left(\mathrm{USP}_{c a t}\right) \longleftrightarrow \longrightarrow \mathcal{P} \equiv \operatorname{Prop}([])
\end{array}
$$

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;
$\mathbf{C o l}_{\mathbf{p r}_{[\Gamma, A]}}: \mathbf{C o l}(\Gamma) \rightarrow \mathbf{C o l}([\Gamma, A])$ has left and right adjoints;

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;
$\mathbf{C o l}_{\mathbf{p r}_{[\Gamma, A]}}: \mathbf{C o l}(\Gamma) \rightarrow \mathbf{C o l}([\Gamma, A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;
$\mathbf{C o l}_{\mathbf{p r}_{[\Gamma, A]}}: \mathbf{C o l}(\Gamma) \rightarrow \mathbf{C o l}([\Gamma, A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;
$\operatorname{Set}_{\mathbf{p r}_{[\Gamma, A]}}: \operatorname{Set}(\Gamma) \rightarrow \boldsymbol{\operatorname { S e t }}([\Gamma, A])$ has left and right adjoints if $A \in \operatorname{Set}([\Gamma]) ;$

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;
$\mathbf{C o l}_{\mathbf{p r}_{[r, A]}}: \mathbf{C o l}(\Gamma) \rightarrow \mathbf{C o l}([\Gamma, A])$ has left and right adjoints;
Col(Γ) contains an universe object of small propositions in context;
$\operatorname{Set}_{\mathbf{p r}_{[\Gamma, A]}} \boldsymbol{\operatorname { S e t }}(\Gamma) \rightarrow \boldsymbol{\operatorname { S e t }}([\Gamma, A])$ has left and right adjoints if $A \in \operatorname{Set}([\Gamma])$;

Prop is a first-order hyperdoctrine;

Properties

$\operatorname{Col}(\Gamma)$ and $\operatorname{Set}(\Gamma)$ are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;
$\mathbf{C o l}_{\mathbf{p r}_{[\Gamma, A]}}: \mathbf{C o l}(\Gamma) \rightarrow \mathbf{C o l}([\Gamma, A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;
$\operatorname{Set}_{\mathbf{p r}_{[\Gamma, A]}} \boldsymbol{\operatorname { S e t }}(\Gamma) \rightarrow \boldsymbol{\operatorname { S e t }}([\Gamma, A])$ has left and right adjoints if $A \in \operatorname{Set}([\Gamma])$;

Prop is a first-order hyperdoctrine;

Prop $_{s}$ is a doctrine with left and right adjoint for $\operatorname{Prop}_{s, \mathbf{p r}_{[[, A]}}: \operatorname{Prop}_{s}(\Gamma) \rightarrow \operatorname{Prop}_{s}([\Gamma, A])$ with $A \in \operatorname{Set}([\Gamma])$;

(Partial) interpretation

of (fully annotated!) syntax of $\mathbf{m T T}$:

(Partial) interpretation

of (fully annotated!) syntax of $\mathbf{m T T}$:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;
Sets A in context $\Gamma \mapsto$ objects of $\operatorname{Set}(\mathcal{I}(\Gamma))$;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;
Sets A in context $\Gamma \mapsto$ objects of $\operatorname{Set}(\mathcal{I}(\Gamma))$;
Propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}(\mathcal{I}(\Gamma))$;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;
Sets A in context $\Gamma \mapsto$ objects of $\operatorname{Set}(\mathcal{I}(\Gamma))$;
Propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}(\mathcal{I}(\Gamma))$;
Small propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}_{s}(\mathcal{I}(\Gamma))$;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;
Sets A in context $\Gamma \mapsto$ objects of $\operatorname{Set}(\mathcal{I}(\Gamma))$;
Propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}(\mathcal{I}(\Gamma))$;
Small propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}_{s}(\mathcal{I}(\Gamma))$;
Elements a in context $\Gamma \mapsto$ global elements in $\operatorname{Col}(\mathcal{I}(\Gamma))$.

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of Cont;
Collections A in context $\Gamma \mapsto$ objects of $\operatorname{Col}(\mathcal{I}(\Gamma))$;
Sets A in context $\Gamma \mapsto$ objects of $\operatorname{Set}(\mathcal{I}(\Gamma))$;
Propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}(\mathcal{I}(\Gamma))$;
Small propositions A in context $\Gamma \mapsto$ objects of $\operatorname{Prop}_{s}(\mathcal{I}(\Gamma))$;
Elements a in context $\Gamma \mapsto$ global elements in $\operatorname{Col}(\mathcal{I}(\Gamma))$.

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}
(2) \mathcal{R} validates $\mathbf{C T}$

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}
(2) \mathcal{R} validates $\mathbf{C T}$
(3) \mathcal{R} validates $\mathbf{A C}_{\mathbf{N}}$ and $\mathbf{A C}$

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}
(2) \mathcal{R} validates $\mathbf{C T}$
(3) \mathcal{R} validates $\mathbf{A C}_{\mathbf{N}}$ and $\mathbf{A C}$
(0) from \mathcal{R}, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}
(2) \mathcal{R} validates CT
(3) \mathcal{R} validates $\mathbf{A C}_{\mathbf{N}}$ and $\mathbf{A C}$
(0) from \mathcal{R}, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT
(0) validity of $\mathbf{A C}_{1}$ is not preserved by completion

Validity

(1) Every judgment J of $\mathbf{m T T}$ for which $\mathbf{m T T} \vdash J$ is validated by the realizability model \mathcal{R}
(2) \mathcal{R} validates CT
(3) \mathcal{R} validates $\mathbf{A C}_{\mathbf{N}}$ and $\mathbf{A C}$
(0) from \mathcal{R}, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT
(0) validity of $\mathbf{A C}_{1}$ is not preserved by completion

Work in progress

Minimalist predicative version of
tripos-to-topos construction

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland's effective topos

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland's effective topos
realizability toposes

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland's effective topos
realizability toposes

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.
(1) Other papers on Minimalist Foundations
(1) F.C., Toward a minimalist foundation for constructive mathematics, From Sets and Types to Topology and Analysis, 2005.
(2) M.E.Maietti, A minimalist two-level foundation for constructive mathematics, Annals of pure and applied logic, 2009.
(3) M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be pointfree., Logic and Logical Philosophy, 2013.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.
(1) Other papers on Minimalist Foundations
(1) F.C., Toward a minimalist foundation for constructive mathematics, From Sets and Types to Topology and Analysis, 2005.
(2) M.E.Maietti, A minimalist two-level foundation for constructive mathematics, Annals of pure and applied logic, 2009.
(3) M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be pointfree., Logic and Logical Philosophy, 2013.
(2) About Realizability Models for Type Theory and Minimalist Foundation
(1) M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
(2) M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the Minimalist Foundation, to appear in TYPES'14 post-proceedings, 2015.

