A categorical structure of realizers for the Minimalist Foundation

S.Maschio (joint work with M.E.Maietti)

Department of Mathematics University of Padua

> TACL 2015 Ischia

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Many foundations in (constructive) mathematics...

Many foundations in (constructive) mathematics...

 \Downarrow

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Many foundations in (constructive) mathematics...

₩

Necessity of a common core:

(ロ)、(型)、(E)、(E)、 E) の(の)

Many foundations in (constructive) mathematics...

 \Downarrow

Necessity of a common core:

the minimalist foundation!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Many foundations in (constructive) mathematics...

 \Downarrow

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

(ロ)、(型)、(E)、(E)、 E) の(の)

- 2-level theory based on versions of Martin Löf Type Theory;

(ロ)、(型)、(E)、(E)、 E) の(の)

- 2-level theory based on versions of Martin Löf Type Theory;
- an intensional level (mTT): computational content of proofs;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- 2-level theory based on versions of Martin Löf Type Theory;
- an intensional level (mTT): computational content of proofs;
- an extensional level (emTT): where to develop ordinary mathematics.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- sets: basic N_0, N_1 and constructors Π , Σ , + and List, all small propositions;

- sets: basic N_0,N_1 and constructors $\Pi,$ $\Sigma,$ + and List, all small propositions;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- collections: all sets and propositions, the collection of (codes for) small propositions prop_s, $A \rightarrow \text{prop}_s$ with A set, constructor Σ ;

- sets: basic N_0,N_1 and constructors $\Pi,$ $\Sigma,$ + and List, all small propositions;
- collections: all sets and propositions, the collection of (codes for) small propositions prop_s, $A \rightarrow \text{prop}_s$ with A set, constructor Σ ;
- *propositions*: \perp and closed under connectives \land, \lor, \rightarrow , collection bounded quantifiers and Id in collections.

- sets: basic N_0,N_1 and constructors $\Pi,$ $\Sigma,$ + and List, all small propositions;
- collections: all sets and propositions, the collection of (codes for) small propositions prop_s, $A \rightarrow \text{prop}_s$ with A set, constructor Σ ;
- propositions: \perp and closed under connectives \land, \lor, \rightarrow , collection bounded quantifiers and Id in collections.
- small propositions are like propositions with only set bounded quantifiers and Id relative to sets, it contains decodings $\tau(p)$ for $p \in \text{prop}_s$.

emTT = extensional version of **mTT** (includes extensionality of functions)

emTT= extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

emTT= extensional version of **mTT** (includes extensionality of functions)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- + power-collections of sets
- + effective quotient sets

emTT= extensional version of **mTT** (includes extensionality of functions)

- + power-collections of sets
- + effective quotient sets
- + proof-irrelevance of propositions

emTT = extensional version of mTT

(includes extensionality of functions)

- + power-collections of sets
- + effective quotient sets
- + proof-irrelevance of propositions

it is interpreted in \boldsymbol{mTT} via a quotient completion

 $Constructive \ mathematics =$

Constructive mathematics = implicit computational mathematics =

Realizability

Constructive mathematics = implicit computational mathematics = abstract mathematics with computational interpretation

(ロ)、(型)、(E)、(E)、 E) の(の)

Realizability

Constructive mathematics = implicit computational mathematics = abstract mathematics with computational interpretation (**realizability**)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 $r \Vdash t = s$ is $t = s \land r = 0$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash \phi \to \psi \text{ is } \forall x(x \Vdash \phi \to \{r\}(x) \Vdash \psi)$$

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash \phi \rightarrow \psi \text{ is } \forall x(x \Vdash \phi \rightarrow \{r\}(x) \Vdash \psi)$$

$$r \Vdash \exists x \phi(x) \text{ is } p_2(x) \Vdash \phi(p_1(x))$$

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash \phi \rightarrow \psi \text{ is } \forall x(x \Vdash \phi \rightarrow \{r\}(x) \Vdash \psi)$$

$$r \Vdash \exists x \phi(x) \text{ is } p_2(x) \Vdash \phi(p_1(x))$$

$$r \Vdash \forall x \phi(x) \text{ is } \forall x(\{r\}(x) \Vdash \phi(x))$$

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash \phi \rightarrow \psi \text{ is } \forall x(x \Vdash \phi \rightarrow \{r\}(x) \Vdash \psi)$$

$$r \Vdash \exists x \phi(x) \text{ is } p_2(x) \Vdash \phi(p_1(x))$$

$$r \Vdash \forall x \phi(x) \text{ is } \forall x(\{r\}(x) \Vdash \phi(x))$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

mTT extends HA.

$$r \Vdash t = s \text{ is } t = s \land r = 0$$

$$r \Vdash \phi \land \psi \text{ is } p_1(r) \Vdash \phi \land p_2(r) \Vdash \psi$$

$$r \Vdash \phi \lor \psi \text{ is } (p_1(r) = 0 \land p_2(r) \Vdash \phi) \lor (p_1(r) = 1 \land p_2(r) \Vdash \psi)$$

$$r \Vdash \phi \rightarrow \psi \text{ is } \forall x(x \Vdash \phi \rightarrow \{r\}(x) \Vdash \psi)$$

$$r \Vdash \exists x \phi(x) \text{ is } p_2(x) \Vdash \phi(p_1(x))$$

$$r \Vdash \forall x \phi(x) \text{ is } \forall x(\{r\}(x) \Vdash \phi(x))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

mTT extends **HA**. We model **mTT** by extending Kleene realizability interpretation.

Theory of Inductive definitions: consists of Peano Arithmetic

<□ > < @ > < E > < E > E のQ @

• Theory of Inductive definitions:

consists of Peano Arithmetic

 $+\mbox{ fix points for positive paremeter-free operators}$

Theory of Inductive definitions: consists of Peano Arithmetic

- $+\ {\rm fix}\ {\rm points}\ {\rm for}\ {\rm positive}\ {\rm paremeter-free}\ {\rm operators}$
- Same proof theoretical strength as first-order Martin Löf type theory with one universe

Theory of Inductive definitions: consists of Peano Arithmetic

- $+\ {\rm fix}\ {\rm points}\ {\rm for}\ {\rm positive}\ {\rm paremeter-free}\ {\rm operators}$
- Same proof theoretical strength as first-order Martin Löf type theory with one universe

$$A = (|A|, \sim_A)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$A = (|A|, \sim_A)$$

 $|A| = \{x | \phi_A(x)\}$ is a (first-order) definable class of $\widehat{ID_1}$

(ロ)、(型)、(E)、(E)、 E) の(の)

$$A = (|A|, \sim_A)$$

 $|A| = \{x | \phi_A(x)\}$ is a (first-order) definable class of $\widehat{ID_1}$

 $x \in A$ is an abbreviation for $\phi_A(x)$.

$$A = (|A|, \sim_A)$$

 $|A| = \{x | \phi_A(x)\}$ is a (first-order) definable class of $\widehat{ID_1}$

 $x \in A$ is an abbreviation for $\phi_A(x)$.

 $x \sim_A y$ is a (first-order) $\widehat{ID_1}$ -definable equivalence relation on |A|

An arrow from A to B is an operation (a computable function):

An arrow from A to B is an operation (a computable function): **NOT** a function (a single valued relation)!!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An arrow from A to B is an operation (a computable function): **NOT** a function (a single valued relation)!!!

$$[\mathbf{n}]_{\equiv_{A,B}}: A \to B$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

An arrow from A to B is an operation (a computable function): **NOT** a function (a single valued relation)!!!

$$[\mathbf{n}]_{\equiv_{A,B}}: A \to B$$

n is a numeral

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An arrow from A to B is an operation (a computable function): **NOT** a function (a single valued relation)!!!

$$[\mathbf{n}]_{\equiv_{A,B}}: A \to B$$

n is a numeral

$$x \sim_{\mathcal{A}} y \vdash_{\widehat{\mathsf{ID}}_1} \{\mathsf{n}\}(x) \sim_{B} \{\mathsf{n}\}(y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An arrow from A to B is an operation (a computable function): **NOT** a function (a single valued relation)!!!

$$[\mathbf{n}]_{\equiv_{A,B}}: A \to B$$

n is a numeral

$$x \sim_A y \vdash_{\widehat{\mathsf{ID}}_1} {\mathbf{n}}(x) \sim_B {\mathbf{n}}(y)$$

 $\mathbf{n} \equiv_{A,B} \mathbf{m}$ if and only if $x \in A \vdash_{\widehat{ID}_1} {\mathbf{n}}(x) \sim_B {\mathbf{m}}(x)$

(ロ)、(型)、(E)、(E)、 E) の(の)

for all
$$A, f, g$$
 $A \underbrace{\overset{f}{\underset{g}{\longrightarrow}}}_{g} P \Rightarrow f = g$

equivalent to

for all
$$A, f, g$$
 $A \underbrace{\frown}_{g}^{f} P \Rightarrow f = g$

equivalent to

 $x \varepsilon P \wedge y \varepsilon P \vdash_{\widehat{\mathsf{ID}}_1} x \sim_P y$

for all
$$A, f, g$$
 $A \underbrace{\frown}_{g}^{f} P \Rightarrow f = g$

equivalent to

$$x \varepsilon P \land y \varepsilon P \vdash_{\widehat{\mathsf{ID}}_1} x \sim_P y$$

Propositions of $\widehat{\text{ID}}_1=^{\textit{def}}$ proof-irrelevant collections of $\widehat{\text{ID}}_1$

for all
$$A, f, g$$
 $A \underbrace{\frown}_{g}^{f} P \Rightarrow f = g$

equivalent to

$$x\varepsilon P \wedge y\varepsilon P \vdash_{\widehat{\mathsf{ID}}_1} x \sim_P y$$

Propositions of $\widehat{\text{ID}}_1=^{\textit{def}}$ proof-irrelevant collections of $\widehat{\text{ID}}_1$

Propositions \equiv trivial quotients of the collections of their realizers

An extended realizability interpretation of sets and small propositions of \mathbf{mTT} can be encoded using fix points.

An extended realizability interpretation of sets and small propositions of mTT can be encoded using fix points.

collections of \widehat{ID}_1 of (codes for) sets and small propositions of **mTT**: US and USP.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An extended realizability interpretation of sets and small propositions of \mathbf{mTT} can be encoded using fix points.

collections of \widehat{ID}_1 of (codes for) sets and small propositions of **mTT**: US and USP.

 $f = [\mathbf{a}]_{\equiv} : 1 \rightarrow \mathsf{US}(\mathsf{P})$

is an operation

 \downarrow $\tau(f) := (\{x | x\overline{\varepsilon}\{\mathbf{a}\}(0)\}, x \equiv_{\{\mathbf{a}\}(0)} y)$ is a collection (proposition).

An extended realizability interpretation of sets and small propositions of \mathbf{mTT} can be encoded using fix points.

collections of \widehat{ID}_1 of (codes for) sets and small propositions of **mTT**: US and USP.

 $f = [\mathbf{a}]_{\equiv} : 1 \rightarrow \mathsf{US}(\mathsf{P})$

is an operation

 \downarrow $\tau(f) := (\{x | x\overline{\varepsilon}\{\mathbf{a}\}(\mathbf{0})\}, x \equiv_{\{\mathbf{a}\}(\mathbf{0})} y)$

is a collection (proposition).

A set (small proposition) of \widehat{ID}_1 is a collection (proposition) of \widehat{ID}_1 of the form $\tau(f)$ for $f: 1 \to US(P)$.

Obtain a commutative diagram in Cat

Obtain a commutative diagram in Cat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

<□ > < @ > < E > < E > E のQ @

Define

Define

a category of contexts of $\widehat{\text{ID}}_1,$ Cont

Define

a category of contexts of $\widehat{\text{ID}}_1\text{, }$ Cont

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

a functor $\mathbf{Col}:\mathbf{Cont}^{\mathit{op}}\to\mathbf{Cat}$

Define

a category of contexts of \widehat{ID}_1 , Cont a functor Col : Cont^{op} \rightarrow Cat in such a way that if Γ is in Cont:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Define

a category of contexts of \widehat{ID}_1 , **Cont** a functor **Col** : **Cont**^{op} \rightarrow **Cat** in such a way that if Γ is in **Cont**:

 $A \in \mathbf{Col}(\Gamma) \Leftrightarrow [\Gamma, A] \in \mathbf{Cont}$

Define

a category of contexts of \widehat{ID}_1 , **Cont** a functor **Col** : **Cont**^{op} \rightarrow **Cat** in such a way that if Γ is in **Cont**:

 $A \in \mathbf{Col}(\Gamma) \Leftrightarrow [\Gamma, A] \in \mathbf{Cont}$

 $f: A \to B$ in $\mathbf{Col}(\Gamma) \Leftrightarrow f: \mathbf{pr}_{[\Gamma,A]} \to \mathbf{pr}_{[\Gamma,B]}$ in \mathbf{Cont}/Γ

Define

a category of contexts of \widehat{ID}_1 , **Cont** a functor **Col** : **Cont**^{op} \rightarrow **Cat** in such a way that if Γ is in **Cont**:

 $A \in \mathbf{Col}(\Gamma) \Leftrightarrow [\Gamma, A] \in \mathbf{Cont}$

 $f: A \to B$ in $\mathbf{Col}(\Gamma) \Leftrightarrow f: \mathbf{pr}_{[\Gamma,A]} \to \mathbf{pr}_{[\Gamma,B]}$ in \mathbf{Cont}/Γ

where $\mathbf{pr}_{[\Gamma,A]}$ is the projection from $[\Gamma, A]$ to Γ .

Define

a category of contexts of \widehat{ID}_1 , **Cont** a functor **Col** : **Cont**^{op} \rightarrow **Cat** in such a way that if Γ is in **Cont**:

 $A \in \mathbf{Col}(\Gamma) \Leftrightarrow [\Gamma, A] \in \mathbf{Cont}$

 $f: A \to B$ in $\mathbf{Col}(\Gamma) \Leftrightarrow f: \mathbf{pr}_{[\Gamma,A]} \to \mathbf{pr}_{[\Gamma,B]}$ in \mathbf{Cont}/Γ

where $\mathbf{pr}_{[\Gamma,A]}$ is the projection from $[\Gamma, A]$ to Γ .

We define appropriate functors Set, Prop, Prop_s.

second summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

second summary

in **Cat^{Cont^{op}**}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$USP_{cat} \longrightarrow US_{cat}$$
 in $Cat(\mathcal{C})$

second summary

・ロト・日本・モート モー うへぐ

 $USP_{cat} \longrightarrow US_{cat}$ in $Cat(\mathcal{C})$

$$\mathcal{S} \equiv \mathbf{Set}([]) \equiv \Gamma(\mathsf{US}_{cat}) \hookrightarrow \mathcal{C} \equiv \mathbf{Col}([]) \equiv \mathbf{Cont} \qquad \text{in Cat}$$
$$\bigwedge_{\mathcal{P}_s} \equiv \mathbf{Prop}_s([]) \equiv \Gamma(\mathsf{USP}_{cat}) \hookrightarrow \mathcal{P} \equiv \mathbf{Prop}([])$$

Properties

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Properties

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathbf{Col}_{\mathbf{pr}_{\Gamma,A]}}:\mathbf{Col}(\Gamma) \to \mathbf{Col}([\Gamma,A])$ has left and right adjoints;

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

 $\mathbf{Col}_{\mathbf{pr}_{\Gamma,A}}:\mathbf{Col}(\Gamma) \to \mathbf{Col}([\Gamma,A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

 $\mathbf{Col}_{\mathbf{pr}_{\Gamma,A}}:\mathbf{Col}(\Gamma) \to \mathbf{Col}([\Gamma,A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

 $\mathbf{Set}_{\mathbf{pr}_{[\Gamma,A]}} : \mathbf{Set}(\Gamma) \to \mathbf{Set}([\Gamma,A])$ has left and right adjoints if $A \in \mathbf{Set}([\Gamma])$;

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

 $\mathbf{Col}_{\mathbf{pr}_{\Gamma,A}}:\mathbf{Col}(\Gamma) \rightarrow \mathbf{Col}([\Gamma,A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

 $\mathbf{Set}_{\mathbf{pr}_{[\Gamma,A]}} : \mathbf{Set}(\Gamma) \to \mathbf{Set}([\Gamma,A])$ has left and right adjoints if $A \in \mathbf{Set}([\Gamma])$;

Prop is a first-order hyperdoctrine;

Col(Γ) and **Set**(Γ) are cartesian closed finitely complete with list objects and stable disjoint finite coproducts;

 $\mathbf{Col}_{\mathbf{pr}_{\Gamma,A}}:\mathbf{Col}(\Gamma) \to \mathbf{Col}([\Gamma,A])$ has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

 $\mathbf{Set}_{\mathbf{pr}_{[\Gamma,A]}} : \mathbf{Set}(\Gamma) \to \mathbf{Set}([\Gamma,A])$ has left and right adjoints if $A \in \mathbf{Set}([\Gamma])$;

Prop is a first-order hyperdoctrine;

 $\begin{array}{l} \mathbf{Prop}_{s} \text{ is a doctrine with left and right adjoint for} \\ \mathbf{Prop}_{s,\mathbf{pr}_{[\Gamma,A]}} : \mathbf{Prop}_{s}(\Gamma) \to \mathbf{Prop}_{s}([\Gamma,A]) \text{ with } A \in \mathbf{Set}([\Gamma]); \end{array}$

(Partial) interpretation

of (fully annotated!) syntax of mTT:

(Partial) interpretation

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**;

(Partial) interpretation

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections A in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$);

of (fully annotated!) syntax of mTT:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections *A* in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$); Sets *A* in context $\Gamma \mapsto$ objects of **Set**($\mathcal{I}(\Gamma)$);

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections *A* in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$); Sets *A* in context $\Gamma \mapsto$ objects of **Set**($\mathcal{I}(\Gamma)$); Propositions *A* in context $\Gamma \mapsto$ objects of **Prop**($\mathcal{I}(\Gamma)$);

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections *A* in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$); Sets *A* in context $\Gamma \mapsto$ objects of **Set**($\mathcal{I}(\Gamma)$); Propositions *A* in context $\Gamma \mapsto$ objects of **Prop**($\mathcal{I}(\Gamma)$); Small propositions *A* in context $\Gamma \mapsto$ objects of **Prop**_s($\mathcal{I}(\Gamma)$);

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections A in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$); Sets A in context $\Gamma \mapsto$ objects of **Set**($\mathcal{I}(\Gamma)$); Propositions A in context $\Gamma \mapsto$ objects of **Prop**($\mathcal{I}(\Gamma)$); Small propositions A in context $\Gamma \mapsto$ objects of **Prop**_s($\mathcal{I}(\Gamma)$); Elements a in context $\Gamma \mapsto$ global elements in **Col**($\mathcal{I}(\Gamma)$).

of (fully annotated!) syntax of **mTT**:

Contexts $\Gamma \mapsto$ objects $\mathcal{I}(\Gamma)$ of **Cont**; Collections A in context $\Gamma \mapsto$ objects of **Col**($\mathcal{I}(\Gamma)$); Sets A in context $\Gamma \mapsto$ objects of **Set**($\mathcal{I}(\Gamma)$); Propositions A in context $\Gamma \mapsto$ objects of **Prop**($\mathcal{I}(\Gamma)$); Small propositions A in context $\Gamma \mapsto$ objects of **Prop**_s($\mathcal{I}(\Gamma)$); Elements a in context $\Gamma \mapsto$ global elements in **Col**($\mathcal{I}(\Gamma)$).

• Every judgment J of **mTT** for which **mTT** \vdash J is validated by the realizability model \mathcal{R}

Every judgment J of mTT for which mTT ⊢ J is validated by the realizability model R

 $\textcircled{O} \mathcal{R} \text{ validates } \textbf{CT}$

Severy judgment J of mTT for which mTT ⊢ J is validated by the realizability model R

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **2** \mathcal{R} validates **CT**
- **3** \mathcal{R} validates AC_N and $AC_!$

- Every judgment J of mTT for which mTT ⊢ J is validated by the realizability model R
- **2** \mathcal{R} validates **CT**
- **3** \mathcal{R} validates AC_N and $AC_!$
- from R, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Every judgment J of mTT for which mTT ⊢ J is validated by the realizability model R
- **2** \mathcal{R} validates **CT**
- **3** \mathcal{R} validates AC_N and $AC_!$
- from *R*, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution validity of AC1 is not preserved by completion

- Every judgment J of mTT for which mTT ⊢ J is validated by the realizability model R
- **2** \mathcal{R} validates **CT**
- **3** \mathcal{R} validates AC_N and $AC_!$
- from *R*, by elementary quotient completion (Maietti, Rosolini), model of emTT + CT

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Solution validity of AC1 is not preserved by completion

Minimalist predicative version of tripos-to-topos construction

Minimalist predicative version of tripos-to-topos construction Hyland's effective topos

Work in progress

Minimalist predicative version of tripos-to-topos construction Hyland's effective topos realizability toposes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Work in progress

Minimalist predicative version of tripos-to-topos construction Hyland's effective topos realizability toposes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.

Other papers on Minimalist Foundations

- F.C., *Toward a minimalist foundation for constructive mathematics*, From Sets and Types to Topology and Analysis, 2005.
- M.E.Maietti, A minimalist two-level foundation for constructive mathematics, Annals of pure and applied logic, 2009.
- M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be pointfree., Logic and Logical Philosophy, 2013.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist Foundations, in preparation.

Other papers on Minimalist Foundations

- F.C., *Toward a minimalist foundation for constructive mathematics*, From Sets and Types to Topology and Analysis, 2005.
- M.E.Maietti, A minimalist two-level foundation for constructive mathematics, Annals of pure and applied logic, 2009.
- M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be pointfree., Logic and Logical Philosophy, 2013.
- About Realizability Models for Type Theory and Minimalist Foundation
 - M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
 - M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the Minimalist Foundation, to appear in TYPES'14 post-proceedings, 2015.