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- an intensional level (mTT): computational content of proofs;

- an extensional level (emTT): where to develop ordinary mathematics.



The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;
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The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .
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Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r  t = s is t = s ∧ r = 0

r  φ ∧ ψ is p1(r)  φ ∧ p2(r)  ψ

r  φ ∨ ψ is (p1(r) = 0 ∧ p2(r)  φ) ∨ (p1(r) = 1 ∧ p2(r)  ψ)

r  φ→ ψ is ∀x(x  φ→ {r}(x)  ψ)

r  ∃xφ(x) is p2(x)  φ(p1(x))

r  ∀xφ(x) is ∀x({r}(x)  φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.
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with one universe



Collections of ÎD1
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xεA is an abbreviation for φA(x).
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{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
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Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers
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x ∼P y
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Propositions ≡ trivial quotients of the collections of their realizers



Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
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Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

⇓

collections of ÎD1 of (codes for) sets and small propositions of mTT: US and USP.

f = [a]≡ : 1→ US(P)

is an operation

⇓

τ(f ) :=
(
{x | xε{a}(0)} , x ≡{a}(0) y

)
is a collection (proposition).

A set (small proposition) of ÎD1 is a collection (proposition) of ÎD1 of the form
τ(f ) for f : 1→ US(P).
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Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .
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Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);
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