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Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)
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The formal system of the Minimalist Foundation (Maietti (2009)):
- 2-level theory based on versions of Martin Lof Type Theory;
- an intensional level (mTT): computational content of proofs;
- an extensional level (emTT): where to develop ordinary mathematics.
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intensional level has four sorts of types:

sets: basic Ng, N7 and constructors 1, X, + and List, all small propositions,
collections: all sets and propositions, the collection of (codes for) small
propositions prop,, A — prop, with A set, constructor ¥;

propositions: | and closed under connectives A, V, —, collection bounded
quantifiers and Id in collections.

small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings 7(p) for p € prop, .
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emTT= extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion
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Constructive mathematics =
implicit computational mathematics =
abstract mathematics with computational interpretation (realizability)
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Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rlkt=sist=sAr=20

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

rik¢Vvis (pi(r) =0Apa(r) IF @) V (pi(r) = 1A pa(r) IF 4)
rik ¢ — 1 is Vx(x Ik ¢ — {r}(x) I )

r I 3x¢(x) is pa(x) IF ¢(p1(x))

r Ik ¥x¢(x) is Vx({r}(x) IF ¢(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.
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A= (|Al;~a)
|A] = {x| #a(x)} is a (first-order) definable class of ID;
xeA is an abbreviation for ¢a(x).

X ~pa yis a (first-order) I/D\l—definable equivalence relation on |A|
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Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]EA’B A— B
n is a numeral

x~ay b, {n}(x) ~5 {n}(y)

n =4 mif and only if xeAtg {n}(x) ~g {m}(x)
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Proof irrelevance

f
A\
forall A, f, g A\E;’P =f=g

equivalent to
xeP A yeP FIADI X r~py
Propositions of ID; =9 proof-irrelevant collections of 1Dy

Propositions = trivial quotients of the collections of their realizers
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Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

I
collections of I/[\)l of (codes for) sets and small propositions of mTT: US and USP.
f=[a]lz:1— US(P)
is an operation
4
7(f) = ({x|x{a}(0)}, x =(a}(0) ¥)

is a collection (proposition).

A set (small proposition) of ID; is a collection (proposition) of ID; of the form
7(f) for f : 1 — US(P).
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Contexts
Define
a category of contexts of I/I51, Cont

a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

A€ Col(l) < [l A] € Cont

f:A— BinCol(l') < f:prr o — prr g in Cont/T

where prir 4 is the projection from [I', A] to T'.

We define appropriate functors Set, Prop, Prop..
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second summary

SetC—— Col in Cat®ot”

Prop.~—— Prop

USPC‘gt(H Uscat in Cat(C)

S = Set([]) = MN(US¢at)— C = Col([]) = Cont

P, = Prop,([]) = M(USP ;) P = Prop([])

in Cat
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Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir.A
Col(I") contains an universe object of small propositions in context;
Setyr, , : Set(I") — Set([l", A]) has left and right adjoints if A € Set([l]);

Prop is a first-order hyperdoctrine;

Prop, is a doctrine with left and right adjoint for
Props)pr[r.A] : Prop (") — Prop,([I, A]) with A € Set([l']);
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