A categorical structure of realizers
for the Minimalist Foundation

S.Maschio (joint work with M.E.Maietti)

m B DIPARTIMENTO
MATEMATICA

Department of Mathematics
University of Padua

TACL 2015
Ischia

The Minimalist Foundation

Many foundations in (constructive) mathematics...

The Minimalist Foundation

Many foundations in (constructive) mathematics...

4

The Minimalist Foundation

Many foundations in (constructive) mathematics...

4

Necessity of a common core:

The Minimalist Foundation

Many foundations in (constructive) mathematics...

4

Necessity of a common core:

the minimalist foundation!

The Minimalist Foundation

Many foundations in (constructive) mathematics...
4

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The formal system of the Minimalist Foundation (Maietti (2009)):

The formal system of the Minimalist Foundation (Maietti (2009)):
- 2-level theory based on versions of Martin Lof Type Theory;

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Lof Type Theory;
- an intensional level (mTT): computational content of proofs;

The formal system of the Minimalist Foundation (Maietti (2009)):
- 2-level theory based on versions of Martin Lof Type Theory;
- an intensional level (mTT): computational content of proofs;
- an extensional level (emTT): where to develop ordinary mathematics.

The intensional level has four sorts of types:

The intensional level has four sorts of types:

- sets: basic Ng, N; and constructors I, ¥, + and List, all small propositions,

The intensional level has four sorts of types:

- sets: basic Ng, N; and constructors I, ¥, + and List, all small propositions,

- collections: all sets and propositions, the collection of (codes for) small
propositions prop,, A — prop, with A set, constructor ¥;

The intensional level has four sorts of types:
- sets: basic Ng, N; and constructors I, ¥, + and List, all small propositions,
- collections: all sets and propositions, the collection of (codes for) small
propositions prop,, A — prop, with A set, constructor ¥;
- propositions: 1 and closed under connectives A, V, —, collection bounded
quantifiers and Id in collections.

The

intensional level has four sorts of types:

sets: basic Ng, N7 and constructors 1, X, + and List, all small propositions,
collections: all sets and propositions, the collection of (codes for) small
propositions prop,, A — prop, with A set, constructor ¥;

propositions: | and closed under connectives A, V, —, collection bounded
quantifiers and Id in collections.

small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings 7(p) for p € prop, .

emTT= extensional version of mTT

(includes extensionality of functions)

emTT= extensional version of mTT
(includes extensionality of functions)

+ power-collections of sets

emTT= extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets

+ effective quotient sets

emTT= extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

emTT= extensional version of mTT
(includes extensionality of functions)
+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

Realizability

Constructive mathematics =

Realizability

Constructive mathematics =
implicit computational mathematics =

Realizability

Constructive mathematics =
implicit computational mathematics =
abstract mathematics with computational interpretation

Realizability

Constructive mathematics =
implicit computational mathematics =
abstract mathematics with computational interpretation (realizability)

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rikt=sist=sAr=0

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rikt=sist=sAr=0
ri ¢ Avis pi(r) IF ¢ A pa(r) IF

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rikt=sist=sAr=0
ri ¢ Avis pi(r) IF ¢ A pa(r) IF
ri-¢Vvapis (pi(r) =0A pa(r) IF @) V (pi(r) = 1A pa(r) I 2))

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rikt=sist=sAr=0

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

ri-¢Vvapis (pi(r) =0A pa(r) IF @) V (pi(r) = 1A pa(r) I 2))
ri- ¢ — is Vx(x IF ¢ — {r}(x) I)

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rikt=sist=sAr=0

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

ri-¢Vvapis (pi(r) =0A pa(r) IF @) V (pi(r) = 1A pa(r) I 2))
ri- ¢ — is Vx(x IF ¢ — {r}(x) I)

r = 3x¢(x) is pa(x) I- (p1(x))

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rlkt=sist=sAr=20

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

rik¢Vvis (pi(r) =0Apa(r) IF @) V (pi(r) = 1A pa(r) IF 4)
rik ¢ — 1 is Vx(x Ik ¢ — {r}(x) I)

r Ik 3x¢(x) is pa(x) IF ¢(p1(x))

r Ik ¥x¢(x) is Vx({r}(x) IF ¢(x))

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rlkt=sist=sAr=20

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

rik¢Vvis (pi(r) =0Apa(r) IF @) V (pi(r) = 1A pa(r) IF 4)
rik ¢ — 1 is Vx(x Ik ¢ — {r}(x) I)

r Ik 3x¢(x) is pa(x) IF ¢(p1(x))

r Ik ¥x¢(x) is Vx({r}(x) IF ¢(x))

mTT extends HA.

Kleene's realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

rlkt=sist=sAr=20

ri ¢ Avis pi(r) IF ¢ A pa(r) IF

rik¢Vvis (pi(r) =0Apa(r) IF @) V (pi(r) = 1A pa(r) IF 4)
rik ¢ — 1 is Vx(x Ik ¢ — {r}(x) I)

r I 3x¢(x) is pa(x) IF ¢(p1(x))

r Ik ¥x¢(x) is Vx({r}(x) IF ¢(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

@ Theory of Inductive definitions:

@ Theory of Inductive definitions:

consists of Peano Arithmetic

@ Theory of Inductive definitions:
consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

@ Theory of Inductive definitions:
consists of Peano Arithmetic
+ fix points for positive paremeter-free operators

@ Same proof theoretical strength as first-order Martin Lof type theory
with one universe

@ Theory of Inductive definitions:
consists of Peano Arithmetic
+ fix points for positive paremeter-free operators

@ Same proof theoretical strength as first-order Martin Lof type theory
with one universe

Collections of IADl

A= (|Al;~a)

Collections of If)l

A = (A, ~a)

|A] = {x] ¢a(x)} is a (first-order) definable class of ID;

Collections of If)l

A= (|Al;~a)
|A] = {x| #a(x)} is a (first-order) definable class of ID;

xeA is an abbreviation for ¢a(x).

Collections of If)l

A= (|Al;~a)
|A] = {x| #a(x)} is a (first-order) definable class of ID;
xeA is an abbreviation for ¢a(x).

X ~pa yis a (first-order) I/D\l—definable equivalence relation on |A|

Operations

An arrow from A to B is an operation (a computable function):

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n=z,, A= B

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n=z,, A= B

n is a numeral

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]EA’B A— B
n is a numeral

x~ay b, {n}(x) ~5 {n}(y)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]EA’B A— B
n is a numeral

x~ay b, {n}(x) ~5 {n}(y)

n =4 mif and only if xeAtg {n}(x) ~g {m}(x)

Proof irrelevance

— XA
forall A, f, g AP =f=g

Proof irrelevance

f
— XA
forallA,ﬂg A\EZP :}f:g

equivalent to

Proof irrelevance

f
— XA
forallA,ﬂg A\EZP :}f:g

equivalent to

xeP A yeP FIADI X r~py

Proof irrelevance

f
A\
forall A, f, g A\E;’P =f=g

equivalent to
xeP A yeP FIADI X r~py

Propositions of ID; =9 proof-irrelevant collections of 1Dy

Proof irrelevance

f
A\
forall A, f, g A\E;’P =f=g

equivalent to
xeP A yeP FIADI X r~py
Propositions of ID; =9 proof-irrelevant collections of 1Dy

Propositions = trivial quotients of the collections of their realizers

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

I

collections of I/[\)l of (codes for) sets and small propositions of mTT: US and USP.

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

I
collections of I/[\)l of (codes for) sets and small propositions of mTT: US and USP.
f=[a]lz:1— US(P)
is an operation
4
7(f) = ({x|x{a}(0)}, x =(a}(0) ¥)

is a collection (proposition).

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

I
collections of I/[\)l of (codes for) sets and small propositions of mTT: US and USP.
f=[a]lz:1— US(P)
is an operation
4
7(f) = ({x|x{a}(0)}, x =(a}(0) ¥)

is a collection (proposition).

A set (small proposition) of ID; is a collection (proposition) of ID; of the form
7(f) for f : 1 — US(P).

first summary

Obtain a commutative diagram in Cat

first summary

Obtain a commutative diagram in Cat

]

s

-

O

i

Contexts

Define

Contexts

Define

a category of contexts of ID;, Cont

Contexts

Define
a category of contexts of ID;, Cont
a functor Col : Cont® — Cat

Contexts

Define
a category of contexts of ID;, Cont
a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

Contexts

Define
a category of contexts of ID;, Cont
a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

A€ Col(l) < [l A] € Cont

Contexts

Define
a category of contexts of ID;, Cont
a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

A€ Col(l) < [l A] € Cont

f:A— BinCol(l') < f:prr o — prr g in Cont/T

Contexts

Define
a category of contexts of ID;, Cont
a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

A€ Col(l) < [l A] € Cont

f:A— BinCol(l') < f:prr o — prr g in Cont/T

where prir 4 is the projection from [I', A] to T'.

Contexts
Define
a category of contexts of I/I51, Cont

a functor Col : Cont® — Cat

in such a way that if I' is in Cont:

A€ Col(l) < [l A] € Cont

f:A— BinCol(l') < f:prr o — prr g in Cont/T

where prir 4 is the projection from [I', A] to T'.

We define appropriate functors Set, Prop, Prop..

second summary

SetC—— Col in Cat®ot”

Prop.~—— Prop

second summary

SetC—— Col in Cat®ot”

Prop.~—— Prop

USPC‘gt(H Uscat in Cat(C)

second summary

SetC—— Col in Cat®ot”

Prop.~—— Prop

USPC‘gt(H Uscat in Cat(C)

S = Set([]) = MN(US¢at)— C = Col([]) = Cont

P, = Prop,([]) = M(USP ;) P = Prop([])

in Cat

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir,4)

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir,4)

Col(I") contains an universe object of small propositions in context;

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir,4)

Col(I") contains an universe object of small propositions in context;

Setyr, , : Set(I") — Set([l", A]) has left and right adjoints if A € Set([l]);

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir, A1
Col(I") contains an universe object of small propositions in context;
Setyr, , : Set(I") — Set([l", A]) has left and right adjoints if A € Set([l]);

Prop is a first-order hyperdoctrine;

Properties

Col(I') and Set(I') are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Col : Col(T') — Col([I, A]) has left and right adjoints;

Prir.A
Col(I") contains an universe object of small propositions in context;
Setyr, , : Set(I") — Set([l", A]) has left and right adjoints if A € Set([l]);

Prop is a first-order hyperdoctrine;

Prop, is a doctrine with left and right adjoint for
Props)pr[r.A] : Prop (") — Prop,([I, A]) with A € Set([l']);

(Partial) interpretation

of (fully annotated!) syntax of mTT:

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;
Collections A in context ' — objects of Col(Z(I));

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;
Collections A in context ' — objects of Col(Z(I));
Sets A in context I — objects of Set(Z(I));

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;

Collections A in context ' — objects of Col(Z(I));
Sets A in context I — objects of Set(Z(I));
Propositions A in context ' — objects of Prop(Z(I));

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;

Collections A in context ' — objects of Col(Z(I));

Sets A in context I — objects of Set(Z(I));

Propositions A in context ' — objects of Prop(Z(I));

Small propositions A in context I' — objects of Prop (Z(I));

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;

Collections A in context ' — objects of Col(Z(I));

Sets A in context I — objects of Set(Z(I));

Propositions A in context ' — objects of Prop(Z(I));

Small propositions A in context I' — objects of Prop (Z(I));
Elements a in context ' — global elements in Col(Z(I")).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts I' — objects Z(I") of Cont;

Collections A in context ' — objects of Col(Z(I));

Sets A in context I — objects of Set(Z(I));

Propositions A in context ' — objects of Prop(Z(I));

Small propositions A in context I' — objects of Prop (Z(I));
Elements a in context ' — global elements in Col(Z(I")).

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

@ R validates CT

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

@ R validates CT
© R validates ACy and AC,

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

@ R validates CT
© R validates ACy and AC,

@ from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT +CT

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

@ R validates CT
© R validates ACy and AC,

@ from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT +CT

@ validity of AC, is not preserved by completion

Validity

@ Every judgment J of mTT for which mTT + J is validated by the
realizability model R

@ R validates CT
© R validates ACy and AC,

@ from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT +CT

@ validity of AC, is not preserved by completion

Work in progress

Minimalist predicative version of

tripos-to-topos construction

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland'’s effective topos

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland'’s effective topos
realizability toposes

Work in progress

Minimalist predicative version of
tripos-to-topos construction
Hyland'’s effective topos
realizability toposes

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

@ Other papers on Minimalist Foundations

@ F.C., Toward a minimalist foundation for constructive mathematics, From

Sets and Types to Topology and Analysis, 2005.
@ M.E.Maietti, A minimalist two-level foundation for constructive mathematics,

Annals of pure and applied logic, 2009.
©® M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be

pointfree., Logic and Logical Philosophy, 2013.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

@ Other papers on Minimalist Foundations

© F.C., Toward a minimalist foundation for constructive mathematics, From

Sets and Types to Topology and Analysis, 2005.
@ M.E.Maietti, A minimalist two-level foundation for constructive mathematics,

Annals of pure and applied logic, 2009.
© M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be

pointfree., Logic and Logical Philosophy, 2013.

@ About Realizability Models for Type Theory and Minimalist Foundation
@ M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
@ M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the
Minimalist Foundation, to appear in TYPES’14 post-proceedings, 2015.

