
A categorical structure of realizers
for the Minimalist Foundation

S.Maschio (joint work with M.E.Maietti)

Department of Mathematics
University of Padua

TACL 2015
Ischia

The Minimalist Foundation

Many foundations in (constructive) mathematics...

⇓

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The Minimalist Foundation

Many foundations in (constructive) mathematics...

⇓

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The Minimalist Foundation

Many foundations in (constructive) mathematics...

⇓

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The Minimalist Foundation

Many foundations in (constructive) mathematics...

⇓

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The Minimalist Foundation

Many foundations in (constructive) mathematics...

⇓

Necessity of a common core:

the minimalist foundation!

(Maietti, Sambin 2005)

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;

- an intensional level (mTT): computational content of proofs;

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;

- an intensional level (mTT): computational content of proofs;

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;

- an intensional level (mTT): computational content of proofs;

- an extensional level (emTT): where to develop ordinary mathematics.

The formal system of the Minimalist Foundation (Maietti (2009)):

- 2-level theory based on versions of Martin Löf Type Theory;

- an intensional level (mTT): computational content of proofs;

- an extensional level (emTT): where to develop ordinary mathematics.

The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .

The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .

The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .

The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .

The intensional level has four sorts of types:

- sets: basic N0,N1 and constructors Π, Σ, + and List, all small propositions;

- collections: all sets and propositions, the collection of (codes for) small
propositions props , A→ props with A set, constructor Σ;

- propositions: ⊥ and closed under connectives ∧,∨,→, collection bounded
quantifiers and Id in collections.

- small propositions are like propositions with only set bounded quantifiers and
Id relative to sets, it contains decodings τ(p) for p ∈ props .

emTT= extensional version of mTT

(includes extensionality of functions)

+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

emTT= extensional version of mTT

(includes extensionality of functions)

+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

emTT= extensional version of mTT

(includes extensionality of functions)

+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

emTT= extensional version of mTT

(includes extensionality of functions)

+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

emTT= extensional version of mTT

(includes extensionality of functions)

+ power-collections of sets

+ effective quotient sets

+ proof-irrelevance of propositions

it is interpreted in mTT via a quotient completion

Realizability

Constructive mathematics =

implicit computational mathematics =
abstract mathematics with computational interpretation (realizability)

Realizability

Constructive mathematics =
implicit computational mathematics =

abstract mathematics with computational interpretation (realizability)

Realizability

Constructive mathematics =
implicit computational mathematics =
abstract mathematics with computational interpretation

(realizability)

Realizability

Constructive mathematics =
implicit computational mathematics =
abstract mathematics with computational interpretation (realizability)

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.

We model mTT by extending Kleene realizability interpretation.

Kleene’s realizability interpretation of connectives and quantifiers (for Heyting
arithmetic)

r t = s is t = s ∧ r = 0

r φ ∧ ψ is p1(r) φ ∧ p2(r) ψ

r φ ∨ ψ is (p1(r) = 0 ∧ p2(r) φ) ∨ (p1(r) = 1 ∧ p2(r) ψ)

r φ→ ψ is ∀x(x φ→ {r}(x) ψ)

r ∃xφ(x) is p2(x) φ(p1(x))

r ∀xφ(x) is ∀x({r}(x) φ(x))

mTT extends HA.
We model mTT by extending Kleene realizability interpretation.

ÎD1

1 Theory of Inductive definitions:

consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

2 Same proof theoretical strength as first-order Martin Löf type theory
with one universe

ÎD1

1 Theory of Inductive definitions:

consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

2 Same proof theoretical strength as first-order Martin Löf type theory
with one universe

ÎD1

1 Theory of Inductive definitions:

consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

2 Same proof theoretical strength as first-order Martin Löf type theory
with one universe

ÎD1

1 Theory of Inductive definitions:

consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

2 Same proof theoretical strength as first-order Martin Löf type theory
with one universe

ÎD1

1 Theory of Inductive definitions:

consists of Peano Arithmetic

+ fix points for positive paremeter-free operators

2 Same proof theoretical strength as first-order Martin Löf type theory
with one universe

Collections of ÎD1

A = (|A|,∼A)

|A| = {x |φA(x)} is a (first-order) definable class of ÎD1

xεA is an abbreviation for φA(x).

x ∼A y is a (first-order) ÎD1-definable equivalence relation on |A|

Collections of ÎD1

A = (|A|,∼A)

|A| = {x |φA(x)} is a (first-order) definable class of ÎD1

xεA is an abbreviation for φA(x).

x ∼A y is a (first-order) ÎD1-definable equivalence relation on |A|

Collections of ÎD1

A = (|A|,∼A)

|A| = {x |φA(x)} is a (first-order) definable class of ÎD1

xεA is an abbreviation for φA(x).

x ∼A y is a (first-order) ÎD1-definable equivalence relation on |A|

Collections of ÎD1

A = (|A|,∼A)

|A| = {x |φA(x)} is a (first-order) definable class of ÎD1

xεA is an abbreviation for φA(x).

x ∼A y is a (first-order) ÎD1-definable equivalence relation on |A|

Operations

An arrow from A to B is an operation (a computable function):

NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Operations

An arrow from A to B is an operation (a computable function):
NOT a function (a single valued relation)!!!

[n]≡A,B
: A→ B

n is a numeral

x ∼A y `ÎD1
{n}(x) ∼B {n}(y)

n ≡A,B m if and only if xεA `ÎD1
{n}(x) ∼B {m}(x)

Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
x ∼P y

Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers

Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
x ∼P y

Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers

Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
x ∼P y

Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers

Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
x ∼P y

Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers

Proof irrelevance

for all A, f , g A
g
55

f
))
P ⇒ f = g

equivalent to

xεP ∧ yεP `ÎD1
x ∼P y

Propositions of ÎD1 =def proof-irrelevant collections of ÎD1

Propositions ≡ trivial quotients of the collections of their realizers

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

⇓

collections of ÎD1 of (codes for) sets and small propositions of mTT: US and USP.

f = [a]≡ : 1→ US(P)

is an operation

⇓

τ(f) :=
(
{x | xε{a}(0)} , x ≡{a}(0) y

)
is a collection (proposition).

A set (small proposition) of ÎD1 is a collection (proposition) of ÎD1 of the form
τ(f) for f : 1→ US(P).

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

⇓

collections of ÎD1 of (codes for) sets and small propositions of mTT: US and USP.

f = [a]≡ : 1→ US(P)

is an operation

⇓

τ(f) :=
(
{x | xε{a}(0)} , x ≡{a}(0) y

)
is a collection (proposition).

A set (small proposition) of ÎD1 is a collection (proposition) of ÎD1 of the form
τ(f) for f : 1→ US(P).

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

⇓

collections of ÎD1 of (codes for) sets and small propositions of mTT: US and USP.

f = [a]≡ : 1→ US(P)

is an operation

⇓

τ(f) :=
(
{x | xε{a}(0)} , x ≡{a}(0) y

)
is a collection (proposition).

A set (small proposition) of ÎD1 is a collection (proposition) of ÎD1 of the form
τ(f) for f : 1→ US(P).

Universes

An extended realizability interpretation of sets and small propositions of mTT can
be encoded using fix points.

⇓

collections of ÎD1 of (codes for) sets and small propositions of mTT: US and USP.

f = [a]≡ : 1→ US(P)

is an operation

⇓

τ(f) :=
(
{x | xε{a}(0)} , x ≡{a}(0) y

)
is a collection (proposition).

A set (small proposition) of ÎD1 is a collection (proposition) of ÎD1 of the form
τ(f) for f : 1→ US(P).

first summary

Obtain a commutative diagram in Cat

S �
� // C

Ps
� � //?�

OO

P
?�

OO

first summary

Obtain a commutative diagram in Cat

S �
� // C

Ps
� � //?�

OO

P
?�

OO

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

Contexts

Define

a category of contexts of ÎD1, Cont

a functor Col : Contop → Cat

in such a way that if Γ is in Cont:

A ∈ Col(Γ)⇔ [Γ,A] ∈ Cont

f : A→ B in Col(Γ)⇔ f : pr[Γ,A] → pr[Γ,B] in Cont/Γ

where pr[Γ,A] is the projection from [Γ,A] to Γ.

We define appropriate functors Set, Prop, Props .

second summary

Set �
� // Col in CatContop

Props
� � //?�

OO

Prop
?�

OO

USPcat
� � // UScat in Cat(C)

S ≡ Set([]) ≡ Γ(UScat)
� � // C ≡ Col([]) ≡ Cont in Cat

Ps ≡ Props([]) ≡ Γ(USPcat)
� � //

?�

OO

P ≡ Prop([])
?�

OO

second summary

Set �
� // Col in CatContop

Props
� � //?�

OO

Prop
?�

OO

USPcat
� � // UScat in Cat(C)

S ≡ Set([]) ≡ Γ(UScat)
� � // C ≡ Col([]) ≡ Cont in Cat

Ps ≡ Props([]) ≡ Γ(USPcat)
� � //

?�

OO

P ≡ Prop([])
?�

OO

second summary

Set �
� // Col in CatContop

Props
� � //?�

OO

Prop
?�

OO

USPcat
� � // UScat in Cat(C)

S ≡ Set([]) ≡ Γ(UScat)
� � // C ≡ Col([]) ≡ Cont in Cat

Ps ≡ Props([]) ≡ Γ(USPcat)
� � //

?�

OO

P ≡ Prop([])
?�

OO

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

Properties

Col(Γ) and Set(Γ) are cartesian closed finitely complete with list objects and
stable disjoint finite coproducts;

Colpr[Γ,A]
: Col(Γ)→ Col([Γ,A]) has left and right adjoints;

Col(Γ) contains an universe object of small propositions in context;

Setpr[Γ,A]
: Set(Γ)→ Set([Γ,A]) has left and right adjoints if A ∈ Set([Γ]);

Prop is a first-order hyperdoctrine;

Props is a doctrine with left and right adjoint for
Props,pr[Γ,A]

: Props(Γ)→ Props([Γ,A]) with A ∈ Set([Γ]);

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

(Partial) interpretation

of (fully annotated!) syntax of mTT:

Contexts Γ 7→ objects I(Γ) of Cont;

Collections A in context Γ 7→ objects of Col(I(Γ));

Sets A in context Γ 7→ objects of Set(I(Γ));

Propositions A in context Γ 7→ objects of Prop(I(Γ));

Small propositions A in context Γ 7→ objects of Props(I(Γ));

Elements a in context Γ 7→ global elements in Col(I(Γ)).

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Validity

1 Every judgment J of mTT for which mTT ` J is validated by the
realizability model R

2 R validates CT

3 R validates ACN and AC!

4 from R, by elementary quotient completion (Maietti, Rosolini), model of
emTT + CT

5 validity of AC! is not preserved by completion

Work in progress

Minimalist predicative version of

tripos-to-topos construction

Hyland’s effective topos

realizability toposes

Work in progress

Minimalist predicative version of

tripos-to-topos construction

Hyland’s effective topos

realizability toposes

Work in progress

Minimalist predicative version of

tripos-to-topos construction

Hyland’s effective topos

realizability toposes

Work in progress

Minimalist predicative version of

tripos-to-topos construction

Hyland’s effective topos

realizability toposes

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

1 Other papers on Minimalist Foundations

1 F.C., Toward a minimalist foundation for constructive mathematics, From
Sets and Types to Topology and Analysis, 2005.

2 M.E.Maietti, A minimalist two-level foundation for constructive mathematics,
Annals of pure and applied logic, 2009.

3 M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be
pointfree., Logic and Logical Philosophy, 2013.

2 About Realizability Models for Type Theory and Minimalist Foundation

1 M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
2 M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the

Minimalist Foundation, to appear in TYPES’14 post-proceedings, 2015.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

1 Other papers on Minimalist Foundations

1 F.C., Toward a minimalist foundation for constructive mathematics, From
Sets and Types to Topology and Analysis, 2005.

2 M.E.Maietti, A minimalist two-level foundation for constructive mathematics,
Annals of pure and applied logic, 2009.

3 M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be
pointfree., Logic and Logical Philosophy, 2013.

2 About Realizability Models for Type Theory and Minimalist Foundation

1 M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
2 M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the

Minimalist Foundation, to appear in TYPES’14 post-proceedings, 2015.

References

this work: M.E.Maietti, S.Maschio, A predicative realizability tripos for the Minimalist
Foundations, in preparation.

1 Other papers on Minimalist Foundations

1 F.C., Toward a minimalist foundation for constructive mathematics, From
Sets and Types to Topology and Analysis, 2005.

2 M.E.Maietti, A minimalist two-level foundation for constructive mathematics,
Annals of pure and applied logic, 2009.

3 M.E.Maietti, G.Sambin Why topology in the Minimalist Foundation must be
pointfree., Logic and Logical Philosophy, 2013.

2 About Realizability Models for Type Theory and Minimalist Foundation

1 M. Beeson, Foundations of Constructive Mathematics, Springer-Verlag, 1985.
2 M.E.Maietti, S.Maschio An extensional Kleene realizability semantics for the

Minimalist Foundation, to appear in TYPES’14 post-proceedings, 2015.

