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Grothendieck ring of varieties, Kq(Vary), for k = ACF

o First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
@ Kontsevich used as value ring for motivic integration.
o Varieties are precisely the definable subsets of k" (Q.E. for ACF).
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o First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
@ Kontsevich used as value ring for motivic integration.
o Varieties are precisely the definable subsets of k" (Q.E. for ACF).

L: language, M: L-structure.

Definable always means definable with parameters from M.
Def(M): collection of definable subsets of M", n> 1.
Definable isomorphism is a bijection with definable graph.
[]: Def(M) — Def(M) is the natural surjection.

o (Def(M),u, x,@,{*}) is an L,ing-structure - a commutative semiring.
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Grothendieck ring of varieties, Kq(Vary), for k = ACF

o First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
@ Kontsevich used as value ring for motivic integration.
o Varieties are precisely the definable subsets of k" (Q.E. for ACF).

L: language, M: L-structure.

Definable always means definable with parameters from M.
Def(M): collection of definable subsets of M", n> 1.
Definable isomorphism is a bijection with definable graph.
[]: Def(M) — Def(M) is the natural surjection.

o (Def(M),u, x,@,{*}) is an L,ing-structure - a commutative semiring.

(Krajitek-Scanon)

The model-theoretic Grothendieck ring, Ko(M), is the ring completion of
the above semiring.
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Examples of Grothendieck ring
e Ko(finite structure) = Z.
o Cluckers-Haskell: Ko(Fq((t))) =0, Ko(Qp) =0.
o Krajitek-Scanlon: Ko(RCF) 2 Z, Z[X;:i¢€c] < Ko(C).
@ Denef-Loeser: Ko(C) admits Z[u, v] as a quotient.
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Examples of Grothendieck ring

Ko(finite structure) = Z.

Cluckers-Haskell: Ko(Fq((t))) =0, Ko(Qp) =0.
Kraji¢ek-Scanlon: Ko(RCF) 2 Z, Z[X;: i € ¢] € Ko(C).
Denef-Loeser: Ko(C) admits Z[u, v] as a quotient.

A structure M satisfies definable ontoPHP iff Ko(M) # 0.
If M, N are L-structures and M < N then Ko(M) < Ko(N).

If M = N, then Def(M) =3, Def (N) in Lying. As the Grothendieck
ring Ko(M) is existentially interpretable in Def(M), we have
Ko(M) =3, Ko(N).
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Examples of Grothendieck ring

Ko(finite structure) = Z.

Cluckers-Haskell: Ko(Fq((t))) =0, Ko(Qp) =0.
Kraji¢ek-Scanlon: Ko(RCF) 2 Z, Z[X;: i € ¢] € Ko(C).
Denef-Loeser: Ko(C) admits Z[u, v] as a quotient.

A structure M satisfies definable ontoPHP iff Ko(M) # 0.
If M, N are L-structures and M < N then Ko(M) < Ko(N).

If M = N, then Def(M) =3, Def (N) in Lying. As the Grothendieck
ring Ko(M) is existentially interpretable in Def(M), we have
Ko(M) =3, Ko(N).

Conjecture (Prest)

R:
If M +0, then Ko(Mg) # 0.

unital ring, Lg: language of right R-modules, Mgz: right R-module.
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K-theory of Symmetric Monoidal Groupoids

@ Groupoid: A category where every morphism has a two-sided inverse.
e Connected Groupoid: A groupoid G where G(A,B) # @ VA, Beg.

Proposition

In a connected groupoid G, the group G(A, A) is in bijection with the set
G(A,B) for all A,B€gG.
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Proposition

In a connected groupoid G, the group G(A, A) is in bijection with the set
G(A,B) for all A,B€gG.

@ Symmetric monoidal groupoid (S, *,1): A groupoid where * satisfies
axioms analogous to a commutative monoid.

@ Quillen’s S71S construction: The group completion groupoid of S.
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K-theory of Symmetric Monoidal Groupoids

@ Groupoid: A category where every morphism has a two-sided inverse.
e Connected Groupoid: A groupoid G where G(A,B) # @ VA, Beg.

Proposition

In a connected groupoid G, the group G(A, A) is in bijection with the set
G(A,B) for all A,B€gG.

@ Symmetric monoidal groupoid (S, *,1): A groupoid where * satisfies
axioms analogous to a commutative monoid.

@ Quillen’s S71S construction: The group completion groupoid of S.

Definition (Quillen)

—il T
K, : SMonGpd e X SMonGpd £, Top — Ab
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K-theory of model-theoretic structures

Theorem (Barratt-Priddy-Quillen-Segal)

The groups K, ( FinSets"so.) are the stable homotopy groups of spheres, Tj,.
In particular, Ko(FinSets'*®) = Z and Ki(FinSets"°) = Z.
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Theorem (Barratt-Priddy-Quillen-Segal)

The groups K, ( FinSets"so.) are the stable homotopy groups of spheres, Tj,.
In particular, Ky(FinSets'®) = Z and Ki(FinSets°) = Z,.

A pairing on (S, *,1) is a functor ® : S x S — S that bi-distributes over *.

Theorem (Loday)

A pairing on S gives product maps K,(S) ® Kq(S) = Kp+q(S).
In particular, Ko(S) gets a ring structure.
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K-theory of model-theoretic structures

Theorem (Barratt-Priddy-Quillen-Segal)

The groups K,,(FinSets"so.) are the stable homotopy groups of spheres, Tj,.
In particular, Ky(FinSets'®) = Z and Ki(FinSets°) = Z,.

A pairing on (S, *,1) is a functor ® : S x S — S that bi-distributes over *.

Theorem (Loday)

A pairing on S gives product maps K,(S) ® Kq(S) = Kp+q(S).
In particular, Ko(S) gets a ring structure.

If S(M) := (Def(M)™°, U, x,@,{*}), then Ko(M) = Ko(S(M)).
Definition (K.)

For n>0, K,(M) := K,(S(M)); functorial on elementary embeddings.
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K-theory of model-theoretic structures

Theorem (Barratt-Priddy-Quillen-Segal)

The groups K,,(FinSets"so.) are the stable homotopy groups of spheres, Tj,.
In particular, Ky(FinSets'®) = Z and Ki(FinSets°) = Z,.

A pairing on (S, *,1) is a functor ® : S x S — S that bi-distributes over *.
Theorem (Loday)

A pairing on S gives product maps K,(S) ® Kq(S) = Kp+q(S).
In particular, Ko(S) gets a ring structure.

If S(M) := (Def(M)™°, U, x,@,{*}), then Ko(M) = Ko(S(M)).
Definition (K.)

For n>0, K,(M) := K,(S(M)); functorial on elementary embeddings.

If M is finite, then S(M) = FinSets° and hence K,(M) = 75,
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Model theory of modules

R : unital ring, Lg = (0,+,—,m,: re R), M: right R-module.
@ A positive primitive (pp) formula is an Lz (M)-formula of the form

3y(xy 3a)G =0, where G is a finite matrix with entries in R and
aeM.

@ Every parameter free pp-formula defines a subgroup of M" and a
general pp-formula defines either the empty set or a coset of a

pp-subgroup.
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e For pp-subgroups A, B, define the invariant Inv(M, A, B) to be the
index [A: AnB]eNu{oo}.
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Model theory of modules

R : unital ring, Lg = (0,+,—,m,: re R), M: right R-module.

@ A positive primitive (pp) formula is an Lz (M)-formula of the form
3y(xy 3a)G =0, where G is a finite matrix with entries in R and
aeM.

@ Every parameter free pp-formula defines a subgroup of M" and a
general pp-formula defines either the empty set or a coset of a
pp-subgroup.

e For pp-subgroups A, B, define the invariant Inv(M, A, B) to be the
index [A: AnB]eNu{oo}.

Baur-Monk pp-elimination theorem

Theory of M is determined by the invariants of pp-pairs of subgroups of M.
Every definable subset of M", n>1 is a boolean combination of
pp-definable sets.

Amit Kuber (Napoli 2) K-theory of modules 21 June 2015 5/9



Grothendieck ring of a module

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module.
If Fis a field and Vf is a nonzero F-vector space, then Ko(VE) = Z[x].
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Grothendieck ring of a module

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module.
If Fis a field and VF is a nonzero F-vector space, then Ko(VE) = Z[x].

Structure theorem for Ko(Mg) (K.)

Ko(MR) = Z[X]/j,
X': multiplicative monoid of colours (pp-isomorphism classes of pp-sets),
J: ideal coding Baur-Monk invariants.
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Grothendieck ring of a module

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module.
If Fis a field and VF is a nonzero F-vector space, then Ko(VE) = Z[x].

Structure theorem for Ko(Mg) (K.)

Ko(MR) = Z[X]/j,
X': multiplicative monoid of colours (pp-isomorphism classes of pp-sets),
J: ideal coding Baur-Monk invariants.

.

Corollary

If M #0, then there is a split embedding Z — Ko(M).
In particular Ko(M) is non-trivial proving Prest’s conjecture.

.
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Trivial Invariants Ideal: Real vector space Rgr

@ The pp-sets are points, lines, planes,---
@ The colours correspond to dimensions.
o Ko(Rgr) = Z[X] = Z[N].
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Trivial Invariants Ideal: Real vector space Rgr

@ The pp-sets are points, lines, planes,---
@ The colours correspond to dimensions.
o Ko(Rgr) = Z[X] = Z[N].

Point 1
Line X
XuY 2x -1
XYUYZuZX | 3x>-3x+1
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@ The colours correspond to dimensions.
o Ko(Rgr) = Z[X] = Z[N].

Point 1
Line X
XuY 2x -1
XYUYZuZX | 3x>-3x+1

Nontrivial Invariants Ideal: Abelian group of integers
e Z=02Z)u(2Z+1)
e [2Z]=[Z]=[2Z+1]
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Trivial Invariants Ideal: Real vector space Rgr

@ The pp-sets are points, lines, planes,---
@ The colours correspond to dimensions.
o Ko(Rgr) = Z[X] = Z[N].

Point 1
Line X
XuY 2x -1
XYUYZuZX | 3x>-3x+1

Nontrivial Invariants Ideal: Abelian group of integers
e Z=02Z)u(2Z+1)
e [2Z]=[Z]=[2Z+1]
o [Z] =2[Z] holds in Ko(Zz)
o Ko(Zz)=Z
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Sketch of the proof

Grothendieck ring has another presentations in terms of cut-and-paste
relations.
It can also be thought of as the linearization of the boolean algebra.
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@ Boolean algebra of definable sets is free over the meet semilattice of
pp-sets.
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@ Each definable set can be uniquely expressed as a finite union of
disjoint blocks.
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It can also be thought of as the linearization of the boolean algebra.

@ Boolean algebra of definable sets is free over the meet semilattice of
pp-sets.

@ Each definable set can be uniquely expressed as a finite union of
disjoint blocks.

@ Each definable set can be assigned a shape - a finite support function
{pp-sets} — Z, with non-zero values called “local characteristics”.

@ Each local characteristic is a valuation - finitely additive measure -
and behaves well w.r.t. multiplication.
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Sketch of the proof

Grothendieck ring has another presentations in terms of cut-and-paste
relations.
It can also be thought of as the linearization of the boolean algebra.
@ Boolean algebra of definable sets is free over the meet semilattice of
pp-sets.
@ Each definable set can be uniquely expressed as a finite union of
disjoint blocks.
@ Each definable set can be assigned a shape - a finite support function
{pp-sets} — Z, with non-zero values called “local characteristics”.
@ Each local characteristic is a valuation - finitely additive measure -
and behaves well w.r.t. multiplication.
@ “Global characteristics” combine local characteristics according to
pp-isomorphism classes of pp-sets.
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Sketch of the proof

Grothendieck ring has another presentations in terms of cut-and-paste
relations.
It can also be thought of as the linearization of the boolean algebra.

Boolean algebra of definable sets is free over the meet semilattice of
pp-sets.

Each definable set can be uniquely expressed as a finite union of
disjoint blocks.

Each definable set can be assigned a shape - a finite support function
{pp-sets} — Z, with non-zero values called “local characteristics”.

Each local characteristic is a valuation - finitely additive measure -
and behaves well w.r.t. multiplication.

“Global characteristics” combine local characteristics according to
pp-isomorphism classes of pp-sets.

Combine the data of global characteristics to form the monoid ring
7| X].
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K1 of modules

Let F be an infinite field and V be an infinite F-vector space.
The theory Th(VE) eliminates quantifiers.
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Ko(VF) = Z[X];
Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.
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Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.

@ The index in K7 denotes the dimension.
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Let F be an infinite field and V be an infinite F-vector space.
The theory Th(VE) eliminates quantifiers.

Ko(VF) = Z[X];
Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.

@ The index in K7 denotes the dimension.
@ The factor of Z; in each dimension signifies the presence of (finitary)
permutation groups.
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Let F be an infinite field and V be an infinite F-vector space.
The theory Th(VE) eliminates quantifiers.

Ko(VF) = Z[X];
Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.

@ The index in K7 denotes the dimension.

@ The factor of Z; in each dimension signifies the presence of (finitary)
permutation groups.

@ Note that Kj is independent of F, but Kj isn't.
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The theory Th(VE) eliminates quantifiers.

Ko(VF) = Z[X];
Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.

@ The index in K7 denotes the dimension.

@ The factor of Z; in each dimension signifies the presence of (finitary)
permutation groups.

@ Note that Kj is independent of F, but Kj isn't.
@ Thus for vector spaces, Ki is a finer invariant than Kj.
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K1 of modules

Let F be an infinite field and V be an infinite F-vector space.
The theory Th(VE) eliminates quantifiers.

Ko(VF) = Z[X];
Ki(VE) =Z2 & ®,51(Z2 ® F*), where F* : multiplicative group of units.

@ The index in K7 denotes the dimension.

@ The factor of Z; in each dimension signifies the presence of (finitary)
permutation groups.

@ Note that Kj is independent of F, but Kj isn't.
@ Thus for vector spaces, Ki is a finer invariant than Kj.

Conjecture (K.)

If 7(Mg) =0 and, for Ae X, Autp,(A) denotes the pp-automorphism
group of any pp-set in A, then Ki(Mg) = @ acx (Z2 ® Autpp(A)?P).
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