K-theory of modules as model-theoretic structures

Amit Kuber

Second University of Naples, Caserta, Italy expinfinity1@gmail.com

21 June 2015

Amit Kuber (Napoli 2)

K-theory of modules

21 June 2015 0 / 9

Grothendieck ring of varieties, $K_0(Var_k)$, for $k \models ACF$

- First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
- Kontsevich used as value ring for motivic integration.
- Varieties are precisely the definable subsets of k^n (Q.E. for ACF).

Grothendieck ring of varieties, $K_0(Var_k)$, for $k \models ACF$

- First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
- Kontsevich used as value ring for motivic integration.
- Varieties are precisely the definable subsets of k^n (Q.E. for ACF).
- L: language, M: L-structure.
- Definable always means definable with parameters from *M*.
- $\overline{\mathrm{Def}}(M)$: collection of definable subsets of M^n , $n \ge 1$.
- Definable isomorphism is a bijection with definable graph.
- $[]: \overline{\operatorname{Def}}(M) \to \widetilde{\operatorname{Def}}(M)$ is the natural surjection.
- (Def(M), □, ×, Ø, {*}) is an L_{ring}-structure a commutative semiring.

Grothendieck ring of varieties, $K_0(Var_k)$, for $k \models ACF$

- First appeared in a letter of Grothendieck to Serre (dated 16-8-1964).
- Kontsevich used as value ring for motivic integration.
- Varieties are precisely the definable subsets of k^n (Q.E. for ACF).
- L: language, M: L-structure.
- Definable always means definable with parameters from *M*.
- $\overline{\mathrm{Def}}(M)$: collection of definable subsets of M^n , $n \ge 1$.
- Definable isomorphism is a bijection with definable graph.
- $[]: \overline{\mathrm{Def}}(M) \to \widetilde{\mathrm{Def}}(M)$ is the natural surjection.
- $(\widetilde{\mathrm{Def}}(M), \sqcup, \times, \varnothing, \{*\})$ is an L_{ring} -structure a commutative semiring.

(Krajíček-Scanon)

The model-theoretic Grothendieck ring, $K_0(M)$, is the ring completion of the above semiring.

- K_0 (finite structure) $\cong \mathbb{Z}$.
- Cluckers-Haskell: $K_0(\mathbb{F}_q((t))) = 0, \ K_0(\mathbb{Q}_p) = 0.$
- Krajíček-Scanlon: $K_0(RCF) \cong \mathbb{Z}, \mathbb{Z}[X_i : i \in \mathfrak{c}] \subseteq K_0(\mathbb{C}).$
- Denef-Loeser: $K_0(\mathbb{C})$ admits $\mathbb{Z}[u, v]$ as a quotient.

- K_0 (finite structure) $\cong \mathbb{Z}$.
- Cluckers-Haskell: $K_0(\mathbb{F}_q((t))) = 0, \ K_0(\mathbb{Q}_p) = 0.$
- Krajíček-Scanlon: $K_0(RCF) \cong \mathbb{Z}, \mathbb{Z}[X_i : i \in \mathfrak{c}] \subseteq K_0(\mathbb{C}).$
- Denef-Loeser: $\mathcal{K}_0(\mathbb{C})$ admits $\mathbb{Z}[u, v]$ as a quotient.
- A structure *M* satisfies definable ontoPHP iff $K_0(M) \neq 0$.

- K_0 (finite structure) $\cong \mathbb{Z}$.
- Cluckers-Haskell: $K_0(\mathbb{F}_q((t))) = 0$, $K_0(\mathbb{Q}_p) = 0$.
- Krajíček-Scanlon: $K_0(RCF) \cong \mathbb{Z}, \mathbb{Z}[X_i : i \in \mathfrak{c}] \subseteq K_0(\mathbb{C}).$
- Denef-Loeser: $K_0(\mathbb{C})$ admits $\mathbb{Z}[u, v]$ as a quotient.
- A structure *M* satisfies definable ontoPHP iff $K_0(M) \neq 0$.
- If M, N are L-structures and $M \leq N$ then $K_0(M) \leq K_0(N)$.
- If $M \equiv N$, then $\widetilde{\text{Def}}(M) \equiv_{\exists_1} \widetilde{\text{Def}}(N)$ in L_{ring} . As the Grothendieck ring $K_0(M)$ is existentially interpretable in $\widetilde{\text{Def}}(M)$, we have $K_0(M) \equiv_{\exists_1} K_0(N)$.

- K_0 (finite structure) $\cong \mathbb{Z}$.
- Cluckers-Haskell: $K_0(\mathbb{F}_q((t))) = 0, \ K_0(\mathbb{Q}_p) = 0.$
- Krajíček-Scanlon: $K_0(RCF) \cong \mathbb{Z}, \mathbb{Z}[X_i : i \in \mathfrak{c}] \subseteq K_0(\mathbb{C}).$
- Denef-Loeser: $K_0(\mathbb{C})$ admits $\mathbb{Z}[u, v]$ as a quotient.
- A structure *M* satisfies definable ontoPHP iff $K_0(M) \neq 0$.
- If M, N are L-structures and $M \leq N$ then $K_0(M) \leq K_0(N)$.
- If $M \equiv N$, then $\widetilde{\text{Def}}(M) \equiv_{\exists_1} \widetilde{\text{Def}}(N)$ in L_{ring} . As the Grothendieck ring $K_0(M)$ is existentially interpretable in $\widetilde{\text{Def}}(M)$, we have $K_0(M) \equiv_{\exists_1} K_0(N)$.

Conjecture (Prest)

 \mathcal{R} : unital ring, $L_{\mathcal{R}}$: language of right \mathcal{R} -modules, $M_{\mathcal{R}}$: right \mathcal{R} -module. If $M \neq 0$, then $K_0(M_{\mathcal{R}}) \neq 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

K-theory of Symmetric Monoidal Groupoids

- Groupoid: A category where every morphism has a two-sided inverse.
- Connected Groupoid: A groupoid \mathcal{G} where $\mathcal{G}(A, B) \neq \emptyset \ \forall A, B \in \mathcal{G}$.

Proposition

In a connected groupoid \mathcal{G} , the group $\mathcal{G}(A, A)$ is in bijection with the set $\mathcal{G}(A, B)$ for all $A, B \in \mathcal{G}$.

K-theory of Symmetric Monoidal Groupoids

- Groupoid: A category where every morphism has a two-sided inverse.
- Connected Groupoid: A groupoid \mathcal{G} where $\mathcal{G}(A, B) \neq \emptyset \ \forall A, B \in \mathcal{G}$.

Proposition

In a connected groupoid \mathcal{G} , the group $\mathcal{G}(A, A)$ is in bijection with the set $\mathcal{G}(A, B)$ for all $A, B \in \mathcal{G}$.

- Symmetric monoidal groupoid $(S, \star, 1)$: A groupoid where \star satisfies axioms analogous to a commutative monoid.
- Quillen's $S^{-1}S$ construction: The group completion groupoid of *S*.

K-theory of Symmetric Monoidal Groupoids

- Groupoid: A category where every morphism has a two-sided inverse.
- Connected Groupoid: A groupoid \mathcal{G} where $\mathcal{G}(A, B) \neq \emptyset \ \forall A, B \in \mathcal{G}$.

Proposition

In a connected groupoid \mathcal{G} , the group $\mathcal{G}(A, A)$ is in bijection with the set $\mathcal{G}(A, B)$ for all $A, B \in \mathcal{G}$.

- Symmetric monoidal groupoid $(S, \star, 1)$: A groupoid where \star satisfies axioms analogous to a commutative monoid.
- Quillen's $S^{-1}S$ construction: The group completion groupoid of S.

Definition (Quillen) $K_n : SMonGpd \xrightarrow{S^{-1}S} SMonGpd \xrightarrow{B} Top \xrightarrow{\pi_n} Ab$ Amit Kuber (Napoli 2) K-theory of modules 21 June 2015 3 / 9

The groups $K_n(\text{FinSets}^{iso})$ are the stable homotopy groups of spheres, π_n^s . In particular, $K_0(\text{FinSets}^{iso}) = \mathbb{Z}$ and $K_1(\text{FinSets}^{iso}) = \mathbb{Z}_2$.

The groups $K_n(\text{FinSets}^{iso})$ are the stable homotopy groups of spheres, π_n^s . In particular, $K_0(\text{FinSets}^{iso}) = \mathbb{Z}$ and $K_1(\text{FinSets}^{iso}) = \mathbb{Z}_2$.

A pairing on $(S, \star, 1)$ is a functor $\otimes : S \times S \to S$ that bi-distributes over \star .

Theorem (Loday)

A pairing on S gives product maps $K_p(S) \otimes K_q(S) \rightarrow K_{p+q}(S)$. In particular, $K_0(S)$ gets a ring structure.

The groups $K_n(\text{FinSets}^{iso})$ are the stable homotopy groups of spheres, π_n^s . In particular, $K_0(\text{FinSets}^{iso}) = \mathbb{Z}$ and $K_1(\text{FinSets}^{iso}) = \mathbb{Z}_2$.

A pairing on $(S, \star, 1)$ is a functor $\otimes : S \times S \to S$ that bi-distributes over \star .

Theorem (Loday)

A pairing on S gives product maps $K_p(S) \otimes K_q(S) \rightarrow K_{p+q}(S)$. In particular, $K_0(S)$ gets a ring structure.

If $\mathcal{S}(M) \coloneqq (\overline{\mathrm{Def}}(M)^{iso}, \sqcup, \times, \emptyset, \{*\})$, then $K_0(M) \cong K_0(\mathcal{S}(M))$.

Definition (K.)

For $n \ge 0$, $K_n(M) := K_n(\mathcal{S}(M))$; functorial on elementary embeddings.

イロト 不得 トイヨト イヨト 二日

The groups $K_n(\text{FinSets}^{iso})$ are the stable homotopy groups of spheres, π_n^s . In particular, $K_0(\text{FinSets}^{iso}) = \mathbb{Z}$ and $K_1(\text{FinSets}^{iso}) = \mathbb{Z}_2$.

A pairing on $(S, \star, 1)$ is a functor $\otimes : S \times S \to S$ that bi-distributes over \star .

Theorem (Loday)

A pairing on S gives product maps $K_p(S) \otimes K_q(S) \rightarrow K_{p+q}(S)$. In particular, $K_0(S)$ gets a ring structure.

If $\mathcal{S}(M) \coloneqq (\overline{\mathrm{Def}}(M)^{iso}, \sqcup, \times, \emptyset, \{*\})$, then $K_0(M) \cong K_0(\mathcal{S}(M))$.

Definition (K.)

For $n \ge 0$, $K_n(M) := K_n(\mathcal{S}(M))$; functorial on elementary embeddings.

If *M* is finite, then $\mathcal{S}(M) \simeq \text{FinSets}^{iso}$ and hence $K_n(M) = \pi_n^s$.

Model theory of modules

 \mathcal{R} : unital ring, $L_{\mathcal{R}} = \langle 0, +, -, m_r : r \in \mathcal{R} \rangle$, M: right \mathcal{R} -module.

- A positive primitive (pp) formula is an $L_{\mathcal{R}}(M)$ -formula of the form $\exists \overline{y}(\overline{x} \ \overline{y} \ \overline{a})G = 0$, where G is a finite matrix with entries in \mathcal{R} and $\overline{a} \in M$.
- Every parameter free *pp*-formula defines a subgroup of *Mⁿ* and a general *pp*-formula defines either the empty set or a coset of a *pp*-subgroup.

Model theory of modules

 \mathcal{R} : unital ring, $L_{\mathcal{R}} = \langle 0, +, -, m_r : r \in \mathcal{R} \rangle$, M: right \mathcal{R} -module.

- A positive primitive (pp) formula is an $L_{\mathcal{R}}(M)$ -formula of the form $\exists \overline{y}(\overline{x} \ \overline{y} \ \overline{a})G = 0$, where G is a finite matrix with entries in \mathcal{R} and $\overline{a} \in M$.
- Every parameter free *pp*-formula defines a subgroup of *Mⁿ* and a general *pp*-formula defines either the empty set or a coset of a *pp*-subgroup.
- For *pp*-subgroups A, B, define the invariant *Inv*(M, A, B) to be the index [A: A ∩ B] ∈ N ∪ {∞}.

Model theory of modules

 \mathcal{R} : unital ring, $L_{\mathcal{R}} = \langle 0, +, -, m_r : r \in \mathcal{R} \rangle$, M: right \mathcal{R} -module.

- A positive primitive (pp) formula is an $L_{\mathcal{R}}(M)$ -formula of the form $\exists \overline{y}(\overline{x} \ \overline{y} \ \overline{a})G = 0$, where G is a finite matrix with entries in \mathcal{R} and $\overline{a} \in M$.
- Every parameter free *pp*-formula defines a subgroup of *Mⁿ* and a general *pp*-formula defines either the empty set or a coset of a *pp*-subgroup.
- For *pp*-subgroups A, B, define the invariant *Inv*(M, A, B) to be the index [A: A ∩ B] ∈ N ∪ {∞}.

Baur-Monk pp-elimination theorem

Theory of M is determined by the invariants of pp-pairs of subgroups of M. Every definable subset of M^n , $n \ge 1$ is a boolean combination of pp-definable sets.

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module. If F is a field and V_F is a nonzero F-vector space, then $K_0(V_F) \cong \mathbb{Z}[x]$.

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module. If F is a field and V_F is a nonzero F-vector space, then $K_0(V_F) \cong \mathbb{Z}[x]$.

Structure theorem for $K_0(M_R)$ (K.)

 $K_0(M_{\mathcal{R}}) \cong \mathbb{Z}[\mathcal{X}]/\mathcal{J};$

 \mathcal{X} : multiplicative monoid of colours (*pp*-isomorphism classes of *pp*-sets), \mathcal{J} : ideal coding Baur-Monk invariants.

Theorem (Perera)

Grothendieck ring is an invariant of the theory of the module. If F is a field and V_F is a nonzero F-vector space, then $K_0(V_F) \cong \mathbb{Z}[x]$.

Structure theorem for $K_0(M_R)$ (K.)

 $K_0(M_{\mathcal{R}}) \cong \mathbb{Z}[\mathcal{X}]/\mathcal{J};$

 \mathcal{X} : multiplicative monoid of colours (*pp*-isomorphism classes of *pp*-sets), \mathcal{J} : ideal coding Baur-Monk invariants.

Corollary

If $M \neq 0$, then there is a split embedding $\mathbb{Z} \to K_0(M)$. In particular $K_0(M)$ is non-trivial proving Prest's conjecture.

イロト イポト イヨト イヨト 二日

- The pp-sets are points, lines, planes,...
- The colours correspond to dimensions.
- $\mathcal{K}_0(\mathbb{R}_{\mathbb{R}}) \cong \mathbb{Z}[X] \cong \mathbb{Z}[\mathbb{N}].$

- The pp-sets are points, lines, planes,...
- The colours correspond to dimensions.
- $\mathcal{K}_0(\mathbb{R}_{\mathbb{R}}) \cong \mathbb{Z}[X] \cong \mathbb{Z}[\mathbb{N}].$

Point	1
Line	x
$X \cup Y$	2x - 1
$XY \cup YZ \cup ZX$	$3x^2 - 3x + 1$

- The pp-sets are points, lines, planes,...
- The colours correspond to dimensions.
- $\mathcal{K}_0(\mathbb{R}_{\mathbb{R}}) \cong \mathbb{Z}[X] \cong \mathbb{Z}[\mathbb{N}].$

Point	1
Line	x
$X \cup Y$	2x - 1
$XY \cup YZ \cup ZX$	$3x^2 - 3x + 1$

Nontrivial Invariants Ideal: Abelian group of integers

- $\mathbb{Z} = (2\mathbb{Z}) \sqcup (2\mathbb{Z} + 1)$
- $[2\mathbb{Z}] = [\mathbb{Z}] = [2\mathbb{Z} + 1]$

- The pp-sets are points, lines, planes,...
- The colours correspond to dimensions.
- $K_0(\mathbb{R}_{\mathbb{R}}) \cong \mathbb{Z}[X] \cong \mathbb{Z}[\mathbb{N}].$

Point	1
Line	x
$X \cup Y$	2x - 1
$XY \cup YZ \cup ZX$	$3x^2 - 3x + 1$

Nontrivial Invariants Ideal: Abelian group of integers

- $\mathbb{Z} = (2\mathbb{Z}) \sqcup (2\mathbb{Z} + 1)$
- $[2\mathbb{Z}] = [\mathbb{Z}] = [2\mathbb{Z} + 1]$
- $[\mathbb{Z}] = 2[\mathbb{Z}]$ holds in $K_0(\mathbb{Z}_{\mathbb{Z}})$
- $K_0(\mathbb{Z}_{\mathbb{Z}}) \cong \mathbb{Z}$

Grothendieck ring has another presentations in terms of cut-and-paste relations.

Grothendieck ring has another presentations in terms of cut-and-paste relations.

It can also be thought of as the linearization of the boolean algebra.

 Boolean algebra of definable sets is free over the meet semilattice of pp-sets.

Grothendieck ring has another presentations in terms of cut-and-paste relations.

- Boolean algebra of definable sets is free over the meet semilattice of pp-sets.
- Each definable set can be uniquely expressed as a finite union of disjoint blocks.

Grothendieck ring has another presentations in terms of cut-and-paste relations.

- Boolean algebra of definable sets is free over the meet semilattice of pp-sets.
- Each definable set can be uniquely expressed as a finite union of disjoint blocks.
- Each definable set can be assigned a shape a finite support function $\{pp\text{-sets}\} \rightarrow \mathbb{Z}$, with non-zero values called "local characteristics".
- Each local characteristic is a valuation finitely additive measure and behaves well w.r.t. multiplication.

Grothendieck ring has another presentations in terms of cut-and-paste relations.

- Boolean algebra of definable sets is free over the meet semilattice of pp-sets.
- Each definable set can be uniquely expressed as a finite union of disjoint blocks.
- Each definable set can be assigned a shape a finite support function $\{pp\text{-sets}\} \rightarrow \mathbb{Z}$, with non-zero values called "local characteristics".
- Each local characteristic is a valuation finitely additive measure and behaves well w.r.t. multiplication.
- "Global characteristics" combine local characteristics according to *pp*-isomorphism classes of *pp*-sets.

Grothendieck ring has another presentations in terms of cut-and-paste relations.

- Boolean algebra of definable sets is free over the meet semilattice of pp-sets.
- Each definable set can be uniquely expressed as a finite union of disjoint blocks.
- Each definable set can be assigned a shape a finite support function $\{pp\text{-sets}\} \rightarrow \mathbb{Z}$, with non-zero values called "local characteristics".
- Each local characteristic is a valuation finitely additive measure and behaves well w.r.t. multiplication.
- "Global characteristics" combine local characteristics according to *pp*-isomorphism classes of *pp*-sets.
- Combine the data of global characteristics to form the monoid ring $\mathbb{Z}[\mathcal{X}].$

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

 $K_0(V_F) = \mathbb{Z}[X];$

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

$$\begin{split} & \mathcal{K}_0(V_F) = \mathbb{Z}[X]; \\ & \mathcal{K}_1(V_F) = \mathbb{Z}_2 \oplus \bigoplus_{n \geq 1} (\mathbb{Z}_2 \oplus F^{\times}), \text{ where } F^{\times} : \text{multiplicative group of units.} \end{split}$$

• The index in K_1 denotes the dimension.

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

- The index in K_1 denotes the dimension.
- The factor of \mathbb{Z}_2 in each dimension signifies the presence of (finitary) permutation groups.

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

- The index in K_1 denotes the dimension.
- The factor of \mathbb{Z}_2 in each dimension signifies the presence of (finitary) permutation groups.
- Note that K_0 is independent of F, but K_1 isn't.

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

- The index in K_1 denotes the dimension.
- The factor of \mathbb{Z}_2 in each dimension signifies the presence of (finitary) permutation groups.
- Note that K_0 is independent of F, but K_1 isn't.
- Thus for vector spaces, K_1 is a finer invariant than K_0 .

Let F be an infinite field and V be an infinite F-vector space. The theory $Th(V_F)$ eliminates quantifiers.

Theorem (K.)

$$\begin{split} & \mathcal{K}_0(V_F) = \mathbb{Z}[X]; \\ & \mathcal{K}_1(V_F) = \mathbb{Z}_2 \oplus \bigoplus_{n \geq 1} (\mathbb{Z}_2 \oplus F^{\times}), \text{ where } F^{\times} : \text{multiplicative group of units.} \end{split}$$

- The index in K_1 denotes the dimension.
- The factor of \mathbb{Z}_2 in each dimension signifies the presence of (finitary) permutation groups.
- Note that K_0 is independent of F, but K_1 isn't.
- Thus for vector spaces, K_1 is a finer invariant than K_0 .

Conjecture (K.)

If $\mathcal{J}(M_{\mathcal{R}}) = 0$ and, for $\mathcal{A} \in \mathcal{X}$, $\operatorname{Aut}_{pp}(\mathcal{A})$ denotes the *pp*-automorphism group of any *pp*-set in \mathcal{A} , then $\mathcal{K}_1(M_{\mathcal{R}}) = \bigoplus_{\mathcal{A} \in \mathcal{X}} (\mathbb{Z}_2 \oplus \operatorname{Aut}_{pp}(\mathcal{A})^{ab})$.

- J. Krajíček and T. Scanlon, Combinatorics with definable sets: Euler characteristics and Grothendieck rings, Bull. Symb. Logic, 6(3) (2000), 311-330.
- A. Kuber, Grothendiek ring of theories of modules, Annals of pure and applied logic, 166 (2015), 369-407.
- A. Kuber, K-theory of Theories of Modules and Algebraic Varieties, Doctoral Thesis, University of Manchester, 2014.
- A. Kuber, On the Grothendieck ring of varieties, Math. Proc. Camb. Phil. Soc., 158(3) (2015), 477-486.
- S. Perera, Grothendieck Rings of Theories of Modules, Doctoral Thesis, University of Manchester, 2011.
- C. Weibel, The K-book: An introduction to algebraic K-theory, Graduate Studies in Math., Vol. 145, AMS, 2013.

THANK YOU!