IMPRECISE PROBABILITIES ON MV-ALGEBRAS REVISITED

Tomáš Kroupa

June 21, 2015

Department of Mathematics University of Milan

Uncertain reasoning for many-valued events

- events are identified with elements of some MV-algebra M
- ► we adopt a bookmaking scheme in which a bookmaker and a bettor wager money on events $a_1, \ldots, a_k \in M$
- ► the betting odds $t(a_1), \ldots, t(a_k) \in [0, 1]$ are coherent if there is no winning strategy for the bettor

Coherence theorems state the following equivalence

- 1 the book $t(a_1), \ldots, t(a_k) \in [0, 1]$ is coherent
- t can be extended to a particular functional on M

The underlying booking schemes determine the properties of *t*:

- 1 de Finetti: Boolean algebra M, t is a probability measure
- 2 Mundici: MV-algebra M, t is a state
- 3 Montagna et al.: *t* is an upper/lower state

We will look at the properties of lower states in detail.

MV-algebras and states

Lower states

Comonotonically additive lower states

MV-ALGEBRAS AND STATES

Definition (Chang, 1958)

An MV-algebra is an algebra $\langle M, \oplus, \neg, \mathbf{0} \rangle$ such that

- $\langle M, \oplus, \mathbf{0} \rangle$ is an abelian monoid
- ▶ $\neg \neg a = a$
- ▶ a ⊕ ¬0 = ¬0
- $\blacktriangleright \neg (\neg a \oplus b) \oplus b = \neg (\neg b \oplus a) \oplus a$

Derived operation	Definition
1	0
$a \odot b$	$\neg(\neg a \oplus \neg b)$
$a \lor b$	$\neg (\neg a \oplus b) \oplus b$

The real unit interval [0,1] with the operations:

Operation	Definition
0	0
1	1
$a \oplus b$	min(<i>a</i> + <i>b</i> , 1)
$a \odot b$	max(<i>a</i> + <i>b</i> − 1, 0)
$\neg a$	1 – a

The total order is the usual \leq .

Example

Any Boolean algebra: $\oplus = \lor, \odot = \land$

Example

Family C of functions $X \rightarrow [0, 1]$ with the pointwise operations:

- ▶ 0,1 ∈ C
- if $f \in C$, then $\neg f \in C$
- if $f, g \in C$, then $f \oplus g \in C$

Example

Let G be an abelian ℓ -group with the order unit 1. The order interval

 $\Gamma(G) := [0, 1]$

is an MV-algebra with

 $a \oplus b = (a+b) \wedge \mathbf{1}$ $\neg a = \mathbf{1} - a$

 $M = \Gamma(G)$

Theorem (Mundici)

 Γ is a categorical equivalence between

- the category of MV-algebras and
- the category of abelian ℓ -groups with an order unit

MV-algebra	ℓ-group
{0,1} [0,1] ⁿ	$\langle \mathbb{Z}, 1 angle \ \langle \mathbb{R}^n, (1, \dots, 1) angle$

A state of an MV-algebra M is a functional s: $M \rightarrow [0, 1]$ such that s(1) = 1 and

 $s(a \oplus b) = s(a) + s(b)$, whenever $a \odot b = 0$.

Example

- ► finitely-additive probability on a Boolean algebra M
- ▶ valuation := MV-homomorphism $M \rightarrow [0, 1]_{MV}$
- integral over MV-algebra of continuous functions

Contravariant functor Proof by embedding $M \in \mathsf{MV} \mapsto X_M \in \mathsf{Comp}$ $M \hookrightarrow G \hookrightarrow G(\mathbb{Q}) \hookrightarrow C(X_M)$

Certain bookmaking schemes do not lead to additivity:

 M. Fedel, K. Keimel, F. Montagna, and W. Roth.
 Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.
 Forum Mathematicum, 25(2):405–441, 2013.

LOWER STATES

Let G be an ℓ -group. A functional $t: G \to \mathbb{R}$ is a lower state if it is

- **1** monotone: $a \le b$ implies $t(a) \le t(b)$
- **2** superadditive: $t(a + b) \ge t(a) + t(b)$
- **3** \mathbb{N} -homogeneous: t(na) = nt(a) for every $n \in \mathbb{N}$
- **4** strongly normalized: t(1) = 1 and t(-1) = -1

Example

Let $\mathcal{C} \neq \emptyset$ be a set of states of G and put

$$\mathbf{t}_{\mathcal{C}}(a) := \inf\{\mathbf{s}(a) \mid \mathbf{s} \in \mathcal{C}\}, \qquad a \in G.$$

Let M be an MV-algebra. We call $t: M \rightarrow [0, 1]$ a lower state if t is the restriction of a lower state of the enveloping ℓ -group of M.

Let M be an MV-algebra. We call $t: M \to [0, 1]$ a lower state if t is the restriction of a lower state of the enveloping ℓ -group of M.

Proposition

Let M be a 2-divisible MV-algebra. There is a bijection between

- 1 lower states of M
- ② functionals $t: M \rightarrow [0, 1]$ that are monotone, superadditive, ℕ-homogeneous and satisfy for every $a \in M$:

$$t\left(a\oplus \frac{1}{n}\mathbf{1}\right)=t(a)+\frac{1}{n}, \text{ if } a\odot \frac{1}{n}\mathbf{1}=0 \text{ and } \mathbf{1} \text{ is divisible by } n\in\mathbb{N}$$

 $\mathcal{L}(M)$ set of all lower states of M $\mathcal{K}_{\mathcal{S}(M)}$ family of all nonempty compact convex sets in $\mathcal{S}(M)$

Theorem (Fedel, Keimel, Montagna and Roth, 2013)

Let M be a 2-divisible MV-algebra. There is a bijection between $\mathcal{L}(M)$ and $\mathcal{K}_{\mathcal{S}(M)}$ given by

 $t \in \mathcal{L}(M) \mapsto \mathcal{C}(t) := \{s \in \mathcal{S}(M) \mid s(a) \ge t(a) \ \forall a \in M\}$

and

$$\mathcal{C} \in \mathcal{K}_{\mathcal{S}(M)} \mapsto \mathbf{t}_{\mathcal{C}}(a) := \min\{s(a) \mid s \in \mathcal{C}\}$$

Proof by embedding

 $M \hookrightarrow G_2 \hookrightarrow C(X_M)$

- $\checkmark\,$ characterization of lower states by duality with sets of states
- \checkmark coherence criterion for non-reversible bookmaking
- * works only for 2-divisible MV-algebras
- * avoids the use of good sequences
- * important special cases are not discussed...

COMONOTONICALLY ADDITIVE LOWER STATES

Hardy, Littlewood, Pólya (1934) Schmeidler (1986)

Definition

Let *M* be a semisimple MV-algebra. Elements $a, b \in M$ are comonotonic (we write $a \approx b$) if for all valuations h, h',

 $h(a) \ge h'(a), h(b) \ge h'(b)$ or $h(a) \le h'(a), h(b) \le h'(b).$

Hardy, Littlewood, Pólya (1934) Schmeidler (1986)

Definition

Let *M* be a semisimple MV-algebra. Elements $a, b \in M$ are comonotonic (we write $a \approx b$) if for all valuations h, h',

 $h(a) \ge h'(a), h(b) \ge h'(b)$ or $h(a) \le h'(a), h(b) \le h'(b).$

Example

- ► M = boolean algebra, every chain is a comonotonic class
- ▶ any elements $a, b \in M$ with $a \oplus b = a$ are comonotonic
- $M = [0, 1]^n$, $S_{\pi} := \{ \mathbf{x} \in [0, 1]^n \mid x_{\pi(1)} \leq \cdots \leq x_{\pi(n)} \}$, where $\pi \in \Pi_n$

Let *M* be an MV-algebra. A functional $t: M \to [0, 1]$ is comonotonically additive if for every $a, b \in M$ such that $a \odot b = \mathbf{0}$ and $a \approx b$ we have

 $t(a \oplus b) = t(a) + t(b).$

- meaningful only when M is not a boolean algebra
- we are interested in comonotonically additive lower states

Let *M* be the finite direct product of standard MV-algebras [0, 1]. Then the maximal comonotonicity classes are the simplices

$$S_{\pi} = \{ \mathbf{x} \in [0, 1]^n \mid x_{\pi(1)} \le \dots \le x_{\pi(n)} \}, \qquad \pi \in \Pi_n$$

Proposition

Comonotonically additive lower states of $[0, 1]^n$ are exactly the concave Lovász functions $t: [0, 1]^n \rightarrow [0, 1]$, that is, each such t is

- continuous PL over each S_{π} , $\pi \in \Pi_n$
- concave
- t(1) = 1 and t(0) = 0

Theorem

There is a bijection between

- Comonotonically additive lower states of [0, 1]ⁿ
- **2** Generalized permutohedra in the standard *n*-simplex

- ① Characterize the comonotonicity classes in an MV-algebra
- Relax divisibility of M, but require comonotonicity of t
- Is there a bookmaking scheme attached to comonotonically additive lower states?