IMPRECISE PROBABILITIES ON MV-ALGEBRAS REVISITED

Tomáš Kroupa
June 21, 2015
Department of Mathematics
University of Milan

MOTIVATION

Uncertain reasoning for many-valued events

- events are identified with elements of some MV-algebra M
- we adopt a bookmaking scheme in which a bookmaker and a bettor wager money on events $a_{1}, \ldots, a_{k} \in M$
- the betting odds $t\left(a_{1}\right), \ldots, t\left(a_{k}\right) \in[0,1]$ are coherent if there is no winning strategy for the bettor

Coherence theorems state the following equivalence
(1) the book $t\left(a_{1}\right), \ldots, t\left(a_{k}\right) \in[0,1]$ is coherent
(2) t can be extended to a particular functional on M

GOAL

The underlying booking schemes determine the properties of t :
(1) de Finetti: Boolean algebra M, t is a probability measure
(2) Mundici: MV-algebra M, t is a state
(3) Montagna et al.: t is an upper/lower state

We will look at the properties of lower states in detail.

AGENDA

MV-algebras and states

Lower states

Comonotonically additive lower states

MV-ALGEBRAS AND STATES

MV-ALGEBRAS

Definition (Chang, 1958)

An $M V$-algebra is an algebra $\langle M, \oplus, \neg, 0\rangle$ such that

- $\langle M, \oplus, 0\rangle$ is an abelian monoid
- $\neg \neg a=a$
- $a \oplus \neg 0=\neg 0$
- $\neg(\neg a \oplus b) \oplus b=\neg(\neg b \oplus a) \oplus a$

Derived operation	Definition
1	$\neg 0$
$a \odot b$	$\neg(\neg a \oplus \neg b)$
$a \vee b$	$\neg(\neg a \oplus b) \oplus b$

STANDARD MV-ALGEBRA

The real unit interval $[0,1]$ with the operations:

Operation	Definition
0	0
1	1
$a \oplus b$	$\min (a+b, 1)$
$a \odot b$	$\max (a+b-1,0)$
$\neg a$	$1-a$

The total order is the usual \leq.

EXAMPLES OF MV-ALGEBRAS

Example

Any Boolean algebra:
$\oplus=\mathrm{V}, \odot=\wedge$

Example

Family C of functions $X \rightarrow[0,1]$ with the pointwise operations:

- $0,1 \in C$
- if $f \in C$, then $\neg f \in C$
- if $f, g \in C$, then $f \oplus g \in C$

Example

Let G be an abelian ℓ-group with the order unit 1. The order interval

$$
\Gamma(G):=[0,1]
$$

is an MV-algebra with

$$
\begin{aligned}
a \oplus b & =(a+b) \wedge 1 \\
\neg a & =1-a
\end{aligned}
$$

MV-ALGEBRAS ARE INTERVALS IN L-GROUPS

$$
M=\Gamma(G)
$$

Theorem (Mundici)
「 is a categorical equivalence between

- the category of MV-algebras and
- the category of abelian ℓ-groups with an order unit

MV-algebra	ℓ-group
$\{0,1\}$	$\langle\mathbb{Z}, 1\rangle$
$[0,1]^{n}$	$\left\langle\mathbb{R}^{n},(1, \ldots, 1)\right\rangle$

STATES

Definition

A state of an MV-algebra M is a functional $s: M \rightarrow[0,1]$ such that $s(1)=1$ and

$$
s(a \oplus b)=s(a)+s(b), \quad \text { whenever } a \odot b=0
$$

Example

- finitely-additive probability on a Boolean algebra M
- valuation $:=$ MV-homomorphism $M \rightarrow[0,1]_{M V}$
- integral over MV-algebra of continuous functions

REPRESENTATION OF STATES

Contravariant functor Proof by embedding

$$
\begin{array}{r}
M \in M V \mapsto X_{M} \in \mathrm{Comp} \\
M \hookrightarrow G \hookrightarrow G(\mathbb{Q}) \hookrightarrow C\left(X_{M}\right)
\end{array}
$$

RELAXING ADDITIVITY

Certain bookmaking schemes do not lead to additivity:
围
M. Fedel, K. Keimel, F. Montagna, and W. Roth.

Imprecise probabilities, bets and functional analytic methods in Łukasiewicz logic.
Forum Mathematicum, 25(2):405-441, 2013.

LOWER STATES

LOWER STATES OF ℓ-GROUPS

Definition

Let G be an ℓ-group. A functional $t: G \rightarrow \mathbb{R}$ is a lower state if it is
(1) monotone: $a \leq b$ implies $t(a) \leq t(b)$
(2) superadditive: $t(a+b) \geq t(a)+t(b)$
(3) \mathbb{N}-homogeneous: $t(n a)=n t(a)$ for every $n \in \mathbb{N}$
(4) strongly normalized: $t(1)=1$ and $t(-1)=-1$

Example

Let $\mathcal{C} \neq \emptyset$ be a set of states of G and put

$$
t_{C}(a):=\inf \{s(a) \mid s \in \mathcal{C}\}, \quad a \in G
$$

LOWER STATES OF MV-ALGEBRAS

Definition

Let M be an $M V$-algebra. We call $t: M \rightarrow[0,1]$ a lower state if t is the restriction of a lower state of the enveloping ℓ-group of M.

LOWER STATES OF MV-ALGEBRAS

Definition

Let M be an $M V$-algebra. We call $t: M \rightarrow[0,1]$ a lower state if t is the restriction of a lower state of the enveloping ℓ-group of M.

Proposition

Let M be a 2-divisible MV-algebra. There is a bijection between
(1) lower states of M
(2) functionals $t: M \rightarrow[0,1]$ that are monotone, superadditive, \mathbb{N}-homogeneous and satisfy for every $a \in M$:

$$
t\left(a \oplus \frac{1}{n} 1\right)=t(a)+\frac{1}{n}, \text { if } a \odot \frac{1}{n} 1=0 \text { and } 1 \text { is divisible by } n \in \mathbb{N}
$$

LOWER STATES AND SETS OF STATES

$\mathcal{L}(M)$ set of all lower states of M
$\mathcal{K}_{\mathcal{S}(M)}$ family of all nonempty compact convex sets in $\mathcal{S}(M)$

Theorem (Fedel, Keimel, Montagna and Roth, 2013)

Let M be a 2-divisible MV-algebra. There is a bijection between $\mathcal{L}(M)$ and $\mathcal{K}_{\mathcal{S}(M)}$ given by

$$
t \in \mathcal{L}(M) \mapsto \mathcal{C}(t):=\{s \in \mathcal{S}(M) \mid s(a) \geq t(a) \forall a \in M\}
$$

and

$$
\mathcal{C} \in \mathcal{K}_{\mathcal{S}(M)} \mapsto t_{C}(a):=\min \{s(a) \mid s \in \mathcal{C}\}
$$

REPRESENTATION OF LOWER STATES OF 2-DIVISIBLE MV-ALGEBRAS

lower states of M
$t^{\prime}(b):=\bar{t}(b):=2^{n} \cdot t\left(\frac{1}{2^{n}} a\right)-m$ lower states of G_{2}

Proof by embedding
$M \hookrightarrow G_{2} \hookrightarrow C\left(X_{M}\right)$

STOCKTAKING

\checkmark characterization of lower states by duality with sets of states
\checkmark coherence criterion for non-reversible bookmaking

* works only for 2-divisible MV-algebras
* avoids the use of good sequences
* important special cases are not discussed...

COMONOTONICALLY ADDITIVE LOWER

 STATES
COMONOTONICITY

Hardy, Littlewood, Pólya (1934) Schmeidler (1986)

Definition

Let M be a semisimple MV-algebra. Elements $a, b \in M$ are
comonotonic (we write $a \approx b$) if for all valuations h, h^{\prime},

$$
h(a) \geq h^{\prime}(a), h(b) \geq h^{\prime}(b) \quad \text { or } \quad h(a) \leq h^{\prime}(a), h(b) \leq h^{\prime}(b) .
$$

COMONOTONICITY

Hardy, Littlewood, Pólya (1934) Schmeidler (1986)

Definition

Let M be a semisimple MV-algebra. Elements $a, b \in M$ are
comonotonic (we write $a \approx b$) if for all valuations h, h^{\prime},

$$
h(a) \geq h^{\prime}(a), h(b) \geq h^{\prime}(b) \quad \text { or } \quad h(a) \leq h^{\prime}(a), h(b) \leq h^{\prime}(b) .
$$

Example

- $M=$ boolean algebra, every chain is a comonotonic class
- any elements $a, b \in M$ with $a \oplus b=a$ are comonotonic
- $M=[0,1]^{n}, S_{\pi}:=\left\{\mathbf{x} \in[0,1]^{n} \mid x_{\pi(1)} \leq \cdots \leq x_{\pi(n)}\right\}$, where $\pi \in \Pi_{n}$

COMONOTONICALLY ADDITIVE FUNCTIONALS

Definition

Let M be an MV-algebra. A functional $t: M \rightarrow[0,1]$ is comonotonically additive if for every $a, b \in M$ such that $a \odot b=0$ and $a \approx b$ we have

$$
t(a \oplus b)=t(a)+t(b)
$$

- meaningful only when M is not a boolean algebra
- we are interested in comonotonically additive lower states

COMONOTONICITY CLASSES IN $[0,1]^{n}$

Let M be the finite direct product of standard MV-algebras $[0,1]$. Then the maximal comonotonicity classes are the simplices

$$
S_{\pi}=\left\{\mathbf{x} \in[0,1]^{n} \mid x_{\pi(1)} \leq \cdots \leq x_{\pi(n)}\right\}, \quad \pi \in \Pi_{n}
$$

COMONOTONICALLY ADDITIVE LOWER STATES OF $[0,1]^{n}$

Proposition

Comonotonically additive lower states of $[0,1]^{n}$ are exactly the concave Lovász functions $t:[0,1]^{n} \rightarrow[0,1]$, that is, each such t is

- continuous PL over each $S_{\pi}, \pi \in \Pi_{n}$
- concave
- $t(1)=1$ and $t(0)=0$

Theorem

There is a bijection between
(1) Comonotonically additive lower states of $[0,1]^{n}$
(2) Generalized permutohedra in the standard n-simplex

OPEN PROBLEMS

(1) Characterize the comonotonicity classes in an MV-algebra
(2) Relax divisibility of M, but require comonotonicity of t
(3) Is there a bookmaking scheme attached to comonotonically additive lower states?

