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Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing
1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933
Modal system S5 axiomatizes the monadic (one-variable) fragment of
classical predicate logic (QCPC), where � is interpreted as ∀ and ♦ is
interpreted as ∃.

What about intuitionistic predicate logic (QIPC)?

Prior 1955
Introduces modal intuitionistic propositional calculus MIPC as an
intuitionistic analog of S5.
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Motivation & History

Bull 1966
MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5→QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to
recognize when a logic over MIPC axiomatizes the monadic fragment of a
logic over QIPC, and gave examples of infinitely many intuitionistic modal
logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Goal
Axiomatize monadic fragments of modal predicate logics using products
and relativized products of Kripke frames.
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Monadic Modal Logics

Language LMM

classical modal
language LM

the monadic
operator ∀
usual definition of
∃ϕ as ¬∀¬ϕ

Rules of Inference
substitution
modus ponens
�-necessitation
( ϕ

�ϕ
)

∀-necessitation
( ϕ

∀ϕ )

Minimal System mK
Least set of formulas of
LMM that contains:

all axioms of K for �
the S5 axioms for ∀
the bridge axiom
�∀ϕ →∀�ϕ

Monadic Modal Logic
A monadic modal logic (mm-logic) is an extension L of mK closed under
the above rules.

bL denotes the extension of a mm-logic L by the Barcan formula
∀�ϕ →�∀ϕ
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Modal Predicate Logics

Minimal System QK
Least set of formulas of QLM that
contains:

all theorems of QCPC
the axiom

�(ϕ → ψ)→ (�ϕ →�ψ)

the bridge axiom
�∀xϕ(x)→∀x�ϕ(x)

And is closed under:
uniform substitution
modus ponens
generalization
�-necessitation

Modal Predicate Logic

A modal predicate logic is an
extension M of QK closed under
the listed rules.
BM denotes the extension of a
modal predicate logic M by the
Barcan formula

∀x�ϕ(x)→�∀xϕ(x)

B
Unlike propositional modal
logics, many modal predicate
logics are not Kripke complete.
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Translation
First, for each propositional letter p of LMM , we associate a unary
predicate P(x).

Next, we define a translation
T : Form(LMM)→ Form(QLM) as follows:

T (p) = P(x) for propositional letters p

T (¬ϕ) = ¬T (ϕ)

T (ϕ ∧ψ) = T (ϕ)∧T (ψ)

T (�ϕ) = �T (ϕ)

T (∀ϕ) = ∀xT (ϕ)
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Galois Connection

For a mm-logic L⊇mK, define a
modal predicate logic:

Φ(L) = QK+{T (ϕ) : L ` ϕ}

For a modal predicate logic
M⊇ QK, define a mm-logic:

Ψ(M) = mK+{ϕ : M ` T (ϕ)}

Lemma
For L⊇mK and M⊇ QK

1 Φ and Ψ form a Galois connection, that is Φ(L)⊆M iff L⊆Ψ(M).

2 Ψ(Φ(L))⊇ L with equality iff L = Ψ(M) for some M⊇QK.

3 M⊇Φ(Ψ(M)) with equality iff M = Φ(L) for some L⊇mK.
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Monadic Fragment

Definition
We call L⊇mK the monadic fragment of a modal predicate logic
M⊇ QK if

L ` ϕ iff M ` T (ϕ)

and we denote this relationship by 〈L;M〉.

Goal
Develop a correspondence between models of mm-logics and models of
modal predicate logics, in order to obtain results similar to those of Ono
and Suzuki.
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Kripke Semantics

mK-frame

F = 〈W ,R,E〉
R is a binary relation
E is an equivalence
relation

RE(u)⊆ ER(u) for all
u ∈W

∃z•

w•

•
u
oo

E
// •
v

R

OO

Predicate Kripke Frame
F = 〈W ,R,D〉

D assigns to each w ∈W a
set of objects Dw

expanding domains: wRv
implies Dw ⊆Dv for all
w ,v ∈W
constant domains: Dw = Dv
for all w ,v ∈W

B
To translate between mK-frames and predicate Kripke frames
we need to work with a much smaller class of mK-frames,
arising from product frames.
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Products
Product Frame

F1 = 〈W1,R1〉 × F2 = 〈W2,R2〉

F1×F2 = 〈W1×W2,Rv ,Rh〉
(u1,v1)Rv (u2,v2) iff u1R1u2 and v1 = v2
(u1,v1)Rh(u2,v2) iff u1 = u2 and v1R2v2

Example

u2•

•
u1

R1

OO

F1 = 〈W1,R1〉

•
v1

•
v2
//R2oo

F2 = 〈W2,R2〉

(u2,v1)
•

(u2,v2)
•

•
(u1,v1)

•
(u1,v2)

F1×F2 = 〈W1×W2,Rv ,Rh〉
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Properties of Product Frames

Left Commutativity
(coml )

v•
Rh // w•

•
u

Rv

OO

•
∃z

Right Commutativity
(comr )

∃z•

w•

•
u Rh

// •
v

Rv

OO

Church-Rosser
Property (chr)

v•

∃z•

•
u

Rv

OO

Rh
// •
w
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Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Properties of ERP Frames

In our ERP frames F = 〈W ,Sv ,Sh〉, we take subframes of F1×F2 where
R2 = W2×W2 (modeling our S5 modality ∀),

so Sh is an equivalence
relation.

We write F = 〈W ,R,E 〉 where R = Sv and E = Sh.

Some Notes

chr is automatic when one of F1 or F2 is an S5-frame
full commutativity (com) ⇔ Barcan formula (full product frames)
We lose half of commutativity when restricted to ERP frames
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Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

ERP Frames → Predicate Frames
Constant Domains

F = 〈W ,R,E 〉
ERP frame

−→ F† =
〈
W †,R†,D

〉
predicate Kripke frame

(u2,v1)
• oo E // (u2,v2)

•

•
(u1,v1)

R

OO

Notes

uiR†uj implies Dui ⊆Duj

ϕv
x is used to denote the formula

obtained from ϕ by replacing
every free occurrence of x by v .

u2•

•
u1

R†

OO

〈
W †,R†〉= 〈W1,R1〉

D assigns to each u ∈W † a set
Du = {v ∈W2 : (u,v) ∈W }
(F†,x) � pv

x iff (F,(u,v)) � p
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predicate Kripke frame

(u2,v1)
• oo E // (u2,v2)

•

•
(u1,v1)

R

OO

Notes

uiR†uj implies Dui ⊆Duj

ϕv
x is used to denote the formula

obtained from ϕ by replacing
every free occurrence of x by v .

u2•
v1•

v2• Du2

•
u1

R†

OO

•
v1

Du1

〈
W †,R†〉= 〈W1,R1〉

D assigns to each u ∈W † a set
Du = {v ∈W2 : (u,v) ∈W }
(F†,x) � pv

x iff (F,(u,v)) � p
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Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translating Frames

Theorem

1 If F is an ERP frame and ϕ ∈ Form(LMM), then

(F,(u,v)) � ϕ iff (F†,u) � (T (ϕ))v
x .

2 If F is a predicate Kripke frame and ϕ ∈ Form(LMM), then

(F,u) � (T (ϕ))v
x iff (F×,(u,v)) � ϕ.

Note
This will ultimately allow us to generalize Ono & Suzuki’s results to
monadic modal logics.
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Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)
1 mK is complete with respect to the class of all ERP frames, and for

L ∈ {K4,S4,S5}, mL is complete with respect to the class of all ERP
frames for which R is either transitive (K4), a quasi-order (S4), or an
equivalence relation (S5).

2 bK is complete with respect to the class of all product frames, and for
L ∈ {K4,S4}, bL is complete with respect to the class of all product
frames for which R is either transitive (K4) or a quasi-order (S4).

B bS5 = mS5

Just as Ono & Suzuki adjusted the well-known Henkin construction for
intuitionistic modal logics, we can adjust similarly for mm-logics for a
simpler proof of the above theorem.
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L ∈ {K4,S4,S5}, mL is complete with respect to the class of all ERP
frames for which R is either transitive (K4), a quasi-order (S4), or an
equivalence relation (S5).

2 bK is complete with respect to the class of all product frames, and for
L ∈ {K4,S4}, bL is complete with respect to the class of all product
frames for which R is either transitive (K4) or a quasi-order (S4).

B bS5 = mS5

Just as Ono & Suzuki adjusted the well-known Henkin construction for
intuitionistic modal logics, we can adjust similarly for mm-logics for a
simpler proof of the above theorem. We don’t have time for this!
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Modified Henkin Construction

Start as usual...
1 mK 6` ϕ, set Γ00 = {¬ϕ}
2 Enumerate all formulas of L0 = LMM as ψ1,ψ2, ...

3 Γ0i+1 ={
Γ0i ∪{ψi+1} if Γ0i ∪{ψi+1} is consistent
Γ0i ∪{¬ψi+1} if Γ0i ∪{¬ψi+1} is consistent

4 Γ0 =
⋃

i Γ0i is maximal consistent

Add "witnesses"

5 Let vij (i , j = 1,2,3, ...) be new variables not
occurring in L0 and let V1 = /0

6 Enumerate all formulas of Γ0 of the form ∃ψ as
∃χ1,∃χ2, ...

7 Add the formula χj to Γ0 and add the new variable
v1j to V1

8 Expand to a maximal consistent set Γ1

9 After Γi has been constructed,
construct Γi+1 as above

10 Let Γω =
⋃

i Γi and VΓω =
⋃

i Vi

Construct the model
M = 〈W ,R,E ,V〉

Let W = {(Γ,v) : v ∈ VΓ}

(Γ,v)R(∆,u) iff �ψ ∈ Γ⇒ ψ ∈∆
for all formulas ψ and v = u
(Γ,v)E(∆,u) iff Γ = ∆

(Γ,v) ∈V(p) iff p ∈ Γ

When working with bK, we simply
take V to be the collection of all
variables and W = {(Γ,v) : v ∈V }.
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Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation Theorem
Theorem
Let L⊇mK be a mm-logic complete with respect to a class {Fi}i∈I of
ERP frames. If M⊇ QK is sound with respect to {F†

i }i∈I , then 〈L;M〉.

Notation
For L ∈ {K,K4,S4,S5},

mL (bL) denotes the least monadic extension of L (+ Barcan)
QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg’s original result to the following:

Corollary
For L ∈ {K,K4,S4,S5} we have 〈mL;QL〉 and for L ∈ {K,K4,S4} we
have 〈bL;BL〉.

B bS5 = mS5
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Relationship with Intuitionistic Logic

The bimodal logic mS4 was first considered by Fischer Servi.

She extended the Gödel translation of IPC to S4 to a translation of
formulas ϕ of MIPC to formulas ϕt of mS4 by defining

(�ϕ)t = �∀ϕt

(♦ϕ)t = ∃ϕt

She then proved MIPC ` ϕ iff mS4 ` ϕt .

The proof required mS4 ` ϕ ⇒QS4 ` T (ϕ), but the other implication was
left open.
Now we can see that the other implication holds as well and give a
simplified version of her proof that MIPC ` ϕ iff mS4 ` ϕt .
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