Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Monadic Fragments of Modal Predicate Logics

Kristina Brantley

New Mexico State University, Las Cruces, NM, USA

Topology, Algebra, and Categories in Logic 2015
Ischia, Italy

June 26, 2015

Syntax Translating Logics Semantics Translating Frames Putting it all Together
. . -
Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/ Turing
1937), but we can axiomatize decidable fragments using modal logic.

Syntax Translating Logics Semantics Translating Frames Putting it all Together
. . -
Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/ Turing
1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S5 axiomatizes the monadic (one-variable) fragment of
classical predicate logic (QCPC), where O is interpreted as V and ¢ is
interpreted as .

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/ Turing
1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S5 axiomatizes the monadic (one-variable) fragment of
classical predicate logic (QCPC), where O is interpreted as V and ¢ is
interpreted as .

What about intuitionistic predicate logic (QIPC)?

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/ Turing
1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S5 axiomatizes the monadic (one-variable) fragment of
classical predicate logic (QCPC), where O is interpreted as V and ¢ is
interpreted as .

What about intuitionistic predicate logic (QIPC)?

Introduces modal intuitionistic propositional calculus MIPC as an
intuitionistic analog of S5.

Syntax Translating Logics Semantics Translating Frames Putting it all Together
. . -
Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5 — QCPC)

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5 — QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to
recognize when a logic over MIPC axiomatizes the monadic fragment of a
logic over QIPC

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5 — QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to
recognize when a logic over MIPC axiomatizes the monadic fragment of a
logic over QIPC, and gave examples of infinitely many intuitionistic modal
logics which are monadic fragments of intermediate predicate logics.

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5 — QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to
recognize when a logic over MIPC axiomatizes the monadic fragment of a
logic over QIPC, and gave examples of infinitely many intuitionistic modal
logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic
(QIPC). (Using same translation as S5 — QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to
recognize when a logic over MIPC axiomatizes the monadic fragment of a
logic over QIPC, and gave examples of infinitely many intuitionistic modal
logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Goal

Axiomatize monadic fragments of modal predicate logics using products
and relativized products of Kripke frames.

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Introduction

Language Zyuv

@ classical modal
language %y

@ the monadic
operator V

@ usual definition of
Jo as =V—¢

Translating Logics Semantics Translating Frames

Monadic Modal Logics

Putting it all Together

Introduction Translating Logics Semantics Translating Frames Putting it all Together

Monadic Modal Logics

Language Zyuv Rules of Inference
@ classical modal @ substitution
language %y

@ modus ponens

o the mona;lilc @ [J-necessitation
operator)
peraer 7 ()

@ usual definition of O Veneeesshatfon

Jo as =V—¢

[
v (%

Introduction Translating Logics Semantics Translating Frames Putting it all Together

Monadic Modal Logics

Language Zyuv Rules of Inference Minimal System mK
@ classical modal @ substitution Least set of formulas of
language Ly %um that contains:

@ modus ponens

@ the monadic @ all axioms of K for (J

@ [J-necessitation

operator YV (Di;p) @ the S5 axioms for V
@ usual definition of O VYemeassdhenien @ the bridge axiom
do as V@) (% Ve — Vo

Introduction

Language Zyuv

@ classical modal
language %y

@ the monadic
operator V

@ usual definition of
Jo as =V—¢

Translating Logics Semantics

Translating Frames Putting it all Together

Monadic Modal Logics

Rules of Inference
@ substitution
@ modus ponens
@ [J-necessitation
(%)
Uep

@ V-necessitation

[
v (%

Monadic Modal Logic

Minimal System mK

Least set of formulas of
Zpm that contains:

@ all axioms of K for [J
@ the S5 axioms for V

@ the bridge axiom
Ve — Ve

@ A monadic modal logic (mm-logic) is an extension L of mK closed under
the above rules.

Introduction Translating Logics Semantics Translating Frames Putting it all Together

Monadic Modal Logics

Language Zyuv Rules of Inference Minimal System mK
@ classical modal @ substitution Least set of formulas of
language Ly %um that contains:

@ modus ponens

@ the monadic @ all axioms of K for (J

@ [J-necessitation

operator YV (D%D) @ the S5 axioms for V
@ usual definition of O VYemeassdhenien @ the bridge axiom
do as V@) (% Ve — Vo

Monadic Modal Logic

@ A monadic modal logic (mm-logic) is an extension L of mK closed under
the above rules.

@ bL denotes the extension of a mm-logic L by the Barcan formula
Ve — Ve

Introduction Syntax Translating Logics Semantics Translating Frames

Modal Predicate Logics

Minimal System QK

Least set of formulas of Q%) that
contains:

@ all theorems of QCPC
@ the axiom
O(e —) — (He — Oy)

@ the bridge axiom
OVxe(x) — VxOe(x)

Putting it all Together

Introduction Translating Logics Semantics Translating Frames
Modal Predicate Logics

Minimal System QK

Least set of formulas of Q%) that
contains:

@ all theorems of QCPC

@ the axiom
O(e — y) — (e — Oy)

@ the bridge axiom
OVxe(x) — VxOe(x)

And is closed under:
@ uniform substitution
@ modus ponens

@ generalization

@ [-necessitation

Putting it all Together

Introduction Translating Logics

Semantics Translating Frames Putting it all Together

Modal Predicate Logics

Minimal System QK

Least set of formulas of Q%) that
contains:

@ all theorems of QCPC

@ the axiom
O(e — y) — (e — Oy)

@ the bridge axiom
OVxe(x) — VxOe(x)

And is closed under:
@ uniform substitution
@ modus ponens
@ generalization

@ [-necessitation

Modal Predicate Logic

@ A modal predicate logic is an
extension M of QK closed under
the listed rules.

Introduction Translating Logics

Semantics Translating Frames Putting it all Together

Modal Predicate Logics

Minimal System QK

Least set of formulas of Q%) that
contains:

@ all theorems of QCPC

@ the axiom
O(e — y) — (e — Oy)

@ the bridge axiom
OVxe(x) — VxOe(x)

And is closed under:
@ uniform substitution
@ modus ponens
@ generalization

@ [-necessitation

Modal Predicate Logic

@ A modal predicate logic is an
extension M of QK closed under
the listed rules.

@ BM denotes the extension of a
modal predicate logic M by the
Barcan formula

VxOe(x) — OVxe(x)

Introduction

Translating Logics

Semantics Translating Frames

Putting it all Together

Modal Predicate Logics

Minimal System QK

Least set of formulas of Q.%), that
contains:

@ all theorems of QCPC

@ the axiom
O(e =) = (Oe = Dy)
the bridge axiom
OVxe(x) — VxOe(x)

And is closed under:

@ uniform substitution
@ modus ponens

@ generalization
°

[J-necessitation

Modal Predicate Logic

@ A modal predicate logic is an
extension M of QK closed under
the listed rules.

@ BM denotes the extension of a
modal predicate logic M by the
Barcan formula

VxOe(x) — OVxe(x)

Unlike propositional modal

logics, many modal predicate

logics are not Kripke complete.

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation

First, for each propositional letter p of £\, we associate a unary
predicate P(x).

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation

First, for each propositional letter p of £\, we associate a unary
predicate P(x). Next, we define a translation

T : Form(%ynm) — Form(Q-Z)) as follows:

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation

First, for each propositional letter p of £\, we associate a unary
predicate P(x). Next, we define a translation

T : Form(%ynm) — Form(Q-Z)) as follows:

@ T(p) = P(x) for propositional letters p

o T(—¢)=-T(9)

o T(oAy)=T(9)AT(y)

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation

First, for each propositional letter p of £\, we associate a unary
predicate P(x). Next, we define a translation

T : Form(%ynm) — Form(Q-Z)) as follows:

@ T(p) = P(x) for propositional letters p

° T(~¢)=-T(e)
° T(eAy)=T()AT(v)
o T(Op)=0T(e)
o T(Vp)=VxT(p)

Introduction Syntax Translating Logics Semantics Translating Frames

Galois Connection

For a mm-logic L © mK, define a
modal predicate logic:

O(L) =QK+{T(¢p): LI ¢}

Putting it all Together

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Galois Connection

For a mm-logic L © mK, define a For a modal predicate logic
modal predicate logic: M D QK, define a mm-logic:
O(L)=QK+{T(9):LF ¢} VY(M)=mK+{p:MF T(¢p)}

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Galois Connection

For a mm-logic L © mK, define a For a modal predicate logic
modal predicate logic: M D QK, define a mm-logic:
O(L)=QK+{T(9):LF ¢} Y(M)=mK+{p:MF T(p)}
Lemma

For L D mK and M D QK
@ ¢ and V form a Galois connection, that is (L) C M iff L C W(M).

@ W(d(L)) DL with equality iff L = W(M) for some M D QK.

Q@ M D d(W¥(M)) with equality iff M = ®(L) for some L O mK.

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Monadic Fragment

Definition
We call L D mK the monadic fragment of a modal predicate logic
M2 QK if

LFoiff ME T(o)

and we denote this relationship by (L; M).

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Monadic Fragment

Definition
We call L D mK the monadic fragment of a modal predicate logic
M2 QK if

LFoiff ME T(o)

and we denote this relationship by (L; M).

Goal

Develop a correspondence between models of mm-logics and models of
modal predicate logics, in order to obtain results similar to those of Ono
and Suzuki.

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Kripke Semantics

mK-frame

° 13: = <W7 Ra E>
@ R is a binary relation

@ E is an equivalence
relation

Introduction Syntax Translating Logics Translating Frames

Kripke Semantics

mK-frame

° S = <W7 Ra E>
@ R is a binary relation

@ E is an equivalence
relation

® RE(u) C ER(u) forall & =g~
ue W

<@ ——> @3
By]

Putting it all Together

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Kripke Semantics

mK-frame
@ R is a binary relation X ez
@ E is an equivalence R R
relation
@ RE(u) C ER(u) for all *=~F
ue W

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Kripke Semantics

mK-frame Predicate Kripke Frame
={(W,R,D
°S:<W’R’E> HZ E " OS <-)) >
@ R is a binary relation o <o ® D assigns to each w € W a
y A set of objects D,,
@ E is an equivalence R R
relation
@ RE(u) C ER(u) for all *=~F
ue W

Introduction Syntax Translating Logics Translating Frames Putting it all Together
Kripke Semantics

mK-frame Predicate Kripke Frame
e §=(W,R,D
° S: <W’ R, E> 3 'S <)) >
@ R is a binary relation .o < e . ® D assigns to each w € W a
A set of objects D,,
° Ellst.an aguiizlangs R TR @ expanding domains: wRv
relation N
implies D, C D,, for all
@ RE(u) C ER(u) for all S =~F ¢ w,ve W
ue W

Introduction Syntax Translating Logics

mK-frame

° S = <W7 Ra E>
@ R is a binary relation

@ E is an equivalence
relation

@ RE(u) C ER(u) for all
ueW

Semantics

Translating Frames Putting it all Together

Kripke Semantics

Predicate Kripke Frame
° §=(W,R,D)

@ D assigns to each we W a
set of objects D,,

@ expanding domains: wRv
implies D, C D,, for all
w,ve W

@ constant domains: D, = D,
for all w,v e W

Introduction Syntax Translating Logics

mK-frame

o §= <W7 R7 E>
@ R is a binary relation

@ E is an equivalence
relation

@ RE(u) C ER(u) for all
ue W

Translating Frames Putting it all

Kripke Semantics

Predicate Kripke Frame

° §=(W,R,D)

@ D assigns to each we W a

set of objects D,

@ expanding domains: wRv
implies D,, C D, for all
w,ve W

@ constant domains: D,, =
for all w,ve W

Together

Dy

To translate between mK-frames and predicate Kripke frames
we need to work with a much smaller class of mK-frames,

arising from product frames.

Monadic Fragments of Modal Predicate Logics

™

Introduction Syntax Translating Logics :) Tr. ing Frames Putting it all Together

Product Frame
@ F1=(W,R1) x 2= (Wa,Ry)

up
.
Ry
Ry
° o <——> 0
b vi Vo
1= (W1, Rr) T2 = (Wa, Ry)

Monadic Fragments of Modal Predicate Logics

Introduction Syntax Translating Logics Translating Frames
Products

Product Frame
@ F1=(W,R1) x F2=(Wa,Ry)
@ F1xFo= (W1 xWa, R, Rp)

Putting it all Together

(u2,v1)
”.2 °
Ry
Ry
° o <——> 0 °
uy i 2 (u1,v1)
1= (W1, Ry) T2 = (Wa, Ry)

T1 % T2 = (W1 x Wa, Ry, Ry)

(u2,v2)
[]

°
(u1,v2)

Monadic Fragments of Modal Predicate Logics

S "

Introduction Syntax Translating Logics Translating Frames
Products

Product Frame
o F1=(W,R1) x o= (Wo,Ry)
@ F1 xF2= (W1 x Wa,Ry,Rp)
o (u1,v1)Ry(u2,v0) iff upRyup and vi = vy

Putting it all Together

(u2,v1)
”.2 °
R1 RV
Ry
° o <——> 0 °
uy " 2 (u1,v1)
1= (W1, Ry) T2 = (Wa, Ry)

T1 % T2 = (W1 x Wa, Ry, Ry)

(u2,v2)
[]

Ry

°
(u1,v2)

Monadic Fragments of Modal Predicate Logics

S "

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Products

Product Frame
o F1=(W,R1) x o= (Wo,Ry)
@ F1 xF2= (W1 x Wa,Ry,Rp)
o (u1,v1)Ry(u2,v0) iff upRyup and vi = vy

® (u1,vi)Rp(u2,v0) iff ug = up and vy Rovy

(u2v1) Ry (u2,v2)
[] - []

up
°
Ry Ry Ry
Ry
o : S : e <—> o
uy L 2 (upvi) Rno (u1,v2)
1= (W1, Ry) T2 = (Wa, Ry) T1 % T2 = (W1 x Wa, Ry, Ry)
Monadic Fragments of Modal Predicate Logics

)

Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Introduction

(V1) Ry (u2,v2)
[) - [)
Ry, Ry
[) - [)
(uvi) Ro (u1,wv0)

§1 %X Fo = (W1 x Wa, Ry, Rp)

Product

Monadic Fragments of Modal Predicate Logics

Ry

Introduction Syntax Translating Logics

Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)

o 3': <W7SV7Sh>

(1) Ry (u2,v2)
[) - [)

Ry Ry

[) - [)
(uvi) Re (u1,v0)

§1 %X F2 = (W1 x Wa, Ry, Rp)

Product

Monadic Fragments of Modal Predicate Logics

)

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)

o §=(W,5,.5) (Example

e WC W x W, (u2,v1) Ry (u2,v2)
[) - [)

Ry Ry

[) - [)
(u1vi) Re o (u1,v0)

§1 %X F2 = (W1 x Wa, Ry, Rp)

Product

Monadic Fragments of Modal Predicate Logics

)

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)

o §=(W,5,.5) (Example

o WC W x W, (u2,v2)
°
@ S; is the restriction of R; to W for
i=hv
°
(u1,v1)
F=(W,S,,5h)
RP

Monadic Fragments of Modal Predicate Logics

)

Introduction Syntax Translating Logics

Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)

o S: <W7SV7Sh>
o WC W x W,

@ S; is the restriction of R; to W for
i=hv

4

Expanding Relativized Product
(ERP)

Example

(u2,v1) Ry (u2,v2)
e <> ‘e

Ry Ry

[) - []
(u1v1) Ra (u1,m)

§1 % F2 = (W1 x Wa, Ry, Rp)

Product

11 /21

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)

e F=(W.,S,.S) Example
o WC W xW, (U2‘V1) Sh (U2.7V2)
@ S; is the restriction of R; to W for
i= h7 v SV
Expanding Relativized Product e <——> o
(ERP) (u1,v1) (u1,v2)
o RP of §1 x5 8= (W, 50, 5w

11 /21

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)
° 3= (W,S,,S;) Example
o W W xW, (U2‘V1) Sh (U2.7V2)
@ S; is the restriction of R; to W for
i=hv 3,

Expanding Relativized Product e <——> o
(ERP) (u1,v1) (u1,v2)
@ RP of §1 X &2 s:<|évR7|;SVaSh>
o for (uj,vj) € W and uy € Wy, if ’

uiRyuy then (uy,v;) € W

11 /21

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Relativized Products

Relativized Product (RP)
(AKA Subframe)
° §=(W.S..5) Example
o WC Wi xW, (U2‘V1) Sh (U2‘V2)
@ S; is the restriction of R; to W for
i=hv 3,
Expanding Relativized Product o
(ERP) (U1,V1)
@ RP of §1 X &2 s:<|évR7|;SVaSh>
o for (uj,vj) € W and uy € Wy, if ’
uiRyuy then (uy,vj) e W

11 /21

Introduction Syntax Translating Logics Translating Frames Putting it all Together

Properties of Product Frames

Left Commutativity
(com')

Rp

[2

X
<
ce—> @<

12 /21

Introduction Syntax

Properties of Product Frames

Left Commutativity
(com')

v R, w
e ———> 0
A
Ry R,
o > @
u Ry 3z

Translating Logics

Semantics

Translating Frames

Putting it all Together

12 /21

Introduction Syntax

Properties of Product Frames

Left Commutativity
(com')

v R, w
e ———> 0
A
Ry R,
o > @
u Ry 3z

Translating Logics

Semantics

Right Commutativity
(com")

Ry

<@®—> @3

Rp

Translating Frames

Putting it all Together

12 /21

Introduction Syntax

Properties of Product Frames

Left Commutativity
(com')

v R, w
e ———> 0
A
Ry R,
o > @
u Ry 3z

Translating Logics

Semantics

Right Commutativity
(com")

3z Ry w
o35> (3
A
Ry Ry
e ——>0
u Ry v

Translating Frames

Putting it all Together

12 /21

Introduction Syntax

Translating Logics

Semantics

Translating Frames

Putting it all Together

Properties of Product Frames

Left Commutativity
(com')

v R, w
e ———> 0
A
Ry R,
o > @
u Ry 3z

Right Commutativity
(com")

Ry Ry

>
<@ ———> @3

:

Rp

Church-Rosser
Property (chr)

Ry

@0 ——> 0<

Se

Rp

12 /21

Introduction Syntax

Translating Logics

Semantics

Translating Frames

Putting it all Together

Properties of Product Frames

Left Commutativity
(com')

v R, w
e ———> 0
A
Ry R,
o > @
u Ry 3z

Right Commutativity
(com")

3z Ry w
o35> (3
A
Ry Ry
e ——>0
u Ry v

Church-Rosser
Property (chr)

X
<
cCO—> 0<
=
X
<

12 /21

Semantics

Properties of ERP Frames

In our ERP frames § = (W, S,,S;), we take subframes of §1 x 2 where
Ry = Wh x Wh (modeling our S5 modality),

Semantics

Properties of ERP Frames

In our ERP frames § = (W, S,,S;), we take subframes of §1 x 2 where
Ry = Wh x Wh (modeling our S5 modality V), so Sy is an equivalence
relation.

13 /21

Properties of ERP Frames

In our ERP frames § = (W, S,,S;), we take subframes of §1 x 2 where
Ry = Wh x Wh (modeling our S5 modality V), so Sy is an equivalence
relation.

We write § = (W,R,E) where R=S5, and E =5},

13 /21

Properties of ERP Frames

In our ERP frames § = (W, S,,S;), we take subframes of §1 x 2 where
Ry = Wh x Wh (modeling our S5 modality V), so Sy is an equivalence
relation.

We write § = (W,R,E) where R=S5, and E =5},

13 /21

Semantics

Properties of ERP Frames

In our ERP frames § = (W, S,,S;), we take subframes of §1 x 2 where
Ry = Wh x Wh (modeling our S5 modality V), so Sy is an equivalence
relation.

We write § = (W,R,E) where R=S5, and E =5},

Some Notes
@ chr is automatic when one of §; or §» is an S5-frame
o full commutativity (com) < Barcan formula (full product frames)

@ We lose half of commutativity when restricted to ERP frames

13 /21

Translating Frames

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E) — §" = (W', R",D)

ERP frame predicate Kripke frame

14 / 21

Translating Frames

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E) — §" = (W', R",D)

ERP frame predicate Kripke frame

(1) E (u2,v2)
[] []

|l

(upvi) E (u1,w)

14 / 21

Translating Frames

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E) — §" = (W', R",D)

ERP frame predicate Kripke frame

(1) E (u2,v2)
[] - []

u
[]
RY
[] <> L]
(1) B (n1v2) °
uy
o (W R™) = (Wi, Ry)

14 / 21

Translating Frames

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E) — §" = (W', R",D)

ERP frame predicate Kripke frame

(1) E (u2,v2)
[] - []

R R
R"'T
[] - []
(upvi) E (u1,w) N . o D,
uy vi v

o (WT,R") = (W1, Ry)

@ D assigns to each ue W a set
D,={veW;y:(uv)e W}

14 / 21

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E) — §" = (W', R",D)

ERP frame predicate Kripke frame

(1) E (u2,v2)
[] []

_—
R R
Rf
[] - []

(upvi) E (u1,w) ° ° D,
u

o5
os
oS
SD

Se
A
S

Notes
Ry —
@ Dy, = Dy, for all u,-,ujeWJr ° <W’R>_<W17R1>
@ D assigns to each ue W a set
D,={veW,y:(uv)e W}

14 / 21

Translating Frames

ERP Frames — Predicate Frames

Constant Domains

§=(W,R,E)
ERP frame

(1) E (u2,v2)
[] - []

R R

[] e S
(uv1) E

(u1,v2)

Notes
o D, = Dy, for all uj,uj € W¥

@ ¢, is used to denote the formula
obtained from ¢ by replacing
every free occurrence of x by v.

—

5= (Wi R, D)

predicate Kripke frame

u Vi v2

. ° ° Dy,
Rt

° . ° Dy,

u vi v2

o (WT,R") = (W1, Ry)

@ D assigns to each ue W a set
D,={veW;y:(uv)e W}

o (31, x)E pY iff (F,(u,v))Ep

Translating Frames

ERP Frames — Predicate Frames

Expanding Domains

$:<W5R7E> — S+:<WT7RT7D>
ERP frame predicate Kripke frame

(v2,v1) B (u2,v2)
e <—> ‘o

(u1,v1)

14 / 21

ERP Frames — Predicate Frames

Expanding Domains

$:<W5R7E> — S+:<WT7RT7D>
ERP frame predicate Kripke frame

(v2,v1) B (u2,v2)
° ®

-~
up
[]
R
Rt
[)
(u1,v1) .
up

o (W R™) = (Wy,Ry)

14 / 21

Translating Frames

ERP Frames — Predicate Frames

Expanding Domains

$:<W5R7E> — S+:<WT7RT7D>
ERP frame predicate Kripke frame

(v2,v1) B (u2,v2)
e <—> ‘o

(u1.v1) U.l @ Du1

o (W R™) = (Wi, Ry)

@ D assigns to each ue W' a set
D,={veWs:(uv)e W}

14 / 21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

ERP Frames — Predicate Frames

Expanding Domains

SZ<W5R7E> — 3’%:<WT7RT7D>
ERP frame predicate Kripke frame

(v2,v1) B (u2,v2)
e <—> ‘o

(u1v1)
1,V1 u.l @ Dul

o (W R™) = (Wi, Ry)

Notes

o u,-RquJ- implies D, C Duj
@ D assigns to each ue W' a set
D,={veWs:(uv)e W}

ERP Frames — Predicate Frames

Expanding Domains

S:<W5R7E> — 3’+:<WT7RT)D>
ERP frame predicate Kripke frame

(v2,v1) B (u2,v2)
e <—> ‘o

(u1v1)
1,V1 u.l @ Dul

o (W R™) = (Wi, Ry)

i i
@ @ is used to denote the formula ® D assigns to ea-ch ue W' aset
obtained from ¢ by replacing Dy={veWs:(uv)e W}
every free occurrence of x by v. o (3T, x)EpY iff (F,(u,v))Ep

Notes

o u,-RJruJ- implies D, C Duj

Predicate Frames — ERP Frames

Constant Domains

= (W*,R*,EX) — §=(W,R,D)

ERP frame predicate Kripke frame

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Constant Domains

F = (WX R* EX) — §=(W,R,D)
ERP frame predicate Kripke frame
u V- V-
2 (& 2 b,
R
° . Dy,

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Constant Domains

F = (WX R* EX) — §=(W,R,D)
ERP frame predicate Kripke frame
up Vi V2
. ° ° Dy,
R
° ° . Dy,
uy Vi V2

@ underlying frames (W, R) and
(V,VxV)

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Constant Domains

Sx _ <W><’R><’E><>
ERP frame

(2v1) EX (u2,v2)
[] - []

- []
(u,vi) E* (u1,v2)

@ underlying frames (W, R) and
(V,VxV)

@ V=U,ew Dy and
WX ={(u,v)e Wx V:veD,}

§= <W7RaD>

predicate Kripke frame

up Vi V2

. ° ° Dy,
R

° ° . Dy,

u vi v2

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Constant Domains

Sx _ <W><’R><’E><>
ERP frame

(2v1) EX (u2,v2)
[] - []

- []
(u,vi) E* (u1,v2)

@ underlying frames (W, R) and
(V,VxV)

@ V=U,ew Dy and
WX ={(u,v)e Wx V:veD,}

o (87, (u,v))Fpiff (,u)F py

— §=(W,R,D)

predicate Kripke frame

up Vi V2

. ° ° Dy,
R

° ° . Dy,

u vi v2

Note

@y is used to denote the formula
obtained from ¢ by replacing every
free occurrence of x by v.

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Expanding Domains

3 = (W*,R*,E¥) — §=(W,R,D)
ERP frame predicate Kripke frame
u V: Vv
A
R

Se
=9
s

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Expanding Domains

3 = (W*,R*,E¥) — §=(W,R,D)
ERP frame predicate Kripke frame
u V: Vv
A
R

Se
=9
IS

@ underlying frames (W, R) and
(V,VxV)

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Expanding Domains

SX:<WX5RX7EX> — 8::<W7RaD>
ERP frame predicate Kripke frame

(v2,v1) Ex (u2,v2)
[] - []

up Vi V2
. ° ° Dy,
RX
R
°
(u1,v1)

Se
=9
S

@ underlying frames (W, R) and
(V,VxV)

@ V=U,ew Dy and
WX ={(u,v)e Wx V:veD,}

15 / 21

Translating Frames

Predicate Frames — ERP Frames

Expanding Domains

SX _ <WX,RX,EX>
ERP frame

(v2,v1) Ex (u2,v2)
[] - []

RX

[)
(u1,v1)

@ underlying frames (W, R) and
(V,VxV)

@ V=U,ew Dy and
WX ={(u,v)e Wx V:veD,}

o (87, (u,v))Fpiff (,u)F py

— §=(W,R,D)

predicate Kripke frame

Note

@y is used to denote the formula
obtained from ¢ by replacing every
free occurrence of x by v.

15 / 21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translating Frames

Theorem
© If§ is an ERP frame and ¢ € Form(. %), then
@ (uv) o iff (F,u)F(T())-
@ If§ is a predicate Kripke frame and ¢ € Form(. %)), then

@ u)E(T(o)x iff (. (u,v))Fo.

16 / 21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translating Frames

Theorem
© If§ is an ERP frame and ¢ € Form(. %), then
@ (uv) o iff (F,u)F(T())-
@ If§ is a predicate Kripke frame and ¢ € Form(. %)), then

@ u)E(T(o)x iff (. (u,v))Fo.

Note

This will ultimately allow us to generalize Ono & Suzuki's results to
monadic modal logics.

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

@ mK is complete with respect to the class of all ERP frames, and for
L € {K4,54,S5}, mL is complete with respect to the class of all ERP
frames for which R is either transitive (K4), a quasi-order (S4), or an
equivalence relation (S5).

@ bK is complete with respect to the class of all product frames, and for
L € {K4,S4}, bL is complete with respect to the class of all product
frames for which R is either transitive (K4) or a quasi-order (S4).

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

@ mK is complete with respect to the class of all ERP frames, and for
L € {K4,54,S5}, mL is complete with respect to the class of all ERP
frames for which R is either transitive (K4), a quasi-order (S4), or an
equivalence relation (S5).

@ bK is complete with respect to the class of all product frames, and for
L € {K4,S4}, bL is complete with respect to the class of all product
frames for which R is either transitive (K4) or a quasi-order (S4).

17 /21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

@ mK is complete with respect to the class of all ERP frames, and for
L € {K4,54,S5}, mL is complete with respect to the class of all ERP
frames for which R is either transitive (K4), a quasi-order (S4), or an
equivalence relation (S5).

@ bK is complete with respect to the class of all product frames, and for
L € {K4,S4}, bL is complete with respect to the class of all product
frames for which R is either transitive (K4) or a quasi-order (S4).

Just as Ono & Suzuki adjusted the well-known Henkin construction for

intuitionistic modal logics, we can adjust similarly for mm-logics for a
simpler proof of the above theorem.

17 /21

Introduction Syntax Translating Logics Semantics
Modified Henkin Construction

Start as usual...

Q MKW o, set T = {-¢}
@ Enumerate all formulas of % = %y as Vi,V ...
Q o=

Foi U{yit1} if To; U{Wi41} is consistent
FoiU{=yit1} if To; U{=yj41} is consistent

@ o =U;Toi is maximal consistent

Putting it all Together

21

Introduction Syntax Translating Logics Semantics
Modified Henkin Construction

Start as usual...

Q MK/ ¢, set Top = {-¢}
@ Enumerate all formulas of % = %y as Vi,V ...

Q roa=
Foi U{yit1} if To; U{Wi41} is consistent
FoiU{=yit1} if To; U{=yj41} is consistent

@ o =U;Toi is maximal consistent

Add "witnesses"
Q Let vij (i,j=1,2,3,...) be new variables not
occurring in % and let V; =0

@ Enumerate all formulas of Iy of the form Jy as
30,322, -

@ Add the formula Xj to o and add the new variable
vij to Vi

e Expand to a maximal consistent set 'y

Putting it all Together

21

Introduction Syntax Translating Logics Semantics Putting it all Together
Modified Henkin Construction

Start as usual... © After I'; has been constructed,

construct ;1 as above

@ LetTp=U;Tiand Vi, =U; Vi

Q MK o, set Mo = {-0}
@ Enumerate all formulas of % = %y as Vi,V ...
Q o=

Foi U{yit1} if To; U{Wi41} is consistent
FoiU{=yit1} if To; U{=yj41} is consistent

@ o =U;Toi is maximal consistent

Add "witnesses"
Q Let vij (i,j=1,2,3,...) be new variables not
occurring in % and let V; =0

@ Enumerate all formulas of Iy of the form Jy as
30,322, -

@ Add the formula Xj to o and add the new variable
vij to Vi

e Expand to a maximal consistent set 'y

Introduction Syntax Translating Logics Semantics Putting it all Together
Modified Henkin Construction

Start as usual... © After I'; has been constructed,

construct ;1 as above

@ LetTp=U;Tiand Vi, =U; Vi

Q MKW, set Too = {-¢}

@ Enumerate all formulas of % = %y as Vi,V ... y
Q roa=
ForU{Wis1} if Fo;U{Wi 1} is consistent Construct the model
FoiU{=yit1} if To; U{=yj41} is consistent M = (W, R, E, D)
@ o =U;Toi is maximal consistent @ Let W={(I',v):ve WV}

@ (Mv)R(A,u)iffOyel=wyeA
for all formulas y and v=1u

@ (M,v)E(A,u)iffT=A

Add "witnesses"

Q Let vij (i,j=1,2,3,...) be new variables not @ (I,v)eB(p)iffpel

occurring in % and let V; =0 y
@ Enumerate all formulas of Iy of the form Jy as

1, 3x2, -
@ Add the formula Xj to o and add the new variable

vij to Vi

e Expand to a maximal consistent set 'y

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Modified Henkin Construction

Start as usual... © After I; has been constructed,

construct ;11 as above

@ LetT,=UT;iand Vi, =U; Vi

Q MKW o, set T = {-¢}
@ Enumerate all formulas of % = %y as Y1, Yo, ...

Q o=

FoiU{yit1} if To;U{wi1} is consistent Construct the model
FoiU{=yit1} if To; U{=yj41} is consistent M = (W, R, E, D)
e o = U; Toi is maximal consistent @ Let W={(I,v):ve W}

@ (Mv)R(Au)iffOyel=wyecA
for all formulas y and v=u

@ (IV)E(A,u)iffT=A

Add "witnesses"

Q Let vij (i,j=1,2,3,...) be new variables not @ (,v)eW(p)iffpel

occurring in % and let V; =0 V.
@ Enumerate all formulas of Iy of the form Jy as

I, 32, When working with bK, we simply
@ Add the formula Xj to T and add the new variable take V to be the collection of all

- to V, :

yte variables and W = {(T',v):v e V}.

@ Expand to a maximal consistent set I';

18 /21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation Theorem

Theorem

Let L D mK be a mm-logic complete with respect to a class {§;}ics of
ERP frames. If M D QK is sound with respect to {ST};G/, then (L; M).

19 / 21

Introduction Syntax Translating Logics Semantics Translating Frames
.
Translation Theorem

Theorem

Let L D mK be a mm-logic complete with respect to a class {§;}ics of
ERP frames. If M D QK is sound with respect to {ST};G/, then (L; M).

Notation
For L € {K,K4,54,55},
o mL (bL) denotes the least monadic extension of L (+ Barcan)

@ QL (BL) denotes the modal predicate version of L (+ Barcan)

19 / 21

Introduction Syntax Translating Logics Semantics Translating Frames
.
Translation Theorem

Theorem

Let L D mK be a mm-logic complete with respect to a class {§;}ics of
ERP frames. If M D QK is sound with respect to {ST};G/, then (L; M).

Notation
For L € {K,K4,54,55},

o mL (bL) denotes the least monadic extension of L (+ Barcan)

@ QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Putting it all Together

Translation Theorem
Theorem

Let L D mK be a mm-logic complete with respect to a class {§;}ics of
ERP frames. If M D QK is sound with respect to {3?};61, then (L; M).

Notation
For L € {K,K4,54,55},
o mL (bL) denotes the least monadic extension of L (+ Barcan)

@ QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:
Corollary

For L € {K,K4,54,S5} we have (mL;QL) and for L € {K,K4,54} we
have (bL;BL).

19 / 21

Introduction Syntax Translating Logics Semantics Translating Frames Putting it all Together

Translation Theorem

Theorem

Let L D mK be a mm-logic complete with respect to a class {§;}ics of
ERP frames. If M D QK is sound with respect to {3’;};61, then (L;M).

For L € {K,K4,54,S5},

o mL (bL) denotes the least monadic extension of L (+ Barcan)

@ QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:
Corollary

For L € {K,K4,54,S5} we have (mL;QL) and for L € {K,K4,54} we

have (bL;BL).
/\ bS5=mS5

Monadic Fragments of Modal Predicate Logics

)

Putting it all Together

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

20 /21

Putting it all Together

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

@ She extended the Godel translation of IPC to S4 to a translation of
formulas @ of MIPC to formulas @* of mS4 by defining

20 /21

Putting it all Together

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

@ She extended the Godel translation of IPC to S4 to a translation of
formulas @ of MIPC to formulas @* of mS4 by defining

o (Oo)' =0ve*
o (0p)f =39

20 /21

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

@ She extended the Godel translation of IPC to S4 to a translation of
formulas @ of MIPC to formulas @* of mS4 by defining

o (Oo)' =0ve*
o (0p)f =39

@ She then proved MIPC I ¢ iff mS4 - @t.

20 /21

Putting it all Together

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

@ She extended the Godel translation of IPC to S4 to a translation of
formulas @ of MIPC to formulas @* of mS4 by defining

o (Oo)' =0ve*
o (0p)f =39

@ She then proved MIPC I ¢ iff mS4 - @t.

@ The proof required mS4 + ¢ = QS4+ T(¢), but the other implication was
left open.

20

Relationship with Intuitionistic Logic

@ The bimodal logic mS4 was first considered by Fischer Servi.

@ She extended the Godel translation of IPC to S4 to a translation of
formulas @ of MIPC to formulas @* of mS4 by defining

o (Oo)' =0ve*
o (0p)f =39

@ She then proved MIPC I ¢ iff mS4 - @t.
@ The proof required mS4 + ¢ = QS4+ T(¢), but the other implication was

left open.

o Now we can see that the other implication holds as well and give a
simplified version of her proof that MIPC - ¢ iff mS4 F ¢t.

20 /21

Thank You!

