Monadic Fragments of Modal Predicate Logics

Kristina Brantley

New Mexico State University, Las Cruces, NM, USA

Topology, Algebra, and Categories in Logic 2015 Ischia, Italy

June 26, 2015

Motivation \& History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

Motivation \& History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S 5 axiomatizes the monadic (one-variable) fragment of classical predicate logic (QCPC), where \square is interpreted as \forall and \diamond is interpreted as \exists.

Motivation \& History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S 5 axiomatizes the monadic (one-variable) fragment of classical predicate logic (QCPC), where \square is interpreted as \forall and \diamond is interpreted as \exists.

What about intuitionistic predicate logic (QIPC)?

Motivation \& History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S 5 axiomatizes the monadic (one-variable) fragment of classical predicate logic (QCPC), where \square is interpreted as \forall and \diamond is interpreted as \exists.

What about intuitionistic predicate logic (QIPC)?

Prior 1955

Introduces modal intuitionistic propositional calculus MIPC as an intuitionistic analog of S5.

Motivation \& History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as $\mathrm{S} 5 \rightarrow$ QCPC)

Motivation \& History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as $\mathrm{S} 5 \rightarrow$ QCPC)

Ono \& Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC

Motivation \& History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as $\mathrm{S} 5 \rightarrow \mathrm{QCPC}$)

Ono \& Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

Motivation \& History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as $\mathrm{S} 5 \rightarrow \mathrm{QCPC}$)

Ono \& Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Motivation \& History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as $\mathrm{S} 5 \rightarrow \mathrm{QCPC}$)

Ono \& Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Goal

Axiomatize monadic fragments of modal predicate logics using products and relativized products of Kripke frames.

Monadic Modal Logics

Language $\mathscr{L}_{M M}$

- classical modal language \mathscr{L}_{M}
- the monadic operator \forall
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Monadic Modal Logics

Language $\mathscr{L}_{M M}$

- classical modal language \mathscr{L}_{M}
- the monadic operator \forall
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \square-necessitation ($\stackrel{\varphi}{\square \varphi})$
- \forall-necessitation $\left(\frac{\varphi}{\nabla \varphi}\right)$

Monadic Modal Logics

Language $\mathscr{L}_{M M}$

- classical modal language \mathscr{L}_{M}
- the monadic operator \forall
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \square-necessitation ($\stackrel{\varphi}{\square \varphi})$
- \forall-necessitation $\left(\frac{\varphi}{\nabla \varphi}\right)$

Minimal System mK

Least set of formulas of $\mathscr{L}_{M M}$ that contains:

- all axioms of K for \square
- the S5 axioms for \forall
- the bridge axiom
$\square \forall \varphi \rightarrow \forall \square \varphi$

Monadic Modal Logics

Language $\mathscr{L}_{M M}$

- classical modal language \mathscr{L}_{M}
- the monadic operator \forall
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \square-necessitation $\left(\frac{\varphi}{\square \varphi}\right)$
- \forall-necessitation $\left(\frac{\varphi}{\nabla \varphi}\right)$

Minimal System mK

Least set of formulas of $\mathscr{L}_{M M}$ that contains:

- all axioms of K for \square
- the S5 axioms for \forall
- the bridge axiom $\square \forall \varphi \rightarrow \forall \square \varphi$

Monadic Modal Logic

- A monadic modal logic (mm-logic) is an extension L of mK closed under the above rules.

Monadic Modal Logics

Language $\mathscr{L}_{M M}$

- classical modal language \mathscr{L}_{M}
- the monadic operator \forall
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \square-necessitation ($\stackrel{\varphi}{\square \varphi})$
- \forall-necessitation $\left(\frac{\varphi}{\nabla \varphi}\right)$

Minimal System mK

Least set of formulas of $\mathscr{L}_{M M}$ that contains:

- all axioms of K for \square
- the S5 axioms for \forall
- the bridge axiom $\square \forall \varphi \rightarrow \forall \square \varphi$

Monadic Modal Logic

- A monadic modal logic (mm-logic) is an extension L of mK closed under the above rules.
- bL denotes the extension of a mm-logic L by the Barcan formula

$$
\forall \square \varphi \rightarrow \square \forall \varphi
$$

Modal Predicate Logics

Minimal System QK

Least set of formulas of $Q \mathscr{L}_{M}$ that contains:

- all theorems of QCPC
- the axiom

$$
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

- the bridge axiom

$$
\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)
$$

Modal Predicate Logics

Minimal System QK

Least set of formulas of $Q \mathscr{L}_{M}$ that contains:

- all theorems of QCPC
- the axiom

$$
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

- the bridge axiom

$$
\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)
$$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- \square-necessitation

Modal Predicate Logics

Minimal System QK

Least set of formulas of $Q \mathscr{L}_{M}$ that contains:

- all theorems of QCPC
- the axiom

$$
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

- the bridge axiom

$$
\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)
$$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- \square-necessitation

Modal Predicate Logic

- A modal predicate logic is an extension M of QK closed under the listed rules.

Modal Predicate Logics

Minimal System QK

Least set of formulas of $Q \mathscr{L}_{M}$ that contains:

- all theorems of QCPC
- the axiom

$$
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

- the bridge axiom

$$
\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)
$$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- \square-necessitation

Modal Predicate Logic

- A modal predicate logic is an extension M of QK closed under the listed rules.
- BM denotes the extension of a modal predicate logic M by the Barcan formula

$$
\forall x \square \varphi(x) \rightarrow \square \forall x \varphi(x)
$$

Modal Predicate Logics

Minimal System QK

Least set of formulas of $Q \mathscr{L}_{M}$ that contains:

- all theorems of QCPC
- the axiom

$$
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

- the bridge axiom

$$
\square \forall x \varphi(x) \rightarrow \forall x \square \varphi(x)
$$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- \square-necessitation

Modal Predicate Logic

- A modal predicate logic is an extension M of QK closed under the listed rules.
- BM denotes the extension of a modal predicate logic M by the Barcan formula

$$
\forall x \square \varphi(x) \rightarrow \square \forall x \varphi(x)
$$

Unlike propositional modal
 logics, many modal predicate
 logics are not Kripke complete.

Translation

First, for each propositional letter p of $\mathscr{L}_{M M}$, we associate a unary predicate $P(x)$.

Translation

First, for each propositional letter p of $\mathscr{L}_{M M}$, we associate a unary predicate $P(x)$. Next, we define a translation
$T: \operatorname{Form}\left(\mathscr{L}_{M M}\right) \rightarrow \operatorname{Form}\left(Q \mathscr{L}_{M}\right)$ as follows:

Translation

First, for each propositional letter p of $\mathscr{L}_{M M}$, we associate a unary predicate $P(x)$. Next, we define a translation
$T: \operatorname{Form}\left(\mathscr{L}_{M M}\right) \rightarrow \operatorname{Form}\left(Q \mathscr{L}_{M}\right)$ as follows:

- $T(p)=P(x)$ for propositional letters p
- $T(\neg \varphi)=\neg T(\varphi)$
- $T(\varphi \wedge \psi)=T(\varphi) \wedge T(\psi)$

Translation

First, for each propositional letter p of $\mathscr{L}_{M M}$, we associate a unary predicate $P(x)$. Next, we define a translation
$T: \operatorname{Form}\left(\mathscr{L}_{M M}\right) \rightarrow \operatorname{Form}\left(Q \mathscr{L}_{M}\right)$ as follows:

- $T(p)=P(x)$ for propositional letters p
- $T(\neg \varphi)=\neg T(\varphi)$
- $T(\varphi \wedge \psi)=T(\varphi) \wedge T(\psi)$
- $T(\square \varphi)=\square T(\varphi)$
- $T(\forall \varphi)=\forall x T(\varphi)$

Galois Connection

For a mm-logic $\mathrm{L} \supseteq \mathrm{mK}$, define a modal predicate logic:

$$
\Phi(\mathrm{L})=\mathrm{QK}+\{T(\varphi): \mathrm{L} \vdash \varphi\}
$$

Galois Connection

For a mm-logic $L \supseteq m K$, define a modal predicate logic:

$$
\Phi(\mathrm{L})=\mathrm{QK}+\{T(\varphi): \mathrm{L} \vdash \varphi\}
$$

For a modal predicate logic $\mathrm{M} \supseteq$ QK, define a mm-logic:

$$
\Psi(\mathrm{M})=\mathrm{mK}+\{\varphi: \mathrm{M} \vdash T(\varphi)\}
$$

Galois Connection

For a mm-logic $L \supseteq m K$, define a modal predicate logic:

$$
\Phi(\mathrm{L})=\mathrm{QK}+\{T(\varphi): \mathrm{L} \vdash \varphi\}
$$

For a modal predicate logic $\mathrm{M} \supseteq$ QK, define a mm-logic:

$$
\Psi(\mathrm{M})=\mathrm{mK}+\{\varphi: \mathrm{M} \vdash T(\varphi)\}
$$

Lemma

For $L \supseteq m K$ and $M \supseteq Q K$
(1) Φ and Ψ form a Galois connection, that is $\Phi(L) \subseteq M$ iff $L \subseteq \Psi(M)$.
(2) $\Psi(\Phi(L)) \supseteq L$ with equality iff $L=\Psi(M)$ for some $M \supseteq Q K$.
(3) $\mathrm{M} \supseteq \Phi(\Psi(\mathrm{M}))$ with equality iff $\mathrm{M}=\Phi(\mathrm{L})$ for some $\mathrm{L} \supseteq \mathrm{mK}$.

Monadic Fragment

Definition

We call $\mathrm{L} \supseteq \mathrm{mK}$ the monadic fragment of a modal predicate logic $\mathrm{M} \supseteq$ QK if

$$
\mathrm{L} \vdash \varphi \text { iff } \mathrm{M} \vdash T(\varphi)
$$

and we denote this relationship by $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Monadic Fragment

Definition

We call $\mathrm{L} \supseteq \mathrm{mK}$ the monadic fragment of a modal predicate logic $\mathrm{M} \supseteq$ QK if

$$
\mathrm{L} \vdash \varphi \text { iff } \mathrm{M} \vdash T(\varphi)
$$

and we denote this relationship by $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Goal

Develop a correspondence between models of mm-logics and models of modal predicate logics, in order to obtain results similar to those of Ono and Suzuki.

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Predicate Kripke Frame

- $\mathfrak{F}=\langle W, R, D\rangle$
- D assigns to each $w \in W$ a set of objects D_{w}

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Predicate Kripke Frame

- $\mathfrak{F}=\langle W, R, D\rangle$
- D assigns to each $w \in W$ a set of objects D_{w}
- expanding domains: $w R v$ implies $D_{w} \subseteq D_{v}$ for all $w, v \in W$

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Predicate Kripke Frame

- $\mathfrak{F}=\langle W, R, D\rangle$
- D assigns to each $w \in W$ a set of objects D_{w}
- expanding domains: $w R v$ implies $D_{w} \subseteq D_{v}$ for all $w, v \in W$
- constant domains: $D_{w}=D_{v}$ for all $w, v \in W$

Kripke Semantics

mK-frame

- $\mathfrak{F}=\langle W, R, E\rangle$
- R is a binary relation
- E is an equivalence relation
- $R E(u) \subseteq E R(u)$ for all $u \in W$

Predicate Kripke Frame

- $\mathfrak{F}=\langle W, R, D\rangle$
- D assigns to each $w \in W$ a set of objects D_{w}
- expanding domains: $w R v$ implies $D_{w} \subseteq D_{v}$ for all $w, v \in W$
- constant domains: $D_{w}=D_{v}$ for all $w, v \in W$

To translate between mK-frames and predicate Kripke frames we need to work with a much smaller class of mK-frames, arising from product frames.

Products

Product Frame

- $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle \quad \times \quad \mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$

Example

Products

Product Frame

- $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle \quad \times \mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$
- $\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{V}, R_{h}\right\rangle$

Example

$\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$
$\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$

Products

Product Frame

- $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle \quad \times \mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$
- $\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{V}, R_{h}\right\rangle$
- $\left(u_{1}, v_{1}\right) R_{v}\left(u_{2}, v_{2}\right)$ iff $u_{1} R_{1} u_{2}$ and $v_{1}=v_{2}$

Example

$\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$

$\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$

$\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{\mathrm{v}}, R_{h}\right\rangle$

Products

Product Frame

- $\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle \quad \times \quad \mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$
- $\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{V}, R_{h}\right\rangle$
- $\left(u_{1}, v_{1}\right) R_{v}\left(u_{2}, v_{2}\right)$ iff $u_{1} R_{1} u_{2}$ and $v_{1}=v_{2}$
- $\left(u_{1}, v_{1}\right) R_{h}\left(u_{2}, v_{2}\right)$ iff $u_{1}=u_{2}$ and $v_{1} R_{2} v_{2}$

Example

$\mathfrak{F}_{1}=\left\langle W_{1}, R_{1}\right\rangle$

$\mathfrak{F}_{2}=\left\langle W_{2}, R_{2}\right\rangle$

$\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{\mathrm{v}}, R_{h}\right\rangle$

Relativized Products

Example

Relativized Products

Relativized Product (RP) (AKA Subframe)

- $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$

Example

$$
\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\underset{\text { Product }}{\left\langle W_{1} \times W_{2}, R_{v}, R_{h}\right\rangle}
$$

Relativized Products

Relativized Product (RP) (AKA Subframe)
 - $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$
 - $W \subseteq W_{1} \times W_{2}$

Example

$$
\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{v}, R_{h}\right\rangle
$$

Product

Relativized Products

```
Relativized Product (RP)
(AKA Subframe)
- \(\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle\)
- \(W \subseteq W_{1} \times W_{2}\)
- \(S_{i}\) is the restriction of \(R_{i}\) to \(W\) for \(i=h, v\)
```


Example

$$
\begin{gathered}
\bullet \bullet \\
\bullet\left(u_{1}, v_{1}\right) \\
\left.\mathfrak{F}=\underset{R P}{W}, S_{v}, S_{h}\right\rangle
\end{gathered}
$$

Relativized Products

> Relativized Product (RP) (AKA Subframe)
> - $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$
> - $W \subseteq W_{1} \times W_{2}$
> - S_{i} is the restriction of R_{i} to W for $i=h, v$

Expanding Relativized Product (ERP)

Example

$$
\mathfrak{F}_{1} \times \mathfrak{F}_{2}=\left\langle W_{1} \times W_{2}, R_{v}, R_{h}\right\rangle
$$

Product

Relativized Products

Relativized Product (RP)

 (AKA Subframe)- $\mathfrak{F}=\left\langle W, S_{\mathrm{v}}, S_{h}\right\rangle$
- $W \subseteq W_{1} \times W_{2}$
- S_{i} is the restriction of R_{i} to W for $i=h, v$

Expanding Relativized Product (ERP)

- RP of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$

Example

Relativized Products

Relativized Product (RP)

 (AKA Subframe)- $\mathfrak{F}=\left\langle W, S_{\mathrm{v}}, S_{h}\right\rangle$
- $W \subseteq W_{1} \times W_{2}$
- S_{i} is the restriction of R_{i} to W for $i=h, v$

Expanding Relativized Product (ERP)

- RP of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$
- for $\left(u_{i}, v_{j}\right) \in W$ and $u_{k} \in W_{1}$, if $u_{i} R_{1} u_{k}$ then $\left(u_{k}, v_{j}\right) \in W$

Example

$$
\begin{aligned}
& \mathfrak{F}=\left\langle\underset{\mathrm{ERP}}{W}, S_{v}, S_{h}\right\rangle
\end{aligned}
$$

Relativized Products

Relativized Product (RP)

 (AKA Subframe)- $\mathfrak{F}=\left\langle W, S_{\mathrm{v}}, S_{h}\right\rangle$
- $W \subseteq W_{1} \times W_{2}$
- S_{i} is the restriction of R_{i} to W for $i=h, v$

Expanding Relativized Product (ERP)

- RP of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$
- for $\left(u_{i}, v_{j}\right) \in W$ and $u_{k} \in W_{1}$, if $u_{i} R_{1} u_{k}$ then $\left(u_{k}, v_{j}\right) \in W$

Example

$$
\begin{aligned}
& \left.\mathfrak{F}=\underset{\operatorname{ERP}}{\left\langle\boldsymbol{W}, S_{V}\right.}, S_{h}\right\rangle
\end{aligned}
$$

Properties of Product Frames

Left Commutativity (com ${ }^{\prime}$)

Properties of Product Frames

Left Commutativity (com ${ }^{\prime}$)

Properties of Product Frames

Right Commutativity (com ${ }^{r}$)

Properties of Product Frames

Left Commutativity (com ${ }^{\prime}$)

Right Commutativity (com ${ }^{r}$)

Properties of Product Frames

Left Commutativity (com^{\prime})

Right Commutativity (com ${ }^{r}$)

Church-Rosser Property (chr)

Properties of Product Frames

Left Commutativity (com ${ }^{\prime}$)

Right Commutativity (com ${ }^{r}$)

Church-Rosser Property (chr)

Properties of ERP Frames

In our ERP frames $\mathfrak{F}=\left\langle W, S_{V}, S_{h}\right\rangle$, we take subframes of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$ where $R_{2}=W_{2} \times W_{2}$ (modeling our S5 modality \forall),

Properties of ERP Frames

In our ERP frames $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$, we take subframes of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$ where $R_{2}=W_{2} \times W_{2}$ (modeling our S5 modality \forall), so S_{h} is an equivalence relation.

Properties of ERP Frames

In our ERP frames $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$, we take subframes of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$ where $R_{2}=W_{2} \times W_{2}$ (modeling our S5 modality \forall), so S_{h} is an equivalence relation.

We write $\mathfrak{F}=\langle W, R, E\rangle$ where $R=S_{v}$ and $E=S_{h}$.

Properties of ERP Frames

In our ERP frames $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$, we take subframes of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$ where $R_{2}=W_{2} \times W_{2}$ (modeling our S5 modality \forall), so S_{h} is an equivalence relation.

We write $\mathfrak{F}=\langle W, R, E\rangle$ where $R=S_{v}$ and $E=S_{h}$.

Properties of ERP Frames

In our ERP frames $\mathfrak{F}=\left\langle W, S_{v}, S_{h}\right\rangle$, we take subframes of $\mathfrak{F}_{1} \times \mathfrak{F}_{2}$ where $R_{2}=W_{2} \times W_{2}$ (modeling our S5 modality \forall), so S_{h} is an equivalence relation.

We write $\mathfrak{F}=\langle W, R, E\rangle$ where $R=S_{v}$ and $E=S_{h}$.

Some Notes

- chr is automatic when one of \mathfrak{F}_{1} or \mathfrak{F}_{2} is an S 5 -frame
- full commutativity (com) \Leftrightarrow Barcan formula (full product frames)
- We lose half of commutativity when restricted to ERP frames

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\mathfrak{F}=\langle W, R, E\rangle \quad \longrightarrow \quad \begin{aligned}
& \mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle \\
& \text { predicate Kripke frame }
\end{aligned}
$$

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\mathfrak{F}=\langle W, R, E\rangle
$$

$\mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle$
predicate Kripke frame

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\mathfrak{F}=\langle W, R, E\rangle \quad \longrightarrow \quad \begin{array}{ll}
\mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle \\
\text { ERP frame } & \longrightarrow \text { predicate Kripke frame }
\end{array}
$$

- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\mathfrak{F}=\langle W, R, E\rangle
$$

$\mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle$
predicate Kripke frame

- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_{u}=\left\{v \in W_{2}:(u, v) \in W\right\}$

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\mathfrak{F}=\langle W, R, E\rangle \quad \longrightarrow \quad \begin{array}{ll}
\boldsymbol{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle \\
\text { ERP frame } & \\
\text { predicate Kripke frame }
\end{array}
$$

Notes

- $D_{u_{i}}=D_{u_{j}}$ for all $u_{i}, u_{j} \in W^{\dagger}$
- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_{u}=\left\{v \in W_{2}:(u, v) \in W\right\}$

ERP Frames \rightarrow Predicate Frames

Constant Domains

$$
\underset{\text { ERP frame }}{\mathfrak{F}=\langle W, R, E\rangle}
$$

$$
\mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle
$$

predicate Kripke frame

Notes

- $D_{u_{i}}=D_{u_{j}}$ for all $u_{i}, u_{j} \in W^{\dagger}$
- φ_{x}^{v} is used to denote the formula obtained from φ by replacing every free occurrence of x by v.
- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_{u}=\left\{v \in W_{2}:(u, v) \in W\right\}$
- $\left(\mathfrak{F}^{\dagger}, x\right) \vDash p_{x}^{v}$ iff $(\mathfrak{F},(u, v)) \vDash p$

ERP Frames \rightarrow Predicate Frames

Expanding Domains

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, E\rangle \\
E R P \text { frame }
\end{gathered}
$$

$\longrightarrow \quad \mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle$
predicate Kripke frame

ERP Frames \rightarrow Predicate Frames

Expanding Domains

$$
\begin{gather*}
\mathfrak{F}=\langle W, R, E\rangle \\
E R P \text { frame }
\end{gather*}
$$

$$
\mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle
$$

predicate Kripke frame

ERP Frames \rightarrow Predicate Frames

Expanding Domains

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, E\rangle \\
E R P \text { frame }
\end{gathered}
$$

ERP Frames \rightarrow Predicate Frames

Expanding Domains

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, E\rangle \\
\text { ERP frame }
\end{gathered}
$$

$$
\begin{aligned}
& \mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle \\
& \text { predicate Kripke frame }
\end{aligned}
$$

Notes

- $u_{i} R^{\dagger} u_{j}$ implies $D_{u_{i}} \subseteq D_{u_{j}}$
- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_{u}=\left\{v \in W_{2}:(u, v) \in W\right\}$

ERP Frames \rightarrow Predicate Frames

Expanding Domains

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, E\rangle \\
E R P \text { frame }
\end{gathered}
$$

$$
\begin{aligned}
& \mathfrak{F}^{\dagger}=\left\langle W^{\dagger}, R^{\dagger}, D\right\rangle \\
& \text { predicate Kripke frame }
\end{aligned}
$$

Notes

- $u_{i} R^{\dagger} u_{j}$ implies $D_{u_{i}} \subseteq D_{u_{j}}$
- φ_{x}^{v} is used to denote the formula obtained from φ by replacing every free occurrence of x by v.
- $\left\langle W^{\dagger}, R^{\dagger}\right\rangle=\left\langle W_{1}, R_{1}\right\rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_{u}=\left\{v \in W_{2}:(u, v) \in W\right\}$
- $\left(\mathfrak{F}^{\dagger}, x\right) \vDash p_{x}^{v}$ iff $(\mathfrak{F},(u, v)) \vDash p$

Predicate Frames \rightarrow ERP Frames

Constant Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\mathfrak{F}=\langle W, R, D\rangle
$$

predicate Kripke frame

Predicate Frames \rightarrow ERP Frames

Constant Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\mathfrak{F}=\langle W, R, D\rangle
$$

predicate Kripke frame

Predicate Frames \rightarrow ERP Frames

Constant Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\mathfrak{F}=\langle W, R, D\rangle
$$

predicate Kripke frame

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$

Predicate Frames \rightarrow ERP Frames

Constant Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\mathfrak{F}=\langle W, R, D\rangle
$$

predicate Kripke frame

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$
- $V=\cup_{u \in W} D_{u}$ and
$W^{\times}=\left\{(u, v) \in W \times V: v \in D_{u}\right\}$

Predicate Frames \rightarrow ERP Frames

Constant Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$
- $V=\bigcup_{u \in W} D_{u}$ and
$W^{\times}=\left\{(u, v) \in W \times V: v \in D_{u}\right\}$
- $\left(\mathfrak{F}^{\times},(u, v)\right) \vDash p$ iff $(\mathfrak{F}, u) \vDash p_{\chi}^{v}$
$\mathfrak{F}=\langle W, R, D\rangle$
predicate Kripke frame

$D_{u_{1}}$

Note

φ_{x}^{v} is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

Predicate Frames \rightarrow ERP Frames

Expanding Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, D\rangle \\
\text { predicate Kripke frame }
\end{gathered}
$$

Predicate Frames \rightarrow ERP Frames

Expanding Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, D\rangle \\
\text { predicate Kripke frame }
\end{gathered}
$$

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$

Predicate Frames \rightarrow ERP Frames

Expanding Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, D\rangle \\
\text { predicate Kripke frame }
\end{gathered}
$$

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$
- $V=\cup_{u \in W} D_{u}$ and
$W^{\times}=\left\{(u, v) \in W \times V: v \in D_{u}\right\}$

Predicate Frames \rightarrow ERP Frames

Expanding Domains

$$
\mathfrak{F}^{\times}=\underset{\text { ERP frame }}{\left\langle W^{\times}, R^{\times}, E^{\times}\right\rangle}
$$

$$
\begin{gathered}
\mathfrak{F}=\langle W, R, D\rangle \\
\text { predicate Kripke frame }
\end{gathered}
$$

$D_{u_{1}}$

- underlying frames $\langle W, R\rangle$ and $\langle V, V \times V\rangle$
- $V=\bigcup_{u \in W} D_{u}$ and $W^{\times}=\left\{(u, v) \in W \times V: v \in D_{u}\right\}$
- $\left(\mathfrak{F}^{\times},(u, v)\right) \vDash p$ iff $(\mathfrak{F}, u) \vDash p_{x}^{v}$

Note

φ_{x}^{v} is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

Translating Frames

Theorem

(1) If \mathfrak{F} is an $E R P$ frame and $\varphi \in \operatorname{Form}\left(\mathscr{L}_{M M}\right)$, then

$$
(\mathfrak{F},(u, v)) \vDash \varphi \quad \text { iff } \quad\left(\mathfrak{F}^{\dagger}, u\right) \vDash(T(\varphi))_{x}^{v} .
$$

(2) If \mathfrak{F} is a predicate Kripke frame and $\varphi \in \operatorname{Form}\left(\mathscr{L}_{M M}\right)$, then

$$
(\mathfrak{F}, u) \vDash(T(\varphi))_{x}^{v} \quad \text { iff } \quad\left(\mathfrak{F}^{\times},(u, v)\right) \vDash \varphi .
$$

Translating Frames

Theorem

(1) If \mathfrak{F} is an $E R P$ frame and $\varphi \in \operatorname{Form}\left(\mathscr{L}_{M M}\right)$, then

$$
(\mathfrak{F},(u, v)) \vDash \varphi \quad \text { iff } \quad\left(\mathfrak{F}^{\dagger}, u\right) \vDash(T(\varphi))_{x}^{v} .
$$

(2) If \mathfrak{F} is a predicate Kripke frame and $\varphi \in \operatorname{Form}\left(\mathscr{L}_{M M}\right)$, then

$$
(\mathfrak{F}, u) \vDash(T(\varphi))_{x}^{v} \quad \text { iff } \quad\left(\mathfrak{F}^{\times},(u, v)\right) \vDash \varphi .
$$

Note

This will ultimately allow us to generalize Ono \& Suzuki's results to monadic modal logics.

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

(1) mK is complete with respect to the class of all ERP frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}, \mathrm{mL}$ is complete with respect to the class of all $E R P$ frames for which R is either transitive (K4), a quasi-order (S4), or an equivalence relation (S5).
(2) bK is complete with respect to the class of all product frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4\}$, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

(1) mK is complete with respect to the class of all ERP frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}, \mathrm{mL}$ is complete with respect to the class of all $E R P$ frames for which R is either transitive (K4), a quasi-order (S4), or an equivalence relation (S5).
(2) bK is complete with respect to the class of all product frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4\}$, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

$$
\mathrm{bS5}=\mathrm{mS5}
$$

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

(1) mK is complete with respect to the class of all ERP frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}, \mathrm{mL}$ is complete with respect to the class of all $E R P$ frames for which R is either transitive (K4), a quasi-order (S4), or an equivalence relation (S5).
(2) bK is complete with respect to the class of all product frames, and for $\mathrm{L} \in\{\mathrm{K} 4, \mathrm{~S} 4\}$, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

11
 $\mathrm{bS} 5=\mathrm{mS} 5$

Just as Ono \& Suzuki adjusted the well-known Henkin construction for intuitionistic modal logics, we can adjust similarly for mm-logics for a simpler proof of the above theorem.

```
We don't have time for this!
```


Modified Henkin Construction

Start as usual...

(1) $\mathrm{mK} \vdash \varphi$, set $\Gamma_{00}=\{\neg \varphi\}$
(2) Enumerate all formulas of $\mathscr{L}_{0}=\mathscr{L}_{M M}$ as $\psi_{1}, \psi_{2}, \ldots$
(3) $\Gamma_{0 i+1}=$
$\begin{cases}\Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} \text { is consistent } \\ \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} \text { is consistent }\end{cases}$
(9) $\Gamma_{0}=U_{i} \Gamma_{0 i}$ is maximal consistent

Modified Henkin Construction

Start as usual...

(1) $\mathrm{mK} \nvdash \varphi$, set $\Gamma_{00}=\{\neg \varphi\}$
(2) Enumerate all formulas of $\mathscr{L}_{0}=\mathscr{L}_{M M}$ as $\psi_{1}, \psi_{2}, \ldots$
(3) $\Gamma_{0 i+1}=$
$\begin{cases}\Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} \text { is consistent } \\ \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} \text { is consistent }\end{cases}$
(4) $\Gamma_{0}=\bigcup_{i} \Gamma_{0 i}$ is maximal consistent

Add "witnesses"

(5) Let $v_{i j}(i, j=1,2,3, \ldots)$ be new variables not occurring in \mathscr{L}_{0} and let $V_{1}=\emptyset$
(6) Enumerate all formulas of Γ_{0} of the form $\exists \psi$ as $\exists \chi_{1}, \exists \chi_{2}, \ldots$
(7) Add the formula χ_{j} to Γ_{0} and add the new variable $v_{1 j}$ to V_{1}
(8) Expand to a maximal consistent set Γ_{1}

Modified Henkin Construction

Start as usual...

(1) $\mathrm{mK} \nvdash \varphi$, set $\Gamma_{00}=\{\neg \varphi\}$
(2) Enumerate all formulas of $\mathscr{L}_{0}=\mathscr{L}_{M M}$ as $\psi_{1}, \psi_{2}, \ldots$
(3) $\Gamma_{0 i+1}=$
$\begin{cases}\Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} \text { is consistent } \\ \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} \text { is consistent }\end{cases}$
(4) $\Gamma_{0}=\bigcup_{i} \Gamma_{0 i}$ is maximal consistent

Add "witnesses"

(5) Let $v_{i j}(i, j=1,2,3, \ldots)$ be new variables not occurring in \mathscr{L}_{0} and let $V_{1}=\emptyset$
(6) Enumerate all formulas of Γ_{0} of the form $\exists \psi$ as $\exists \chi_{1}, \exists \chi_{2}, \ldots$
(7) Add the formula χ_{j} to Γ_{0} and add the new variable $v_{1 j}$ to V_{1}
(8) Expand to a maximal consistent set Γ_{1}
(9) After Γ_{i} has been constructed, construct Γ_{i+1} as above
(10) Let $\Gamma_{\omega}=\bigcup_{i} \Gamma_{i}$ and $V_{\Gamma \omega}=\bigcup_{i} V_{i}$

Modified Henkin Construction

Start as usual...

(1) $\mathrm{mK} \nvdash \varphi$, set $\Gamma_{00}=\{\neg \varphi\}$
(2) Enumerate all formulas of $\mathscr{L}_{0}=\mathscr{L}_{M M}$ as $\psi_{1}, \psi_{2}, \ldots$
(3) $\Gamma_{0 i+1}=$
$\begin{cases}\Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} \text { is consistent } \\ \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} \text { is consistent }\end{cases}$
(4) $\Gamma_{0}=\bigcup_{i} \Gamma_{0 i}$ is maximal consistent

Add "witnesses"

(5) Let $v_{i j}(i, j=1,2,3, \ldots)$ be new variables not occurring in \mathscr{L}_{0} and let $V_{1}=\emptyset$
(6) Enumerate all formulas of Γ_{0} of the form $\exists \psi$ as $\exists \chi_{1}, \exists \chi_{2}, \ldots$
(7) Add the formula χ_{j} to Γ_{0} and add the new variable $v_{1 j}$ to V_{1}
(8) Expand to a maximal consistent set Γ_{1}
(9) After Γ_{i} has been constructed, construct Γ_{i+1} as above
(10) Let $\Gamma_{\omega}=\bigcup_{i} \Gamma_{i}$ and $V_{\Gamma \omega}=\bigcup_{i} V_{i}$

Construct the model

$\mathfrak{M}=\langle W, R, E, \mathfrak{V}\rangle$

- Let $W=\left\{(\Gamma, v): v \in V_{\Gamma}\right\}$
- ($\Gamma, v) R(\Delta, u)$ iff $\square \psi \in \Gamma \Rightarrow \psi \in \Delta$ for all formulas ψ and $v=u$
- $(\Gamma, v) E(\Delta, u)$ iff $\Gamma=\Delta$
- $(\Gamma, v) \in \mathfrak{V}(p)$ iff $p \in \Gamma$

Modified Henkin Construction

Start as usual...

(1) $\mathrm{mK} \nvdash \varphi$, set $\Gamma_{00}=\{\neg \varphi\}$
(2) Enumerate all formulas of $\mathscr{L}_{0}=\mathscr{L}_{M M}$ as $\psi_{1}, \psi_{2}, \ldots$
(3) $\Gamma_{0 i+1}=$
$\begin{cases}\Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\psi_{i+1}\right\} \text { is consistent } \\ \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} & \text { if } \Gamma_{0 i} \cup\left\{\neg \psi_{i+1}\right\} \text { is consistent }\end{cases}$
(4) $\Gamma_{0}=\bigcup_{i} \Gamma_{0 i}$ is maximal consistent

Add "witnesses"

(5) Let $v_{i j}(i, j=1,2,3, \ldots)$ be new variables not occurring in \mathscr{L}_{0} and let $V_{1}=\emptyset$
(6) Enumerate all formulas of Γ_{0} of the form $\exists \psi$ as $\exists \chi_{1}, \exists \chi_{2}, \ldots$
(7) Add the formula χ_{j} to Γ_{0} and add the new variable $v_{1 j}$ to V_{1}
(8) Expand to a maximal consistent set Γ_{1}
(9) After Γ_{i} has been constructed, construct Γ_{i+1} as above
(10) Let $\Gamma_{\omega}=\bigcup_{i} \Gamma_{i}$ and $V_{\Gamma \omega}=\bigcup_{i} V_{i}$

Construct the model

$\mathfrak{M}=\langle W, R, E, \mathfrak{V}\rangle$

- Let $W=\left\{(\Gamma, v): v \in V_{\Gamma}\right\}$
- ($\Gamma, v) R(\Delta, u)$ iff $\square \psi \in \Gamma \Rightarrow \psi \in \Delta$ for all formulas ψ and $v=u$
- $(\Gamma, v) E(\Delta, u)$ iff $\Gamma=\Delta$
- $(\Gamma, v) \in \mathfrak{V}(p)$ iff $p \in \Gamma$

When working with bK, we simply take V to be the collection of all variables and $W=\{(\Gamma, v): v \in V\}$.

Translation Theorem

Theorem

Let $\mathrm{L} \supseteq \mathrm{mK}$ be a mm-logic complete with respect to a class $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of $E R P$ frames. If $\mathrm{M} \supseteq \mathrm{QK}$ is sound with respect to $\left\{\mathfrak{F}_{i}^{\dagger}\right\}_{i \in I}$, then $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Translation Theorem

Theorem

Let $\mathrm{L} \supseteq \mathrm{mK}$ be a mm-logic complete with respect to a class $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of ERP frames. If $\mathrm{M} \supseteq \mathrm{QK}$ is sound with respect to $\left\{\mathfrak{F}_{i}^{\dagger}\right\}_{i \in I}$, then $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Notation

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$,

- $m L$ (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

Translation Theorem

Theorem

Let $\mathrm{L} \supseteq \mathrm{mK}$ be a mm-logic complete with respect to a class $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of ERP frames. If $\mathrm{M} \supseteq \mathrm{QK}$ is sound with respect to $\left\{\mathfrak{F}_{i}^{\dagger}\right\}_{i \in I}$, then $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Notation

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$,

- $m L$ (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Translation Theorem

Theorem

Let $\mathrm{L} \supseteq \mathrm{mK}$ be a mm-logic complete with respect to a class $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of $E R P$ frames. If $\mathrm{M} \supseteq \mathrm{QK}$ is sound with respect to $\left\{\mathfrak{F}_{i}^{\dagger}\right\}_{i \in 1}$, then $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Notation

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$,

- $m L$ (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Corollary

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$ we have $\langle\mathrm{mL} ; \mathrm{QL}\rangle$ and for $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4\}$ we have $\langle\mathrm{bL} ; \mathrm{BL}\rangle$.

Translation Theorem

Theorem

Let $\mathrm{L} \supseteq \mathrm{mK}$ be a mm-logic complete with respect to a class $\left\{\mathfrak{F}_{i}\right\}_{i \in I}$ of $E R P$ frames. If $\mathrm{M} \supseteq \mathrm{QK}$ is sound with respect to $\left\{\mathfrak{F}_{i}^{\dagger}\right\}_{i \in 1}$, then $\langle\mathrm{L} ; \mathrm{M}\rangle$.

Notation

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$,

- $m \mathrm{~L}$ (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Corollary

For $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4, \mathrm{~S} 5\}$ we have $\langle\mathrm{mL} ; \mathrm{QL}\rangle$ and for $\mathrm{L} \in\{\mathrm{K}, \mathrm{K} 4, \mathrm{~S} 4\}$ we have $\langle\mathrm{bL} ; \mathrm{BL}\rangle$.

© $\mathrm{bS} 5=\mathrm{mS} 5$

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^{t} of mS 4 by defining

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^{t} of mS 4 by defining
- $(\square \varphi)^{t}=\square \forall \varphi^{t}$
- $(\diamond \varphi)^{t}=\exists \varphi^{t}$

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^{t} of mS 4 by defining
- $(\square \varphi)^{t}=\square \forall \varphi^{t}$
- $(\diamond \varphi)^{t}=\exists \varphi^{t}$
- She then proved MIPC $\vdash \varphi$ iff $\mathrm{mS} 4 \vdash \varphi^{t}$.

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^{t} of mS 4 by defining
- $(\square \varphi)^{t}=\square \forall \varphi^{t}$
- $(\diamond \varphi)^{t}=\exists \varphi^{t}$
- She then proved MIPC $\vdash \varphi$ iff $\mathrm{mS} 4 \vdash \varphi^{t}$.
- The proof required $\mathrm{mS} 4 \vdash \varphi \Rightarrow \mathrm{QS} 4 \vdash T(\varphi)$, but the other implication was left open.

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^{t} of mS 4 by defining
- $(\square \varphi)^{t}=\square \forall \varphi^{t}$
- $(\diamond \varphi)^{t}=\exists \varphi^{t}$
- She then proved MIPC $\vdash \varphi$ iff $\mathrm{mS} 4 \vdash \varphi^{t}$.
- The proof required $\mathrm{mS} 4 \vdash \varphi \Rightarrow \mathrm{QS} 4 \vdash T(\varphi)$, but the other implication was left open.
- Now we can see that the other implication holds as well and give a simplified version of her proof that MIPC $\vdash \varphi$ iff $\mathrm{mS} 4 \vdash \varphi^{t}$.

Thank You!

