Syntax

Monadic Fragments of Modal Predicate Logics

Kristina Brantley

New Mexico State University, Las Cruces, NM, USA

Topology, Algebra, and Categories in Logic 2015 Ischia, Italy

June 26, 2015

.

Translating Logics

Semantics

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933 Modal system S5 axiomatizes the monadic (one-variable) fragment of classical predicate logic (QCPC), where \Box is interpreted as \forall and \Diamond is interpreted as \exists .

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

What about intuitionistic predicate logic (QIPC)?

Motivation & History

Classical predicate logic (QCPC) is undecidable (Church 1936/Turing 1937), but we can axiomatize decidable fragments using modal logic.

The first result in this area was:

Wajsberg 1933

Modal system S5 axiomatizes the monadic (one-variable) fragment of classical predicate logic (QCPC), where \Box is interpreted as \forall and \Diamond is interpreted as \exists .

What about intuitionistic predicate logic (QIPC)?

Prior 1955

Introduces modal intuitionistic propositional calculus $\ensuremath{\mathsf{MIPC}}$ as an intuitionistic analog of S5.

Translating Logics

Semantics

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as S5 \rightarrow QCPC)

Translating Logics

Semantics

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as S5 \rightarrow QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC

Translating Logics

Semantics

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as S5 \rightarrow QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

Translating Logics

Semantics

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as S5 \rightarrow QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Translating Logics

Semantics

Motivation & History

Bull 1966

MIPC axiomatizes the monadic fragment of intuitionistic predicate logic (QIPC). (Using same translation as S5 \rightarrow QCPC)

Ono & Suzuki (1988) extended this approach to a more general theory to recognize when a logic over MIPC axiomatizes the monadic fragment of a logic over QIPC, and gave examples of infinitely many intuitionistic modal logics which are monadic fragments of intermediate predicate logics.

What about modal predicate logics?

Goal

Axiomatize monadic fragments of modal predicate logics using products and relativized products of Kripke frames.

Tra

Translating Logics

Semantics

Monadic Modal Logics

Language \mathscr{L}_{MM}

 classical modal language *L_M*

Syntax

- the monadic operator ∀
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Tra

Translating Logics

Semantic

Monadic Modal Logics

Language \mathscr{L}_{MM}

 classical modal language *L_M*

Syntax

- the monadic operator ∀
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

 Rules of Inference

 • substitution

 • modus ponens

 • \Box -necessitation $\left(\frac{\varphi}{\Box \varphi}\right)$

• \forall -necessitation $\left(\frac{\varphi}{\forall \varphi}\right)$

Tra

Syntax

Translating Logics

Semantics

Putting it all Together

Monadic Modal Logics

Language \mathscr{L}_{MM}

- classical modal language *L_M*
- the monadic operator ∀
- usual definition of $\exists \varphi \text{ as } \neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \Box -necessitation $\begin{pmatrix} \varphi \\ \Box \varphi \end{pmatrix}$
- \forall -necessitation $\left(\frac{\varphi}{\forall \varphi}\right)$

Minimal System mK

Least set of formulas of \mathscr{L}_{MM} that contains:

- all axioms of K for \Box
- $\bullet~$ the S5 axioms for \forall
- the bridge axiom $\Box \forall \phi \rightarrow \forall \Box \phi$

Tra

Syntax

Translating Logics

Semantics

Putting it all Together

Monadic Modal Logics

Language \mathscr{L}_{MM}

- classical modal language *L_M*
- the monadic operator ∀
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \Box -necessitation $\left(\frac{\varphi}{\Box \varphi}\right)$
- \forall -necessitation $\left(\frac{\varphi}{\forall \varphi}\right)$

Minimal System mK

Least set of formulas of \mathscr{L}_{MM} that contains:

- all axioms of K for \Box
- $\bullet~$ the S5 axioms for \forall
- the bridge axiom $\Box \forall \phi \rightarrow \forall \Box \phi$

Monadic Modal Logic

• A monadic modal logic (mm-logic) is an extension L of mK closed under the above rules.

Tra

Syntax

Translating Logics

Semantics

Putting it all Together

Monadic Modal Logics

Language \mathscr{L}_{MM}

- classical modal language *L_M*
- the monadic operator ∀
- usual definition of $\exists \varphi$ as $\neg \forall \neg \varphi$

Rules of Inference

- substitution
- modus ponens
- \Box -necessitation $\left(\frac{\varphi}{\Box \varphi}\right)$
- \forall -necessitation $\left(\frac{\varphi}{\forall \varphi}\right)$

Minimal System mK

Least set of formulas of \mathscr{L}_{MM} that contains:

- all axioms of K for \Box
- $\bullet~$ the S5 axioms for $\forall~$
- the bridge axiom $\Box \forall \phi \rightarrow \forall \Box \phi$

Monadic Modal Logic

- A monadic modal logic (mm-logic) is an extension L of mK closed under the above rules.
- bL denotes the extension of a mm-logic L by the Barcan formula $\forall \Box \varphi \rightarrow \Box \forall \varphi$

Modal Predicate Logics

Minimal System QK

Syntax

Least set of formulas of $Q\mathscr{L}_M$ that contains:

- all theorems of QCPC
- the axiom

 $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$

the bridge axiom

 $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

Modal Predicate Logics

Minimal System QK

Syntax

Least set of formulas of $Q\mathcal{L}_M$ that contains:

- all theorems of QCPC
- the axiom
 - $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- the bridge axiom $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- Incessitation

Tran

Translating Logics

Semantics

Modal Predicate Logics

Minimal System QK

Syntax

Least set of formulas of \mathcal{QL}_M that contains:

- all theorems of QCPC
- the axiom $\Box(\phi \to \psi) \to (\Box \phi \to \Box \psi)$
- the bridge axiom $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- Inecessitation

Modal Predicate Logic

• A modal predicate logic is an extension M of QK closed under the listed rules.

Trans

Translating Logics

Semantics

Modal Predicate Logics

Minimal System QK

Syntax

Least set of formulas of \mathcal{QL}_M that contains:

- all theorems of QCPC
- the axiom $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- the bridge axiom $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- Inecessitation

Modal Predicate Logic

- A modal predicate logic is an extension M of QK closed under the listed rules.
- BM denotes the extension of a modal predicate logic M by the Barcan formula ∀x□φ(x) → □∀xφ(x)

Trans

Translating Logics

Semantics

Modal Predicate Logics

Minimal System QK

Syntax

Least set of formulas of \mathcal{QL}_M that contains:

- all theorems of QCPC
- the axiom $\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi)$
- the bridge axiom $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

And is closed under:

- uniform substitution
- modus ponens
- generalization
- Inecessitation

Modal Predicate Logic

- A modal predicate logic is an extension M of QK closed under the listed rules.
- BM denotes the extension of a modal predicate logic M by the Barcan formula $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$

Unlike propositional modal logics, many modal predicate logics are not Kripke complete. Syntax

Translation

First, for each propositional letter p of \mathscr{L}_{MM} , we associate a unary predicate P(x).

Syntax

Translation

First, for each propositional letter p of \mathscr{L}_{MM} , we associate a unary predicate P(x). Next, we define a translation

 $T : \mathbf{Form}(\mathscr{L}_{MM}) \to \mathbf{Form}(\mathcal{QL}_M)$ as follows:

Translation

First, for each propositional letter p of \mathscr{L}_{MM} , we associate a unary predicate P(x). Next, we define a translation

- $T: \mathbf{Form}(\mathscr{L}_{MM}) \to \mathbf{Form}(\mathcal{QL}_M)$ as follows:
 - T(p) = P(x) for propositional letters p
 - $T(\neg \varphi) = \neg T(\varphi)$

Syntax

• $T(\varphi \wedge \psi) = T(\varphi) \wedge T(\psi)$

Translation

First, for each propositional letter p of \mathscr{L}_{MM} , we associate a unary predicate P(x). Next, we define a translation

- $T : \mathbf{Form}(\mathscr{L}_{MM}) \to \mathbf{Form}(\mathcal{QL}_M)$ as follows:
 - T(p) = P(x) for propositional letters p
 - $T(\neg \varphi) = \neg T(\varphi)$

Syntax

- $T(\varphi \wedge \psi) = T(\varphi) \wedge T(\psi)$
- $T(\Box \varphi) = \Box T(\varphi)$
- $T(\forall \varphi) = \forall x T(\varphi)$

Putting it all Together

Galois Connection

For a mm-logic $L \supseteq mK$, define a modal predicate logic:

Syntax

 $\Phi(\mathsf{L}) = \mathsf{QK} + \{T(\varphi) : \mathsf{L} \vdash \varphi\}$

Translating Frames

Putting it all Together

Galois Connection

For a mm-logic $L \supseteq mK$, define a modal predicate logic:

$$\Phi(\mathsf{L}) = \mathsf{QK} + \{T(\varphi) : \mathsf{L} \vdash \varphi\}$$

For a modal predicate logic $M \supseteq QK$, define a mm-logic:

 $\Psi(\mathsf{M}) = \mathsf{m}\mathsf{K} + \{\varphi : \mathsf{M} \vdash \mathcal{T}(\varphi)\}$

Translating Frames

Putting it all Together

Galois Connection

For a mm-logic $L \supseteq mK$, define a modal predicate logic:

Syntax

```
\Phi(\mathsf{L}) = \mathsf{QK} + \{T(\varphi) : \mathsf{L} \vdash \varphi\}
```

For a modal predicate logic $M \supseteq QK$, define a mm-logic:

 $\Psi(\mathsf{M}) = \mathsf{m}\mathsf{K} + \{\varphi : \mathsf{M} \vdash \mathcal{T}(\varphi)\}$

Lemma

For $L \supseteq mK$ and $M \supseteq QK$

- Φ and Ψ form a Galois connection, that is $\Phi(L) \subseteq M$ iff $L \subseteq \Psi(M)$.
- 2 $\Psi(\Phi(L)) \supset L$ with equality iff $L = \Psi(M)$ for some $M \supset QK$.

(a) $M \supseteq \Phi(\Psi(M))$ with equality iff $M = \Phi(L)$ for some $L \supseteq mK$.

Semantics

Putting it all Together

Monadic Fragment

Definition

We call $L \supseteq mK$ the monadic fragment of a modal predicate logic $M \supseteq QK$ if

 $L \vdash \varphi$ iff $M \vdash T(\varphi)$

and we denote this relationship by $\langle L; M \rangle$.

Semantics

Monadic Fragment

Definition

We call $L\supseteq mK$ the monadic fragment of a modal predicate logic $M\supseteq QK$ if

 $\mathsf{L} \vdash \varphi$ iff $\mathsf{M} \vdash \mathsf{T}(\varphi)$

and we denote this relationship by $\langle L; M \rangle$.

Goal

Develop a correspondence between models of mm-logics and models of modal predicate logics, in order to obtain results similar to those of Ono and Suzuki.

Putting it all Together

Kripke Semantics

mK-frame

- $\mathfrak{F} = \langle W, R, E \rangle$
- R is a binary relation

Syntax

• E is an equivalence relation

Syntax

Semantics

Translating Frames

Putting it all Together

Kripke Semantics

Monadic Fragments of Modal Predicate Logics

9 / 21

Syntax

Semantics

Kripke Semantics

Kripke Semantics

Predicate Kripke Frame

- $\mathfrak{F} = \langle W, R, D \rangle$
- *D* assigns to each *w* ∈ *W* a set of objects *D_w*

Kripke Semantics

Predicate Kripke Frame

- $\mathfrak{F} = \langle W, R, D \rangle$
- D assigns to each w ∈ W a set of objects D_w
- expanding domains: wRvimplies $D_w \subseteq D_v$ for all $w, v \in W$

Kripke Semantics

mK-frame

- $\mathfrak{F} = \langle W, R, E \rangle$
- R is a binary relation
- *E* is an equivalence relation
- $RE(u) \subseteq ER(u)$ for all $u \in W$

Predicate Kripke Frame

- $\mathfrak{F} = \langle W, R, D \rangle$
- D assigns to each w ∈ W a set of objects D_w
- expanding domains: wRvimplies $D_w \subseteq D_v$ for all $w, v \in W$
- constant domains: D_w = D_v for all w, v ∈ W

Kripke Semantics

Predicate Kripke Frame

- $\mathfrak{F} = \langle W, R, D \rangle$
- D assigns to each w ∈ W a set of objects D_w
- expanding domains: wRv implies D_w ⊆ D_v for all w, v ∈ W
- constant domains: D_w = D_v for all w, v ∈ W

To translate between mK-frames and predicate Kripke frames we need to work with a much smaller class of mK-frames, arising from product frames.

Product Frame

Syntax

•
$$\mathfrak{F}_1 = \langle W_1, R_1 \rangle \quad \times \quad \mathfrak{F}_2 = \langle W_2, R_2 \rangle$$

Product Frame

Syntax

- $\mathfrak{F}_1 = \langle W_1, R_1 \rangle \quad \times \quad \mathfrak{F}_2 = \langle W_2, R_2 \rangle$
- $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_v, R_h \rangle$

Monadic Fragments of Modal Predicate Logics

10 / 21

Product Frame

Syntax

- $\mathfrak{F}_1 = \langle W_1, R_1 \rangle \quad \times \quad \mathfrak{F}_2 = \langle W_2, R_2 \rangle$
- $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_v, R_h \rangle$
- $(u_1, v_1)R_v(u_2, v_2)$ iff $u_1R_1u_2$ and $v_1 = v_2$

Product Frame

- $\mathfrak{F}_1 = \langle W_1, R_1 \rangle \quad \times \quad \mathfrak{F}_2 = \langle W_2, R_2 \rangle$
- $\mathfrak{F}_1 \times \mathfrak{F}_2 = \langle W_1 \times W_2, R_v, R_h \rangle$
- $(u_1, v_1)R_v(u_2, v_2)$ iff $u_1R_1u_2$ and $v_1 = v_2$
- $(u_1, v_1)R_h(u_2, v_2)$ iff $u_1 = u_2$ and $v_1R_2v_2$

Syntax

Translating Logics

Semantics

Putting it all Together

Relativized Products

Trans

Translating Logics

(Semantics)

Putting it all Together

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

•
$$\mathfrak{F} = \langle W, S_v, S_h \rangle$$

Trans

Translating Logics

Semantics

Putting it all Together

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subseteq W_1 \times W_2$

Semantics

Putting it all Together

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subset W_1 \times W_2$
- S_i is the restriction of R_i to W for i = h, v

Semantics

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subset W_1 \times W_2$
- S_i is the restriction of R_i to W for i = h, v

Expanding Relativized Product (ERP)

Semantics

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subset W_1 \times W_2$
- S_i is the restriction of R_i to W for i = h, v

Expanding Relativized Product (ERP)

• RP of $\mathfrak{F}_1 \times \mathfrak{F}_2$

Semantics

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subseteq W_1 \times W_2$
- S_i is the restriction of R_i to W for i = h, v

Expanding Relativized Product (ERP)

- RP of $\mathfrak{F}_1 \times \mathfrak{F}_2$
- for $(u_i, v_i) \in W$ and $u_k \in W_1$, if $u_i R_1 u_k$ then $(u_k, v_i) \in W$

Semantics

Relativized Products

Relativized Product (RP) (AKA Subframe)

Syntax

- $\mathfrak{F} = \langle W, S_v, S_h \rangle$
- $W \subseteq W_1 \times W_2$
- S_i is the restriction of R_i to W for i = h, v

Expanding Relativized Product (ERP)

- RP of $\mathfrak{F}_1 \times \mathfrak{F}_2$
- for $(u_i, v_i) \in W$ and $u_k \in W_1$, if $u_i R_1 u_k$ then $(u_k, v_i) \in W$

Translating Logics

Semantics

Translating Frames

Putting it all Together

Properties of Product Frames

Syntax

Translating Logics

s Semantics

Translating Frames

Putting it all Together

Properties of Product Frames

Syntax

Translating Logics

Syntax

Semantics

Translating Frames

Putting it all Together

Properties of Product Frames

Monadic Fragments of Modal Predicate Logic

12 / 21

Translating Logics

Syntax

Semantics

Putting it all Together

Properties of Product Frames

Monadic Fragments of Modal Predicate Logic

12 / 21

Syntax

Properties of Product Frames

Syntax

Properties of Product Frames

Monadic Fragments of Modal Predicate Logics

12 / 21

In our ERP frames $\mathfrak{F} = \langle W, S_v, S_h \rangle$, we take subframes of $\mathfrak{F}_1 \times \mathfrak{F}_2$ where $R_2 = W_2 \times W_2$ (modeling our S5 modality \forall),

In our ERP frames $\mathfrak{F} = \langle W, S_v, S_h \rangle$, we take subframes of $\mathfrak{F}_1 \times \mathfrak{F}_2$ where $R_2 = W_2 \times W_2$ (modeling our S5 modality \forall), so S_h is an equivalence relation.

In our ERP frames $\mathfrak{F} = \langle W, S_v, S_h \rangle$, we take subframes of $\mathfrak{F}_1 \times \mathfrak{F}_2$ where $R_2 = W_2 \times W_2$ (modeling our S5 modality \forall), so S_h is an equivalence relation.

We write $\mathfrak{F} = \langle W, R, E \rangle$ where $R = S_v$ and $E = S_h$.

In our ERP frames $\mathfrak{F} = \langle W, S_v, S_h \rangle$, we take subframes of $\mathfrak{F}_1 \times \mathfrak{F}_2$ where $R_2 = W_2 \times W_2$ (modeling our S5 modality \forall), so S_h is an equivalence relation.

We write $\mathfrak{F} = \langle W, R, E \rangle$ where $R = S_v$ and $E = S_h$.

In our ERP frames $\mathfrak{F} = \langle W, S_v, S_h \rangle$, we take subframes of $\mathfrak{F}_1 \times \mathfrak{F}_2$ where $R_2 = W_2 \times W_2$ (modeling our S5 modality \forall), so S_h is an equivalence relation.

We write $\mathfrak{F} = \langle W, R, E \rangle$ where $R = S_v$ and $E = S_h$.

Some Notes

- $\bullet\,$ chr is automatic when one of \mathfrak{F}_1 or \mathfrak{F}_2 is an S5-frame
- full commutativity (*com*) ⇔ Barcan formula (full product frames)
- We lose half of commutativity when restricted to ERP frames

Translating Logics

Semantics

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

 $\mathfrak{F} = \langle W, R, E \rangle$ ERP frame

 $\mathfrak{F}^{\dagger} = \langle W^{\dagger}, R^{\dagger}, D \rangle$

predicate Kripke frame

Syntax

Translating Logics

Semantics

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

 $\mathfrak{F} = \langle W, R, E
angle$ ERP frame

 $\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$

predicate Kripke frame

Translating Logics

Semantics

(Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

Syntax

predicate Kripke frame

•
$$\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$$

Translating Logics

Semantic

(Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

 $\mathfrak{F} = \langle W, R, E
angle$ ERP frame

 $\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$

predicate Kripke frame

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- *D* assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$

14 / 21

Syntax

Translating Logics

Semantics

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

$$\mathfrak{F} = \langle W, R, E
angle$$
ERP frame

Notes

•
$$D_{u_i} = D_{u_i}$$
 for all $u_i, u_j \in W^{\dagger}$

$$\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$$

predicate Kripke frame

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- *D* assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$

Translating Logics

Semantic

(Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Constant Domains

$$\mathfrak{F} = \langle W, R, E \rangle$$

ERP frame

Notes

- $D_{u_i} = D_{u_j}$ for all $u_i, u_j \in W^{\dagger}$
- φ^v_x is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

$$\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$$

predicate Kripke frame

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$
- $(\mathfrak{F}^{\dagger}, x) \vDash p_{x}^{v}$ iff $(\mathfrak{F}, (u, v)) \vDash p$

Translating Logics

Semantics

(Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Expanding Domains

 \rightarrow

 $\mathfrak{F} = \langle W, R, E \rangle$ ERP frame

Syntax

 $\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$

predicate Kripke frame

Syntax

Translating Logics

Semantics

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

• $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$

Translating Logics

Semantic

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

 $\mathfrak{F}^{\dagger} = \left\langle W^{\dagger}, R^{\dagger}, D \right\rangle$ predicate Kripke frame

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- *D* assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$

Translating Logics

Semantic

Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

Notes

• $u_i R^{\dagger} u_j$ implies $D_{u_i} \subseteq D_{u_j}$

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- D assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$

Translating Logics

Semanti

(Translating Frames

Putting it all Together

ERP Frames \rightarrow **Predicate Frames**

$\mathfrak{F}^{\dagger} = \left\langle \mathcal{W}^{\dagger}, \mathcal{R}^{\dagger}, D \right\rangle$ predicate Kripke frame

Notes

- $u_i R^{\dagger} u_j$ implies $D_{u_i} \subseteq D_{u_j}$
- φ^v_x is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

- $\langle W^{\dagger}, R^{\dagger} \rangle = \langle W_1, R_1 \rangle$
- *D* assigns to each $u \in W^{\dagger}$ a set $D_u = \{v \in W_2 : (u, v) \in W\}$
- $(\mathfrak{F}^{\dagger}, x) \vDash p_{x}^{v}$ iff $(\mathfrak{F}, (u, v)) \vDash p$

Translating Logics

Syntax

Semantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Constant Domains

$$\mathfrak{F}^{\times} = \langle W^{\times}, R^{\times}, E^{\times} \rangle$$

ERP frame

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

Translating Logics

Syntax

CS

Semantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Constant Domains

$$\mathfrak{F}^{\times} = \langle W^{\times}, R^{\times}, E^{\times} \rangle$$
 ϵ

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

Translating Logics

Syntax

ogics

Semantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Constant Domains

$$\mathfrak{F}^{ imes} = \langle W^{ imes}, R^{ imes}, E^{ imes}
angle \qquad \leftarrow \ {\sf ERP \ frame}$$

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

• underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$

Monadic Fragments of Modal Predicate Logics

15 / 21

Translating Logics

9

mantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Constant Domains

$$\mathfrak{F}^{ imes} = \langle W^{ imes}, R^{ imes}, E^{ imes}
angle$$
ERP frame

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

- underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$
- $V = \bigcup_{u \in W} D_u$ and $W^{\times} = \{(u, v) \in W \times V : v \in D_u\}$

Translating Logics

Sema

(Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Constant Domains

$$\mathfrak{F}^{ imes} = \langle W^{ imes}, R^{ imes}, E^{ imes}
angle$$

$$(u_{2},v_{1}) \underbrace{E^{\times}}_{(u_{2},v_{2})} (u_{2},v_{2})$$

$$R^{\times} \bigwedge^{\uparrow}_{(u_{1},v_{1})} \underbrace{E^{\times}}_{(u_{1},v_{2})} (u_{1},v_{2})$$

- underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$
- $V = \bigcup_{u \in W} D_u$ and $W^{\times} = \{(u, v) \in W \times V : v \in D_u\}$
- $(\mathfrak{F}^{\times},(u,v)) \vDash p$ iff $(\mathfrak{F},u) \vDash p_{X}^{v}$

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

Note

 φ_x^v is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

Translating Logics

Syntax

Semantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Expanding Domains

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

Monadic Fragments of Modal Predicate Logics

15 / 21

Translating Logics

Semantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Expanding Domains

$$\mathfrak{F}^{\times} = \langle W^{\times}, R^{\times}, E^{\times} \rangle \qquad \longleftarrow$$

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

• underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$

Translating Logics

ics

emantics

Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Expanding Domains

 $\mathfrak{F}^{ imes} = \langle W^{ imes}, R^{ imes}, E^{ imes}
angle$ ERP frame

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

- underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$
- $V = \bigcup_{u \in W} D_u$ and $W^{\times} = \{(u, v) \in W \times V : v \in D_u\}$

Translating Logics

5

(Translating Frames

Putting it all Together

Predicate Frames → **ERP Frames**

Expanding Domains

 $\mathfrak{F}^{ imes} = \langle W^{ imes}, R^{ imes}, E^{ imes}
angle$ ERP frame

- underlying frames $\langle W, R \rangle$ and $\langle V, V \times V \rangle$
- $V = \bigcup_{u \in W} D_u$ and $W^{\times} = \{(u, v) \in W \times V : v \in D_u\}$
- $(\mathfrak{F}^{\times},(u,v)) \vDash p$ iff $(\mathfrak{F},u) \vDash p_{X}^{v}$

 $\mathfrak{F} = \langle W, R, D \rangle$ predicate Kripke frame

Note

 φ_x^v is used to denote the formula obtained from φ by replacing every free occurrence of x by v.

Monadic Fragments of Modal Predicate Logics

Semantics

(Translating Frames

Translating Frames

Theorem

Syntax

If \$\vec{s}\$ is an ERP frame and \$\varphi \in Form(\mathcal{L}_{MM})\$, then

\$(\vec{s},(u,v)) ⊨ \$\varphi\$ iff \$(\vec{s}^{\dagge},u) ⊨ \$(T(\varphi))_{X}^{v}\$.

If \$\vec{s}\$ is a predicate Kripke frame and \$\varphi ∈ Form(\mathcal{L}_{MM})\$, then

\$(\vec{s},u) ⊨ \$(T(\varphi))_{X}^{v}\$ iff \$(\vec{s}^{\times},(u,v)) ⊨ \$\varphi\$.

Translating Frames

Theorem

If \$\vec{s}\$ is an ERP frame and \$\varphi \in Form(\mathcal{L}_{MM})\$, then

\$(\vec{s},(u,v)) ⊨ \$\varphi\$ iff \$(\vec{s}^{\pi},u) ⊨ \$(T(\varphi))_{X}^{\nu}\$.

If \$\vec{s}\$ is a predicate Kripke frame and \$\varphi ∈ Form(\mathcal{L}_{MM})\$, then

\$(\vec{s},u) ⊨ \$(T(\varphi))_{X}^{\nu}\$ iff \$(\vec{s}^{\times},(u,v)) ⊨ \$\varphi\$.

Note

This will ultimately allow us to generalize Ono & Suzuki's results to monadic modal logics.

Sem

Translating Frames

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

- Image Mathematical Mathematical Strength Action (S5).
 Image Mathematical Mathematical Strength Action (S4), or an equivalence relation (S5).
- BK is complete with respect to the class of all product frames, and for L ∈ {K4, S4}, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

Sem

(Translating Frames

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

- Image Mathematical Mathematical Strength Str
- BK is complete with respect to the class of all product frames, and for L ∈ {K4, S4}, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

Sema

Translating Frames

Completeness

Theorem (Gabbay, Kurucz, Wolter, Zakharyaschev, 2003)

- Image Mathematical Mathematical Strength Action (S5).
 Image Mathematical Mathematical Strength Action (S4), or an equivalence relation (S5).
- BK is complete with respect to the class of all product frames, and for L ∈ {K4, S4}, bL is complete with respect to the class of all product frames for which R is either transitive (K4) or a quasi-order (S4).

Just as Ono & Suzuki adjusted the well-known Henkin construction for intuitionistic modal logics, we can adjust similarly for mm-logics for a simpler proof of the above theorem. We don't have time for this

Semantics

Translating Frames

Putting it all Together

Modified Henkin Construction

Start as usual...

• mK $\not\vdash \varphi$, set $\Gamma_{00} = \{\neg \varphi\}$ 2 Enumerate all formulas of $\mathcal{L}_0 = \mathcal{L}_{MM}$ as $\psi_1, \psi_2, ...$ **3** $\Gamma_{0i+1} =$ $\begin{cases} \label{eq:relation} \Gamma_{0i} \cup \{\psi_{i+1}\} & \text{if } \Gamma_{0i} \cup \{\psi_{i+1}\} \text{ is consistent} \\ \Gamma_{0i} \cup \{\neg \psi_{i+1}\} & \text{if } \Gamma_{0i} \cup \{\neg \psi_{i+1}\} \text{ is consistent} \end{cases}$

18 / 21

Logics

Semantics

Translating Frames

Putting it all Together

Modified Henkin Construction

Start as usual...

- $m\mathsf{K} \not\vdash \varphi, \text{ set } \Gamma_{00} = \{\neg \varphi\}$
- 2 Enumerate all formulas of $\mathcal{L}_0 = \mathcal{L}_{MM}$ as $\psi_1, \psi_2, ...$
- **3** $\Gamma_{0i+1} =$
 - $\begin{cases} \mathsf{\Gamma}_{0i} \cup \{\psi_{i+1}\} & \text{ if } \mathsf{\Gamma}_{0i} \cup \{\psi_{i+1}\} \text{ is consistent} \\ \mathsf{\Gamma}_{0i} \cup \{\neg \psi_{i+1}\} & \text{ if } \mathsf{\Gamma}_{0i} \cup \{\neg \psi_{i+1}\} \text{ is consistent} \end{cases}$

Add "witnesses"

- **S** Let v_{ij} (i, j = 1, 2, 3, ...) be new variables not occurring in \mathcal{L}_0 and let $V_1 = \emptyset$
- Enumerate all formulas of Γ₀ of the form ∃ψ as ∃χ₁, ∃χ₂,...
- Add the formula χ_j to Γ₀ and add the new variable v_{1j} to V₁
- Expand to a maximal consistent set Γ₁

Logics

Semantics

Translating Frames

Putting it all Together

Modified Henkin Construction

Start as usual...

- $m \mathsf{K} \not\vdash \varphi, \text{ set } \Gamma_{00} = \{\neg \varphi\}$
- 2 Enumerate all formulas of $\mathcal{L}_0 = \mathcal{L}_{MM}$ as $\psi_1, \psi_2, ...$

Add "witnesses"

- **S** Let v_{ij} (i, j = 1, 2, 3, ...) be new variables not occurring in \mathcal{L}_0 and let $V_1 = \emptyset$
- Enumerate all formulas of Γ₀ of the form ∃ψ as ∃χ₁, ∃χ₂,...
- **(**) Add the formula χ_j to Γ_0 and add the new variable v_{1j} to V_1
- Expand to a maximal consistent set Γ₁

9	After Γ_i has been constructed,
	construct Γ_{i+1} as above

Logics

Semantics

Translating Frames

Putting it all Together

Modified Henkin Construction

Start as usual...

 $m \mathsf{K} \not\vdash \varphi, \text{ set } \Gamma_{00} = \{\neg \varphi\}$

Syntax

- 2 Enumerate all formulas of $\mathcal{L}_0 = \mathcal{L}_{MM}$ as $\psi_1, \psi_2, ...$

Add "witnesses"

- S Let v_{ij} (i, j = 1, 2, 3, ...) be new variables not occurring in \mathcal{L}_0 and let $V_1 = \emptyset$
- **5** Enumerate all formulas of Γ_0 of the form $\exists \psi$ as $\exists \chi_1, \exists \chi_2, ...$
- **(**) Add the formula χ_j to Γ_0 and add the new variable v_{1j} to V_1
- Expand to a maximal consistent set Γ₁

• After Γ_i has been constructed, construct Γ_{i+1} as above

Construct the model

$$\mathfrak{M} = \langle W, R, E, \mathfrak{V} \rangle$$

• Let
$$W = \{(\Gamma, v) : v \in V_{\Gamma}\}$$

• $(\Gamma, v)R(\Delta, u)$ iff $\Box \psi \in \Gamma \Rightarrow \psi \in \Delta$ for all formulas ψ and v = u

•
$$(\Gamma, v)E(\Delta, u)$$
 iff $\Gamma = \Delta$

•
$$(\Gamma, v) \in \mathfrak{V}(p)$$
 iff $p \in \Gamma$

ics

emantics

Translating Frames

Putting it all Together

Modified Henkin Construction

Start as usual...

 $m \mathsf{K} \not\vdash \varphi, \text{ set } \Gamma_{00} = \{\neg \varphi\}$

Syntax

- 2 Enumerate all formulas of $\mathcal{L}_0 = \mathcal{L}_{MM}$ as $\psi_1, \psi_2, ...$

Add "witnesses"

- S Let v_{ij} (i, j = 1, 2, 3, ...) be new variables not occurring in \mathcal{L}_0 and let $V_1 = \emptyset$
- **5** Enumerate all formulas of Γ_0 of the form $\exists \psi$ as $\exists \chi_1, \exists \chi_2, ...$
- **(**) Add the formula χ_j to Γ_0 and add the new variable v_{1j} to V_1
- Expand to a maximal consistent set Γ₁

• After Γ_i has been constructed, construct Γ_{i+1} as above

Construct the model

$$\mathfrak{M} = \langle W, R, E, \mathfrak{V} \rangle$$

• Let
$$W = \{(\Gamma, v) : v \in V_{\Gamma}\}$$

• $(\Gamma, v)R(\Delta, u)$ iff $\Box \psi \in \Gamma \Rightarrow \psi \in \Delta$ for all formulas ψ and v = u

•
$$(\Gamma, v)E(\Delta, u)$$
 iff $\Gamma = \Delta$

•
$$(\Gamma, v) \in \mathfrak{V}(p)$$
 iff $p \in \Gamma$

When working with bK, we simply take V to be the collection of all variables and $W = \{(\Gamma, v) : v \in V\}$.

Semantics

Translation Theorem

Theorem

Let $L \supseteq mK$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of ERP frames. If $M \supseteq QK$ is sound with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then $\langle L; M \rangle$.

19 / 21

Theorem

Let $L \supset mK$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of ERP frames. If $M \supseteq QK$ is sound with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then $\langle L; M \rangle$.

Notation

For $L \in \{K, K4, S4, S5\}$,

- mL (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

Theorem

Let $L \supset mK$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of ERP frames. If $M \supseteq QK$ is sound with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then (L; M).

Notation

For $L \in \{K, K4, S4, S5\}$,

- mL (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Theorem

Let $L \supset mK$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of ERP frames. If $M \supseteq QK$ is sound with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then (L; M).

Notation

For $L \in \{K, K4, S4, S5\}$,

- mL (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Corollary

For $L \in \{K, K4, S4, S5\}$ we have (mL; QL) and for $L \in \{K, K4, S4\}$ we have (bL; BL).

Theorem

Let $L \supset mK$ be a mm-logic complete with respect to a class $\{\mathfrak{F}_i\}_{i \in I}$ of ERP frames. If $M \supseteq QK$ is sound with respect to $\{\mathfrak{F}_i^{\dagger}\}_{i \in I}$, then (L; M).

Notation

For $L \in \{K, K4, S4, S5\}$,

- mL (bL) denotes the least monadic extension of L (+ Barcan)
- QL (BL) denotes the modal predicate version of L (+ Barcan)

We can now generalize Wajsberg's original result to the following:

Corollary

For $L \in \{K, K4, S4, S5\}$ we have (mL; QL) and for $L \in \{K, K4, S4\}$ we have (bL; BL).

Syntax

Putting it all Together

Relationship with Intuitionistic Logic

• The bimodal logic mS4 was first considered by Fischer Servi.

Monadic Fragments of Modal Predicate Logic

20 / 21

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4 by defining

t

Relationship with Intuitionistic Logic

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4 by defining

•
$$(\Box \varphi)^t = \Box \forall \varphi$$

•
$$(\Diamond \varphi)^t = \exists \varphi^t$$

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4 by defining

•
$$(\Box \varphi)^t = \Box \forall \varphi^t$$

- $(\Diamond \varphi)^t = \exists \varphi^t$
- She then proved MIPC $\vdash \varphi$ iff mS4 $\vdash \varphi^t$.

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4 by defining
 - $(\Box \varphi)^t = \Box \forall \varphi^t$
 - $(\Diamond \varphi)^t = \exists \varphi^t$
- She then proved MIPC $\vdash \varphi$ iff mS4 $\vdash \varphi^t$.
 - The proof required mS4 $\vdash \phi \Rightarrow$ QS4 $\vdash T(\phi)$, but the other implication was left open.

- The bimodal logic mS4 was first considered by Fischer Servi.
- She extended the Gödel translation of IPC to S4 to a translation of formulas φ of MIPC to formulas φ^t of mS4 by defining
 - $(\Box \varphi)^t = \Box \forall \varphi^t$
 - $(\Diamond \varphi)^t = \exists \varphi^t$
- She then proved MIPC $\vdash \varphi$ iff mS4 $\vdash \varphi^t$.
 - The proof required mS4 $\vdash \phi \Rightarrow$ QS4 $\vdash T(\phi)$, but the other implication was left open.
 - Now we can see that the other implication holds as well and give a simplified version of her proof that MIPC $\vdash \phi$ iff mS4 $\vdash \phi^t$.

Thank You!