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A sketch of type theory

> Types, elements, judgments and contexts
» Judgmental equality

» Substitution rules

» Y -formation and introduction rules

» [l-formation and introduction rules

» Propositional equality

» Universes

» Univalence
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Types and judgments

The basic notion is that of a type (=~ set).

The assertion that A is a type is formally expressed by writing
FA: Type

This expression is an instance of what is called a judgment.

For example, the judgment

FN: Type

asserts that the set N of natural numbers is a type.
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Elements, terms

The assertion that x is an element of type A is formally expressed
by the judgment

Fx:A

For example, the judgment

FO:N

asserts that 0 is a natural number.

An element x : A is often called a term.

There are terms forming operations

to=x|Mt|t(t)|c|f
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Judgmental equality

In Martin-Lof type theory, two objects are intentionally equal if
they have the same normal form.

The assertion that two elements x and y of type A are
intentionally equal is written as a judgment:

Fx=y:A

Also the assertion that two types A and B are intentionally equal,

FA=B
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Dependant types and contexts

A type B(x) may depend on a parameter x ranging in a type A.

x:AF B(x): Type

The expression x : A on the left of the symbol I~ is the context of
the judgment.

An element of type B(x) may depend on x:
x:AF t(x): B(x)
Contexts may be concatenated:

y:B(x), x: AF C(x,y) : Type
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Substitution rules

There are substitution rules for types and terms:

x:AFf(x): B, y:BF E(y): Type

x:AF E(f(x)): Type

x: Ak f(x): B, y Bt s(y): E(y)
x: Abs(f(x)): E(f(x))
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> -formation rules

There is a formation rule for the sum (= disjoint union) of a
dependant type E(x) in context x : A.

x:AF E(x): Type
H Z E(x) : Type
x:A

There is an introduction rule for pairs:

Fa: A, Fb: E(a)
F(a, b): ZE<X>
x:A
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[1-formation rules

There is a formation rule for the product of a dependant type E(x)

in context x : A.
x:AF E(x): Type

+ H E(x): Type
x:A

There is an introduction rule for A-term and an elimination rule:

x:AFt:E(x) l—f:HE(x), Fa:A
F)\X.t:HE(x) XA
x:A

.I— f(a): E(a)

As usual, the term Ax.t(x) stands for the map x — t(x).
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Computation and uniqueness rules

There is a computation rule:

F Ax.t(x) :l_IE(X)7 Fa:A
x:A

[ (Ax.th))(a) = t(a)

and a uniqueness rule:

e H E(x)
x:A

Ff = Ax.f(x)
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Equality type

There is a type constructor which associates to a type A another
type Eqa, called the equality type of A,

F A: Type

x,y:A = Eqa(x,y): Type
A term p : Eqa(x,y) is a proof that x ~ y (propositional equality).

The axiom that x ~ x is given by a term r(x) called the reflexivity

term:
A Type

x:A Fr(x): Eqa(x, x)
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The J-operation

There is a term constructor J which associates to a dependant type
z: Eqa(x,y), x,y : AF E(z) : Type
together with a term x : A+ t: E(r(x)), another term
z: Eqa(x,y), x,y 1 A FJ(t)(2) : E(2).
There is also a computation rule:

x:AFEJ(t)(r(x)) =t: E(r(x))
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Universes

We postulate an infinite sequences of universes
|—U0 :Lﬁ :UQ R

with the axioms:

(1) Every type A is a term in some universe U;.

FA:U;

(2) Every term in U; is a term in U 1.
A U;
A: Z/l,'_|_1
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The groupoid model

Hofmann and Streicher:
Type theory has a model in groupoids.
> types ~»  groupoids;
> terms ~» objects of a groupoid;

» dependant types in context A ~-  fibrations E — A;

» proofs that a~ b ~»  isomorphisms a — b.
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The simplicial set model

Awodey, Warren, Veovodsky :
Type theory has a model in simplicial sets

> types ~»  Kan complexes;

> terms ~»  vertices of a Kan complex;

» dependant types in context A ~»  Kan fibrations E — A;
» proofs thata~ b ~» pathsa— b.
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Fibrations and dependant types

The fiber E(x) of a fibration p: E — A at a point x € A is
defined by the pullback square

E(x)———E
r
* A.

A fibration p : E — A can be regarded as a family (E(x) : x € A)
of objects parametrized by a variable element x € A.

_—

A fibration p: E — A is a dependant type in context A.
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Equivalences

For any two types A and B, there is a type Equiv(A, B) whose
element are the equivalences A = B.

An equivalence w : A= B is a quintuple w = (f, g1, g2, h1, h2),
where
f:A—-B and g,2:B— A

are maps and
hy :grof ~ida and hy:fogy ~idg

are terms.
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Univalence

For any type B(x) which depends on x : A there is a canonical map

a: Eqa(x,y) — Equiv(B(x), B(y))

which depends on x,y : A.
Univalence axiom (Voevodsky): If I/ is an universe, then the map
a: Eqy(A, B) — Equiv(A, B)

is an equivalence for every A, B : U.
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Results and problems

Results:
» Shulman: 71(S') = Z

» Licata: mp(S8") =Z for n > 0, m¢(S") = 0 for k < n,
» Brunerie: 13(5%) =Z

» Lumsdane, Finster, Licata: Freudenthal suspension theorem.

Problems:
» (S =7/27
» No good notion of (internal) simplicial object

» No notion of (o0, 1)-categories.
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Axiomatic Homotopy Theory

J.H.C. Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Examples of axiomatic systems in homotopy theory:

» Triangulated categories (Verdier 1963);
» Homotopical algebra (Quillen 1967);

v

Fibration categories (Brown 1973);
Homotopy theories (Heller 1988)

Theory of derivators (Grothendieck 1987)
Homotopy type theory
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Fibration structure

Let C be a category with terminal object *.

Definition
A fibration structure on C is a class of maps F C C called

fibrations and denoted A — B, satisfying the following conditions:

» Every isomorphism is a fibration;
» The composite of two fibrations is a fibration;

> the base change of fibration along any map exists and is a

fibration;
AxgE——E

Tl

A———B

» the map X — x is a fibration for every object X € C.
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Anodyne maps

Let C be a category equipped with a fibration structure.

Definition
A map u: A— B in C is said to be is anodyne if it has the left
lifting property with respect to every fibration f : X — Y.

This means that every commutative square

A—2sX
ul f
B -t.vy

has a diagonal filler d : B — X ( du = a and fd = b).
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Tribes

Definition
A tribe C is a category equipped with a fibration structure such
that:

» every map f : A — B admits a factorization f = pu with u
anodyne and p a fibration.

> the base change of an anodyne map along a fibration is
anodyne.
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The local tribe C(A)

Let A be an object of a tribe C.

The local tribe C(A) is defined to be the full sub-category of C/A
whose objects are the fibrations p : E — A with codomain A.

A map f: (E,p) — (F,q) in C(A) is a fibration if the map
f: E — F is a fibration in C.

An object of C(A) is a dependent type in context A.
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Homomorphism of tribes

If C and D are tribes.
A functor F : C — D is a homomorphism if

» it takes fibrations to fibrations;
> it takes anodyne maps to anodyne maps;
> it preserves base changes of fibrations;

> it preserves terminal objects.

For example, if u: A— B is a map in a tribe C, then the base
change functor u* : C(B) — C(A) is a homomorphism of tribes.

Remark: The category of tribes is a 2-category, where a 1-cell is a
homomorphism and 2-cell is a natural transformation.
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Product along a fibration

A fibration f : A — B induces a base change functor

f*:C/B—C/A

The product along f : A — B of an object E = (E,p) € C/A is
an object M¢(E) € C/B equipped with a map

e: f*(N¢(E)) = E

which is couniversal with respect to the functor f*.

For every y : B we have

N(E)y)= [] E()

f(x)=y
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m-tribes

Definition
We say that a tribe C is a 7-tribe, if for every fibration f : A — B

» the product MN¢(E) exists for every E € C(A) and the structure
map M¢(E) — B is a fibration.

» the functor M : C(A) — C(B) preserves anodyne maps.

If C is a w-tribe, then so is the tribe C(A) for every object A € C.
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Path objects in a Quillen model category

If M is a Quillen model category.

A path object for A € M is obtained by factoring the diagonal
A:A— Ax Aasan anodyne map r : A — PA followed by a
fibration (s,t) : PA— A X A,

PA
A A

A X A.
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The identity type is a path object

Awodey-Warren:
The identity type Eqa — A X A is a path object for A.
The J-rule implies that the reflexivity term r : A — Eqa is anodyne.

Thus, if p: E — Eqa is a fibration, then every commutative square

A—t S F

Eqa —— Eqa

has a diagonal filler d = J(t),
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Homotopic maps

Let C be a tribe.

A homotopy h: f ~» g between two maps f,g: A— BinCis a
map h: A — PB such that sh=f and th=g.

B

\

A—h. pB

[

Theorem
The homotopy relation f ~ g is a congruence on the arrows of C.
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The homotopy category

Let C be a tribe.
The homotopy category Ho(C) is the quotient category C/ ~.

A map f: X — Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X — % is a homotopy
equivalence.
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Brown fibration category

Definition

(Ken Brown) A Brown fibration category is a category £
equipped with a fibration structure together with a class of acyclic
maps such that:

» Every isomorphism is acyclic;
» The class of acyclic maps has the 3-for-2 property;

» Every morphism can be factored as an acyclic map followed by
a fibration;

» The class of acyclic fibrations is stable under base change.

Theorem
A tribe is a Brown fibration category if the acyclic maps are the
homotopy equivalences.

Forthcoming Phd thesis of Page North in Cambridge.
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Weak equivalences of tribes

Definition

We say that a homomorphism of tribes F : £ — £’ is a
weak-equivalence if the induced functor

Ho(F) : Ho(E) — Ho(&') is an equivalence of categories.

Theorem

Amapf:A— B in a tribe £ is a homotopy equivalence if and
only if the functor f* : £(B) — E(A) is a weak-equivalence of
tribes.
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Meta-fibrations

Definition
We say that a homomorphism of tribes F : £ — £’ is a
meta-fibration if the following conditions are satisfied:

» F and Ho(F) are iso-fibrations;
» F is full on sections of trivial fibrations;
» F is full on diagonal filler of AF-squares;

» F is full on AF-factorisations.

For example, if £ is a tribe, then the functor 0; : EM 5 €isa
meta-fibration.

The base change of a meta-fibration along a homomorphism of
tribes is a meta-fibration.
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A fibration category of tribes?

v

Objects ~»  tribes

v

morphisms  ~»  homomorphisms of tribes

fibrations ~~  meta-fibrations

v

v

Acyclic morphism  ~»  weak equivalences of tribes

Theorem
The base change of an acyclic meta-fibration along a
homomorphism of tribes is an acyclic meta-fibration.

| was not able to prove that every homomorphism can be factored
as an acyclic homomorphism followed by a meta-fibration.
Stronger axioms are needed.
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Simplicial tribes

A simplicial tribe is a category enriched over simplicial sets having
the structure of a tribes + compatibility axioms.

Theorem
The category of simplicial tribes has the structure of a Brown
fibration category.

There is a relation with the work of Karol Szumilo.
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THANK YOU FOR YOUR ATTENTION!
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