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Plan of my talk

I A sketch of type theory

I Models

I The notion of tribe

I The category of tribes
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A sketch of type theory

I Types, elements, judgments and contexts

I Judgmental equality

I Substitution rules

I Σ-formation and introduction rules

I Π-formation and introduction rules

I Propositional equality

I Universes

I Univalence
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Types and judgments

The basic notion is that of a type (' set).

The assertion that A is a type is formally expressed by writing

` A : Type

This expression is an instance of what is called a judgment.

For example, the judgment

` N : Type

asserts that the set N of natural numbers is a type.
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Elements, terms

The assertion that x is an element of type A is formally expressed
by the judgment

` x : A

For example, the judgment

` 0 : N

asserts that 0 is a natural number.

An element x : A is often called a term.

There are terms forming operations

t ::= x | λx .t | t(t ′) | c | f
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Judgmental equality

In Martin-Löf type theory, two objects are intentionally equal if
they have the same normal form.

The assertion that two elements x and y of type A are
intentionally equal is written as a judgment:

` x ≡ y : A

Also the assertion that two types A and B are intentionally equal,

` A ≡ B
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Dependant types and contexts

A type B(x) may depend on a parameter x ranging in a type A.

x : A ` B(x) : Type

The expression x : A on the left of the symbol ` is the context of
the judgment.

An element of type B(x) may depend on x :

x : A ` t(x) : B(x)

Contexts may be concatenated:

y : B(x), x : A ` C (x , y) : Type
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Substitution rules

There are substitution rules for types and terms:

x : A ` f (x) : B, y : B ` E (y) : Type

x : A ` E (f (x)) : Type

x : A ` f (x) : B, y : B ` s(y) : E (y)

x : A ` s(f (x)) : E (f (x))
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Σ-formation rules

There is a formation rule for the sum (= disjoint union) of a
dependant type E (x) in context x : A.

x : A ` E (x) : Type

`
∑
x :A

E (x) : Type

There is an introduction rule for pairs:

` a : A, ` b : E (a)

` (a, b) :
∑
x :A

E 〈x〉
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Π-formation rules

There is a formation rule for the product of a dependant type E (x)
in context x : A.

x : A ` E (x) : Type

`
∏
x :A

E (x) : Type

There is an introduction rule for λ-term and an elimination rule:

x : A ` t : E (x)

` λx .t :
∏
x :A

E (x)

` f :
∏
x :A

E (x), ` a : A

` f (a) : E (a)

As usual, the term λx .t(x) stands for the map x 7→ t(x).
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Computation and uniqueness rules

There is a computation rule:

` λx .t(x) :
∏
x :A

E (x), ` a : A

` (λx .t(x))(a) ≡ t(a)

and a uniqueness rule:

` f :
∏
x :A

E (x)

` f ≡ λx .f (x)
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Equality type

There is a type constructor which associates to a type A another
type EqA, called the equality type of A,

` A : Type

x , y :A ` EqA(x , y) : Type

A term p : EqA(x , y) is a proof that x ' y (propositional equality).

The axiom that x ' x is given by a term r(x) called the reflexivity
term:

A : Type

x :A ` r(x) : EqA(x , x)
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The J-operation

There is a term constructor J which associates to a dependant type

z : EqA(x , y), x , y : A ` E (z) : Type

together with a term x : A ` t : E (r(x)), another term

z : EqA(x , y), x , y : A ` J(t)(z) : E (z).

There is also a computation rule:

x : A ` J(t)(r(x)) ≡ t : E (r(x))
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Universes

We postulate an infinite sequences of universes

` U0 : U1 : U2 : · · ·

with the axioms:

(1) Every type A is a term in some universe Ui .

` A : Ui

(2) Every term in Ui is a term in Ui+1.

A : Ui
A : Ui+1
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The groupoid model

Hofmann and Streicher:

Type theory has a model in groupoids.

I types  groupoids;

I terms  objects of a groupoid;

I dependant types in context A  fibrations E � A;

I proofs that a ' b  isomorphisms a→ b.
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The simplicial set model

Awodey, Warren, Veovodsky :

Type theory has a model in simplicial sets

I types  Kan complexes;

I terms  vertices of a Kan complex;

I dependant types in context A  Kan fibrations E � A;

I proofs that a ' b  paths a→ b.
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Fibrations and dependant types

The fiber E (x) of a fibration p : E → A at a point x ∈ A is
defined by the pullback square

E (x)

��

// E

p
����

?
x // A.

A fibration p : E � A can be regarded as a family (E (x) : x ∈ A)
of objects parametrized by a variable element x ∈ A.

A fibration p : E � A is a dependant type in context A.
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Equivalences

For any two types A and B, there is a type Equiv(A,B) whose
element are the equivalences A ∼= B.

An equivalence w : A ∼= B is a quintuple w ≡ (f , g1, g2, h1, h2),
where

f : A→ B and g1, g2 : B → A

are maps and

h1 : g1 ◦ f ' idA and h2 : f ◦ g2 ' idB

are terms.
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Univalence

For any type B(x) which depends on x : A there is a canonical map

α : EqA(x , y)→ Equiv(B(x),B(y))

which depends on x , y : A.

Univalence axiom (Voevodsky): If U is an universe, then the map

α : EqU (A,B)→ Equiv(A,B)

is an equivalence for every A,B : U .
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Results and problems

Results:

I Shulman: π1(S1) = Z
I Licata: πn(Sn) = Z for n > 0, πk(Sn) = 0 for k < n,

I Brunerie: π3(S2) = Z
I Lumsdane, Finster, Licata: Freudenthal suspension theorem.

Problems:

I π4(S3) = Z/2 ?

I No good notion of (internal) simplicial object

I No notion of (∞, 1)-categories.
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Axiomatic Homotopy Theory

J.H.C. Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Examples of axiomatic systems in homotopy theory:

I Triangulated categories (Verdier 1963);

I Homotopical algebra (Quillen 1967);

I Fibration categories (Brown 1973);

I Homotopy theories (Heller 1988)

I Theory of derivators (Grothendieck 198?)

I Homotopy type theory
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Fibration structure

Let C be a category with terminal object ?.

Definition
A fibration structure on C is a class of maps F ⊆ C called
fibrations and denoted A� B, satisfying the following conditions:

I Every isomorphism is a fibration;

I The composite of two fibrations is a fibration;

I the base change of fibration along any map exists and is a
fibration;

A×B E

g
����

// E

f
����

A
u // B

I the map X → ? is a fibration for every object X ∈ C.

23 / 39



Anodyne maps

Let C be a category equipped with a fibration structure.

Definition
A map u : A→ B in C is said to be is anodyne if it has the left
lifting property with respect to every fibration f : X � Y .

This means that every commutative square

A

u
��

a // X

f����
B

b // Y

has a diagonal filler d : B → X ( du = a and fd = b).
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Tribes

Definition
A tribe C is a category equipped with a fibration structure such
that:

I every map f : A→ B admits a factorization f = pu with u
anodyne and p a fibration.

E
p

    
A

u
??

f // B.

I the base change of an anodyne map along a fibration is
anodyne.
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The local tribe C(A)

Let A be an object of a tribe C.

The local tribe C(A) is defined to be the full sub-category of C/A
whose objects are the fibrations p : E � A with codomain A.

E

p �� ��

f // F

q����
A

A map f : (E , p)→ (F , q) in C(A) is a fibration if the map
f : E → F is a fibration in C.

An object of C(A) is a dependent type in context A.
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Homomorphism of tribes

If C and D are tribes.

A functor F : C → D is a homomorphism if

I it takes fibrations to fibrations;

I it takes anodyne maps to anodyne maps;

I it preserves base changes of fibrations;

I it preserves terminal objects.

For example, if u : A→ B is a map in a tribe C, then the base
change functor u? : C(B)→ C(A) is a homomorphism of tribes.

Remark: The category of tribes is a 2-category, where a 1-cell is a
homomorphism and 2-cell is a natural transformation.
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Product along a fibration

A fibration f : A→ B induces a base change functor

f ? : C/B → C/A

The product along f : A→ B of an object E = (E , p) ∈ C/A is
an object Πf (E ) ∈ C/B equipped with a map

ε : f ?(Πf (E ))→ E

which is couniversal with respect to the functor f ?.

For every y : B we have

Πf (E )(y) =
∏

f (x)=y

E (x)
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π-tribes

Definition
We say that a tribe C is a π-tribe, if for every fibration f : A→ B

I the product Πf (E ) exists for every E ∈ C(A) and the structure
map Πf (E )→ B is a fibration.

I the functor Πf : C(A)→ C(B) preserves anodyne maps.

If C is a π-tribe, then so is the tribe C(A) for every object A ∈ C.
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Path objects in a Quillen model category

If M is a Quillen model category.

A path object for A ∈M is obtained by factoring the diagonal
∆ : A→ A× A as an anodyne map r : A→ PA followed by a
fibration (s, t) : PA� A× A,

PA
(s,t)

## ##
A

r

>>

∆ // A× A.
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The identity type is a path object

Awodey-Warren:

The identity type EqA → A× A is a path object for A.

The J-rule implies that the reflexivity term r : A→ EqA is anodyne.

Thus, if p : E � EqA is a fibration, then every commutative square

A

r
��

t // E

p
����

EqA EqA

has a diagonal filler d = J(t),
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Homotopic maps

Let C be a tribe.

A homotopy h : f  g between two maps f , g : A→ B in C is a
map h : A→ PB such that sh = f and th = g .

B

A

g //

f
//

h // PB

s

==

t

!!
B

Theorem
The homotopy relation f ∼ g is a congruence on the arrows of C.
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The homotopy category

Let C be a tribe.

The homotopy category Ho(C) is the quotient category C/ ∼.

A map f : X → Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X → ? is a homotopy
equivalence.
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Brown fibration category

Definition
(Ken Brown) A Brown fibration category is a category E
equipped with a fibration structure together with a class of acyclic
maps such that:

I Every isomorphism is acyclic;

I The class of acyclic maps has the 3-for-2 property;

I Every morphism can be factored as an acyclic map followed by
a fibration;

I The class of acyclic fibrations is stable under base change.

Theorem
A tribe is a Brown fibration category if the acyclic maps are the
homotopy equivalences.

Forthcoming Phd thesis of Page North in Cambridge.
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Weak equivalences of tribes

Definition
We say that a homomorphism of tribes F : E → E ′ is a
weak-equivalence if the induced functor
Ho(F ) : Ho(E)→ Ho(E ′) is an equivalence of categories.

Theorem
A map f : A→ B in a tribe E is a homotopy equivalence if and
only if the functor f ? : E(B)→ E(A) is a weak-equivalence of
tribes.
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Meta-fibrations

Definition
We say that a homomorphism of tribes F : E → E ′ is a
meta-fibration if the following conditions are satisfied:

I F and Ho(F ) are iso-fibrations;

I F is full on sections of trivial fibrations;

I F is full on diagonal filler of AF -squares;

I F is full on AF -factorisations.

For example, if E is a tribe, then the functor ∂1 : E(1) → E is a
meta-fibration.

The base change of a meta-fibration along a homomorphism of
tribes is a meta-fibration.
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A fibration category of tribes?

I Objects  tribes

I morphisms  homomorphisms of tribes

I fibrations  meta-fibrations

I Acyclic morphism  weak equivalences of tribes

Theorem
The base change of an acyclic meta-fibration along a
homomorphism of tribes is an acyclic meta-fibration.

I was not able to prove that every homomorphism can be factored
as an acyclic homomorphism followed by a meta-fibration.
Stronger axioms are needed.
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Simplicial tribes

A simplicial tribe is a category enriched over simplicial sets having
the structure of a tribes + compatibility axioms.

Theorem
The category of simplicial tribes has the structure of a Brown
fibration category.

There is a relation with the work of Karol Szumilo.
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