Category theory and Homotopy Type theory

André Joyal

UQÀM

Topology, Algebra, and Categories in Logic 2015 Ischia, June 21

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

References

Main authors:

- Per Martin-Löf (1971, 1975, 1984)
- Martin Hofmann, Thomas Streicher (1995)
- Steven Awodey, Michael Warren (2006)
- Vladimir Voevodsky (2006)

General references:

HTT Book:

http://homotopytypetheory.org/book/

Plan of my talk

- A sketch of type theory
- Models
- The notion of tribe
- The category of tribes

A sketch of type theory

Types, elements, judgments and contexts

イロト 不得下 イヨト イヨト 二日

4/39

- Judgmental equality
- Substitution rules
- Σ-formation and introduction rules
- Π-formation and introduction rules
- Propositional equality
- Universes
- Univalence

Types and judgments

The basic notion is that of a **type** (\simeq set).

The assertion that A is a type is formally expressed by writing

 $\vdash A$: Type

This expression is an instance of what is called a **judgment**. For example, the judgment

 $\vdash \mathbb{N}$: Type

asserts that the set \mathbb{N} of natural numbers is a type.

Elements, terms

The assertion that x is an **element** of type A is formally expressed by the judgment

 $\vdash x : A$

For example, the judgment

 $\vdash 0:\mathbb{N}$

asserts that 0 is a natural number.

An element x : A is often called a **term**.

There are terms forming operations

 $t ::= x \mid \lambda x.t \mid t(t') \mid c \mid f$

In Martin-Löf type theory, two objects are **intentionally equal** if they have the **same normal form**.

The assertion that two elements x and y of type A are intentionally equal is written as a judgment:

$$\vdash x \equiv y : A$$

Also the assertion that two types A and B are intentionally equal,

$$-A \equiv B$$

Dependant types and contexts

A type B(x) may depend on a parameter x ranging in a type A.

 $x : A \vdash B(x) : Type$

The expression x : A on the left of the symbol \vdash is the **context** of the judgment.

An element of type B(x) may depend on x:

$$x: A \vdash t(x): B(x)$$

Contexts may be concatenated:

$$y: B(x), \ x: A \vdash C(x, y): Type$$

Substitution rules

There are *substitution rules* for types and terms:

$$\frac{x : A \vdash f(x) : B, \qquad y : B \vdash E(y) : Type}{x : A \vdash E(f(x)) : Type}$$
$$\frac{x : A \vdash f(x) : B, \qquad y : B \vdash s(y) : E(y)}{x : A \vdash s(f(x)) : E(f(x))}$$

◆□ → < 団 → < 三 → < 三 → < 三 → ○ へ (?) 9 / 39

Σ -formation rules

There is a *formation rule* for the sum (= disjoint union) of a dependant type E(x) in context x : A.

$$\frac{x: A \vdash E(x): Type}{\vdash \sum_{x:A} E(x): Type}$$

There is an *introduction rule* for pairs:

$$\frac{\vdash a:A, \qquad \vdash b:E(a)}{\vdash (a,b):\sum_{x:A}E\langle x\rangle}$$

イロト イロト イヨト イヨト 三日

Π-formation rules

There is a *formation rule* for the product of a dependant type E(x) in context x : A.

$$x: A \vdash E(x): Type$$

 $\vdash \prod_{x:A} E(x): Type$

There is an *introduction rule* for λ -term and an *elimination rule*:

As usual, the term $\lambda x.t(x)$ stands for the map $x \mapsto t(x)$.

Computation and uniqueness rules

There is a computation rule:

$$\frac{\vdash \lambda x.t(x):\prod_{x:A} E(x), \qquad \vdash a:A}{\vdash (\lambda x.t(x))(a) \equiv t(a)}$$

and a uniqueness rule:

$$\frac{\vdash f:\prod_{x:A}E(x)}{\vdash f\equiv\lambda x.f(x)}$$

イロン イロン イヨン イヨン 三日

12/39

Equality type

There is a type constructor which associates to a type A another type Eq_A , called the **equality type** of A,

 $\frac{\vdash A: Type}{x, y: A \vdash Eq_A(x, y): Type}$

A term $p : Eq_A(x, y)$ is a proof that $x \simeq y$ (propositional equality). The axiom that $x \simeq x$ is given by a term r(x) called the **reflexivity** term:

 $\frac{A: Type}{x:A \vdash r(x): Eq_A(x,x)}$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

The J-operation

There is a term constructor J which associates to a dependant type

$$z : Eq_A(x, y), x, y : A \vdash E(z) : Type$$

together with a term $x : A \vdash t : E(r(x))$, another term

$$z: Eq_A(x,y), x,y: A \vdash J(t)(z): E(z).$$

There is also a *computation rule*:

$$x: A \vdash J(t)(r(x)) \equiv t: E(r(x))$$

イロン イヨン イヨン イヨン 三日

14/39

Universes

We postulate an infinite sequences of universes

 $\vdash \mathcal{U}_0: \mathcal{U}_1: \mathcal{U}_2: \cdots$

with the axioms:

(1) Every type A is a term in some universe U_i .

 $\vdash A : U_i$

(2) Every term in U_i is a term in U_{i+1} .

 $\frac{A:\mathcal{U}_i}{A:\mathcal{U}_{i+1}}$

・ロン ・四 と ・ ヨ と ・ ヨ

15/39

Hofmann and Streicher:

Type theory has a model in groupoids.

- ► types ~→ groupoids;
- ▶ terms ~→ objects of a groupoid;
- dependant types in context $A \longrightarrow A$;

(日) (同) (日) (日) (日) (日) (0)

16/39

▶ proofs that $a \simeq b$ \rightsquigarrow isomorphisms $a \rightarrow b$.

The simplicial set model

Awodey, Warren, Veovodsky :

Type theory has a model in simplicial sets

- ▶ types ~→ Kan complexes;
- ▶ terms ~→ vertices of a Kan complex;
- dependant types in context $A \rightarrow Kan$ fibrations $E \rightarrow A$;

▶ proofs that $a \simeq b$ \rightsquigarrow paths $a \rightarrow b$.

Fibrations and dependant types

The **fiber** E(x) of a fibration $p: E \to A$ at a point $x \in A$ is defined by the pullback square

A fibration $p : E \rightarrow A$ can be regarded as a **family** $(E(x) : x \in A)$ of objects parametrized by a variable element $x \in A$.

A fibration $p: E \rightarrow A$ is a **dependant type** in context A.

Equivalences

For any two types A and B, there is a type Equiv(A, B) whose element are the equivalences $A \cong B$.

An equivalence $w : A \cong B$ is a quintuple $w \equiv (f, g_1, g_2, h_1, h_2)$, where

 $f: A \rightarrow B$ and $g_1, g_2: B \rightarrow A$

are maps and

$$h_1: g_1 \circ f \simeq id_A$$
 and $h_2: f \circ g_2 \simeq id_B$

are terms.

Univalence

For any type B(x) which depends on x : A there is a canonical map

$$\alpha: Eq_A(x, y) \to Equiv(B(x), B(y))$$

which depends on x, y : A.

Univalence axiom (Voevodsky): If \mathcal{U} is an universe, then the map

$$\alpha: Eq_{\mathcal{U}}(A, B) \to Equiv(A, B)$$

20/39

is an equivalence for every A, B : U.

Results and problems

Results:

• Shulman:
$$\pi_1(S^1) = \mathbb{Z}$$

• Licata:
$$\pi_n(S^n) = \mathbb{Z}$$
 for $n > 0$, $\pi_k(S^n) = 0$ for $k < n$,

• Brunerie:
$$\pi_3(S^2) = \mathbb{Z}$$

Lumsdane, Finster, Licata: Freudenthal suspension theorem.

Problems:

•
$$\pi_4(S^3) = \mathbb{Z}/2$$
 ?

- No good notion of (internal) simplicial object
- No notion of $(\infty, 1)$ -categories.

Axiomatic Homotopy Theory

J.H.C. Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

Examples of axiomatic systems in homotopy theory:

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Fibration categories (Brown 1973);
- Homotopy theories (Heller 1988)
- Theory of derivators (Grothendieck 198?)
- Homotopy type theory

Fibration structure

Let ${\mathcal C}$ be a category with terminal object $\star.$

Definition

A fibration structure on C is a class of maps $\mathcal{F} \subseteq C$ called fibrations and denoted $A \twoheadrightarrow B$, satisfying the following conditions:

- Every isomorphism is a fibration;
- The composite of two fibrations is a fibration;
- the base change of fibration along any map exists and is a fibration;

• the map $X \to \star$ is a fibration for every object $X \in \mathcal{C}$.

Anodyne maps

Let $\ensuremath{\mathcal{C}}$ be a category equipped with a fibration structure.

Definition

A map $u : A \to B$ in C is said to be is **anodyne** if it has the left lifting property with respect to every fibration $f : X \twoheadrightarrow Y$.

This means that every commutative square

$$\begin{array}{ccc}
A & \xrightarrow{a} & X \\
\downarrow & & & \downarrow \\
B & \xrightarrow{b} & Y
\end{array}$$

has a diagonal filler $d : B \to X$ (du = a and fd = b).

・ロ ・ ・ 一部 ・ ・ 目 ・ ・ 目 ・ の へ (や 24 / 39

Tribes

Definition

A **tribe** \mathcal{C} is a category equipped with a fibration structure such that:

• every map $f : A \rightarrow B$ admits a factorization f = pu with u anodyne and p a fibration.

the base change of an anodyne map along a fibration is anodyne.

The local tribe C(A)

Let A be an object of a tribe C.

The **local tribe** C(A) is defined to be the full sub-category of C/A whose objects are the fibrations $p : E \rightarrow A$ with codomain A.

A map $f : (E, p) \to (F, q)$ in $\mathcal{C}(A)$ is a fibration if the map $f : E \to F$ is a fibration in \mathcal{C} .

An object of C(A) is a **dependent type** in **context** A.

Homomorphism of tribes

If ${\mathcal C}$ and ${\mathcal D}$ are tribes.

A functor $F : \mathcal{C} \to \mathcal{D}$ is a **homomorphism** if

- it takes fibrations to fibrations;
- it takes anodyne maps to anodyne maps;
- it preserves base changes of fibrations;
- it preserves terminal objects.

For example, if $u: A \to B$ is a map in a tribe C, then the base change functor $u^* : C(B) \to C(A)$ is a homomorphism of tribes.

Remark: The category of tribes is a 2-category, where a 1-cell is a homomorphism and 2-cell is a natural transformation.

Product along a fibration

A fibration $f : A \rightarrow B$ induces a base change functor

 $f^{\star}: \mathcal{C}/B \to \mathcal{C}/A$

The **product along** $f : A \to B$ of an object $E = (E, p) \in C/A$ is an object $\Pi_f(E) \in C/B$ equipped with a map

 $\epsilon: f^*(\Pi_f(E)) \to E$

which is couniversal with respect to the functor f^* .

For every y : B we have

$$\Pi_f(E)(y) = \prod_{f(x)=y} E(x)$$

$\pi extrm{-tribes}$

Definition

We say that a tribe C is a π -**tribe**, if for every fibration $f : A \to B$

- the product Π_f(E) exists for every E ∈ C(A) and the structure map Π_f(E) → B is a fibration.
- the functor $\Pi_f : \mathcal{C}(A) \to \mathcal{C}(B)$ preserves anodyne maps.

If C is a π -tribe, then so is the tribe C(A) for every object $A \in C$.

Path objects in a Quillen model category

If \mathcal{M} is a Quillen model category.

A **path object** for $A \in \mathcal{M}$ is obtained by factoring the diagonal $\Delta : A \rightarrow A \times A$ as an anodyne map $r : A \rightarrow PA$ followed by a fibration $(s, t) : PA \twoheadrightarrow A \times A$,

The identity type is a path object

Awodey-Warren:

The identity type $Eq_A \rightarrow A \times A$ is a path object for A.

The *J*-rule implies that the reflexivity term $r : A \rightarrow Eq_A$ is anodyne. Thus, if $p : E \rightarrow Eq_A$ is a fibration, then every commutative square

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

has a diagonal filler d = J(t),

Homotopic maps

Let \mathcal{C} be a tribe.

A homotopy $h: f \rightsquigarrow g$ between two maps $f, g: A \rightarrow B$ in C is a map $h: A \rightarrow PB$ such that sh = f and th = g.

Theorem

The homotopy relation $f \sim g$ is a congruence on the arrows of C.

The homotopy category

Let $\ensuremath{\mathcal{C}}$ be a tribe.

The homotopy category Ho(C) is the quotient category C/\sim .

A map $f : X \to Y$ in C is called a **homotopy equivalence** if it is invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is **contractible** if the map $X \rightarrow \star$ is a homotopy equivalence.

Brown fibration category

Definition

(Ken Brown) A **Brown fibration category** is a category \mathcal{E} equipped with a fibration structure together with a class of **acyclic maps** such that:

- Every isomorphism is acyclic;
- The class of acyclic maps has the 3-for-2 property;
- Every morphism can be factored as an acyclic map followed by a fibration;
- The class of acyclic fibrations is stable under base change.

Theorem

A tribe is a Brown fibration category if the acyclic maps are the homotopy equivalences.

Forthcoming Phd thesis of Page North in Cambridge.

Weak equivalences of tribes

Definition

We say that a homomorphism of tribes $F : \mathcal{E} \to \mathcal{E}'$ is a **weak-equivalence** if the induced functor $Ho(F) : Ho(\mathcal{E}) \to Ho(\mathcal{E}')$ is an equivalence of categories.

Theorem

A map $f : A \to B$ in a tribe \mathcal{E} is a homotopy equivalence if and only if the functor $f^* : \mathcal{E}(B) \to \mathcal{E}(A)$ is a weak-equivalence of tribes.

Meta-fibrations

Definition

We say that a homomorphism of tribes $F : \mathcal{E} \to \mathcal{E}'$ is a **meta-fibration** if the following conditions are satisfied:

- ► F and Ho(F) are iso-fibrations;
- ► *F* is full on sections of trivial fibrations;
- ► F is full on diagonal filler of AF-squares;
- ▶ *F* is full on *AF*-factorisations.

For example, if \mathcal{E} is a tribe, then the functor $\partial_1 : \mathcal{E}^{(1)} \to \mathcal{E}$ is a meta-fibration.

The base change of a meta-fibration along a homomorphism of tribes is a meta-fibration.

A fibration category of tribes?

- ▶ Objects ~→ tribes
- ▶ morphisms ~→ homomorphisms of tribes
- ► fibrations ~→ meta-fibrations
- ► Acyclic morphism ~→ weak equivalences of tribes

Theorem

The base change of an acyclic meta-fibration along a homomorphism of tribes is an acyclic meta-fibration.

I was not able to prove that every homomorphism can be factored as an acyclic homomorphism followed by a meta-fibration. Stronger axioms are needed. A **simplicial tribe** is a category enriched over simplicial sets having the structure of a tribes + compatibility axioms.

Theorem

The category of simplicial tribes has the structure of a Brown fibration category.

There is a relation with the work of Karol Szumilo.

THANK YOU FOR YOUR ATTENTION!

39 / 39