Complex algebras of tree-semilattices

Peter Jipsen

School of Computational Sciences and
Center of Excellence in Computation, Algebra and Topology (CECAT)
Chapman University, Orange, California

TACL 2015, June 24 Ischia, Italy

Outline

- Complex algebras and BAOs
- Boolean semilattices
- Linear Boolean semilattices
- Representable Boolean semilattices
- Complex algebras of tree-semilattices

Introduction

For a (meet) semilattice (S, \cdot), the complex algebra is
$\mathrm{Cm}(S)=(\mathcal{P}(S), \cup, \cap,-, \emptyset, S, \cdot)$
where for $x, y \in \mathcal{P}(S)$ we define $x \cdot y=\{r \cdot s \mid r \in x, s \in y\}$
So a complex algebra is a complete and atomic Boolean algebra
with additional operation(s)
Such algebras are examples of Boolean algebras with operators (BAOs)

Introduction

Can define the complex algebra of any relational structure Important in algebraic logic: connect relational and algebraic semantics of (poly)modal logics

Some interesting varieties are generated by complex algebras:

- representable relation algebras (generated by complex algebras of Brandt groupoids)
- modal algebras (generated by complex algebras of directed graphs)

Introduction

Determining an axiomatization for the variety of BAOs generated by the complex algebras of a class of structures can be an interesting problem Hodkinson, Mikulas, Venema [2001] gave a general approach: for a recursively enumerably axiomatized class of algebras, the class of subalgebras of the complex algebras has a recursive axiomatization

Consider the variety generated by complex algebras of semilattices Has been studied in a manuscript and preprint by C. Bergman [1995] [2015]

```
Theorem
[J. 2004] The variety generated by complex algebras of semigroups is not finitely axiomatizable
```


Introduction

Recall, for a (meet) semilattice (S, \cdot), the complex algebra is
$\mathrm{Cm}(S)=(\mathcal{P}(S), \cup, \cap,-, \emptyset, S, \cdot)$
where for $x, y \in \mathcal{P}(S)$ we define $x \cdot y=\{r \cdot s \mid r \in x, s \in y\}$
Note same notation for the semilattice meet and its lifted version
Usually write $x \cdot y$ simply as $x y \quad$ and $x x=x^{2}$
Algebras embedded in these BAOs are called representable Boolean semilattices

The variety generated by all complex algebras of semilattices is denoted by RBSL

Problem: Is RBSL finitely axiomatizable?

Boolean semilattices

The larger variety BSL of Boolean semilattices is the class of algebras $(A, \vee, \wedge,-, 0,1, \cdot)$ such that

- $(A, \vee, \wedge,-, 0,1)$ is a Boolean algebra
- (A, \cdot) is a commutative semigroup and
- . is a square-increasing operator: $x \leq x^{2}$, $x(y \vee z)=x y \vee x z, \quad$ and $x 0=0$

The last two identities imply that for a finite BSL, the operation • is determined by its value on atoms

Boolean semilattices

A Boolean semilattice is integral if $x y=0$ implies $x=0$ or $y=0$
True in all complex algebras of semilattices, hence also in all subalgebras
[Bergman 2015] A BSL is integral iff it is finitely subdirectly irreducible All integral BSLs with ≤ 2 elements (1 is an atom) and ≤ 4 elements $(1=a \vee b)$:

$A_{1} \cdot \frac{1}{} \cdot$	1

B_{3}	\cdot	a	b
	a	a	1
b	1	b	

Representations by semilattices

$$
\begin{aligned}
& \begin{array}{r|r|r}
B_{4} & a & b \\
\hline a & a & 1 \\
b & 1 & 1
\end{array}=C m(\\
& \left.\begin{array}{c}
\vdots \vdots \vdots \\
0 \\
0 \\
0
\end{array}\right) \\
& \begin{array}{l|ll}
B_{5} \\
\hline \cdot & a & b \\
\hline a & 1 & 1 \\
b & 1 & 1
\end{array}=C m \text { (homework) } \quad \begin{array}{rl|ll}
B_{6} & \cdot & a & b \\
\hline a & a & b \\
b & b & 1
\end{array}=\operatorname{Cm}(?)
\end{aligned}
$$

Therefore $A_{1}, B_{1}, \ldots, B_{5}$ are in RBSL
Note that they are represented by tree semilattices

Linear Boolean semilattices

A semilattice is linear if its partial order \leq is a chain
(as usual \leq is defined by $x \leq y \Longleftrightarrow x=x y$)
The variety generated by complex algebras of linear semilattices is denoted by LBSL

Theorem

[Bergman 1996, 2015] LBSL is the variety of Boolean algebras with a commutative associative idempotent operator, i.e., square-increasing is strengthened to $x=x^{2}$

Proof.

(outline): Any subset x of a linear semilattice satisfies $x=x^{2}$ Conversely, can assume B is atomic (idempotence is canonical) The set $A=\operatorname{At}(B)$ is linearly preordered by \sqsubseteq Represent each block C by a chain of cardinality $|C|+\omega$

Renresentable Boolean semilattices
 Lemma

Algebras in RBSL also satisfy the following axioms:
(1) $x \wedge 1 y \leq x y \quad$ (we assume has priority over \vee, \wedge).
(2) $x(x y-x) \leq x^{2} \vee(x y-x)^{2} \quad$ [Bergman 1995]
(3) $u \leq y z \Longrightarrow x u \leq(x z \wedge v) y \vee(x z-v) u$
(9) $x y \leq x \vee y \Longrightarrow x^{2} \wedge y^{2} \leq x y$
(6) $x \leq y z \leq x \vee y, x \vee w \leq y w, x \wedge w=0, x w \leq x$ and $z w \leq w \Longrightarrow$ $x \leq y^{3}$

Proof.

of 1. $x \wedge 1 y \leq x y$ holds in RBSL: let $p \in x$ and $p \in 1 y$. Then $p=q r \leq r$ for some $r \in y$. Hence $p=p r \in x y$.

Note that 1. fails in | \cdot | a | b |
| :--- | :--- | :--- |
| a | a | b |
| b | b | 1 | with $x=a, y=b$. Hence $B_{6} \notin$ RBSL

Representable Boolean semilattices

Let B be a Boolean semilattice that satisfies the identity $x \wedge 1 y \leq x y$
Define the relation \sqsubseteq by $\quad x \sqsubseteq y$ if and only if $x \leq x y$
This relation is reflexive since $x \leq x^{2}$ and
transitive: $x \leq x y$ and $y \leq y z$ implies $x \leq x y z \leq 1 z$, hence $x \leq x z$
Therefore \sqsubseteq is a preorder
If B is atomic (in particular, if it is finite) we restrict \sqsubseteq to the atoms $\operatorname{At}(B)$

Lemma

Suppose B is embedded in $C m(S)$ for a semilattice S Then S is finite iff \sqsubseteq is a partial order on $\operatorname{At}(B)$

Tree-representable Boolean semilattices

A semilattice is a tree-semilattice if its partial order is a tree
i.e., has a bottom and every principal downset is a chain

not:

A BSL is tree-representable if it is embedded in the complex algebra of a tree-semilattice

The variety generated by tree-representable Boolean semilattices is denoted by TBSL

It properly contains LBSL and is a proper subvariety of RBSL

Tree-representable Boolean semilattices

Theorem

Let B be a finite Boolean semilattice that satisfies $x \wedge 1 y \leq x y$ and assume \sqsubseteq is a partial order on the atoms of B. Then the following are equivalent.
(1) B is tree-representable
(2) B is embedded in the complex algebra of a finite tree-semilattice
(3) B satisfies the identity $(x \wedge x y) z \wedge-x \leq y z$

Proof.

(outline): $1 . \Rightarrow 3$. Assume B is a subalgebra of $\mathrm{Cm}(T)$ for some tree-semilattice T. Let $p \in \operatorname{LHS}$. Then $p \notin x$ and $p=q r$ s.t. $q \in x, r \in z$ and $q=u v$ where $u \in x, v \in y$. If $q \leq v r$ then $q=q v r=p v=p$, contradicting $p \notin x$. Hence $v r \leq q$, so $v r=v r q=q r=p \in y z$. $3 . \Rightarrow 2$. Use the partial order \sqsubseteq to build the tree-semilattice from the bottom up. The identity from 3. is used to show that - in B is compatible with the meet operation on the tree-semilattice. $2 . \Rightarrow 1$. holds by definition.

Further remarks on Boolean semilattices

It is conjectured that the variety TBSL is axiomatized relative to BSL by the identity $(x \wedge x y) z \wedge-x \leq y z$

A computer calculation shows that there are (up to isomorphism) 79 integral Boolean semilattices with 8 elements that satisfy all 5 quasiequations in the previous Lemma

Of these, 13 have \sqsubseteq as a partial order on the atoms
They are all embedded in the complex algebra of some finite semilattice, hence in RBSL

There are 25 that satisfy the identity $(x \wedge x y) z \wedge-x \leq y z$ (including 9 from the previous 13)

It is not difficult to check that they are also in RBSL
Many of the remaining 50 algebras are known to be in RBSL as well, but currently this is not known for all of them

Representation by disjoint union of semilattices

\cdot	a	b	c
a	a	1	1
b	1	b	1
c	1	1	c

$(x \wedge x y) z \wedge-x \leq y z$ fails
Find 3 disjoint semilattices
$A, B, C \quad$ s. t. $\quad A \cup B \cup C=S$ and $A \cdot B=A \cdot C=B \cdot C$

Miklos Maroti [2000]

Another rendering of Miklos' example

Peter Jipsen - Chapman University - TACL 2015 June 24

Extending to n atoms

\cdot	a	b	c	d
a	a	1	1	1
b	1	b	1	1
c	1	1	c	1
d	1	1	1	d

Theorem

The Boolean semilattice with atoms $a_{1}, a_{2}, \ldots, a_{n}$ and products $a_{i} \cdot a_{i}=a_{i}$ and $a_{i} \cdot a_{j}=1$ if $i \neq j$ is representable by a semilattice that is the union of n "spiraling half-planes".

References

围 Bergman, C.: Notes on Boolean semilattices. Manuscript, 1995, 25pp http://orion.math.iastate.edu/cbergman/manuscripts/BSL\% 20Notes.pdf
Rergman, C.: Introducing Boolean semilattices. Preprint, April 2015, 26pp http://orion.math.iastate.edu/cbergman/manuscripts/ intro\%20bsl.pdf
䍰 Hodkinson, I., Mikulas, S., Venema, Y.: Axiomatizing complex algebras by games. Algebra Universalis, 46 (2001) 455-478
Ripsen, P.: A note on complex algebras of semigroups, in "Relational and Kleene-Algebraic Methods in Computer Science" (ed. R. Berghammer, B. Möller, G. Struth), LNCS, Vol. 3051, Springer (2004), 171-177

Thank you

