Generalizing the clone-coclone Galois connection

Emil Jeřábek
jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Topology, Algebra, and Categories in Logic, June 2015, Ischia

Clones and coclones: the classical case

1) Clones and coclones: the classical case

2 Interlude: reversible computing

3 Clones and coclones revamped

Clones

Fix a base set B

Definition

A clone is a set \mathcal{C} of functions $f: B^{n} \rightarrow B, n \geq 0$, s.t.

- the projections $\pi_{n, i}: B^{n} \rightarrow B, \pi_{n, i}(\vec{x})=x_{i}$, are in \mathcal{C}
- \mathcal{C} is closed under composition: if $g: B^{m} \rightarrow B$ and $f_{i}: B^{n} \rightarrow B$ are in \mathcal{C}, then

$$
h(\vec{x})=g\left(f_{0}(\vec{x}), \ldots, f_{m-1}(\vec{x})\right): B^{n} \rightarrow B
$$

is in \mathcal{C}

Clones (cont'd)

- Clone generated by a set of functions \mathcal{F}
$=$ term functions of the algebra $\langle B, \mathcal{F}\rangle$
$=$ functions computable by circuits over B using \mathcal{F}-gates
- Classical computing: clones on $B=\{0,1\}$ completely classified by [Post41]
- Clones can be studied by means of relations they preserve

Preservation

$f: B^{n} \rightarrow B$ preserves $r \subseteq B^{k}:$

a_{0}^{0}	\cdots	a_{j}^{0}	\cdots	a_{n-1}^{0}		b^{0}	
\vdots		\vdots		\vdots	f	\vdots	
a_{0}^{i}	\cdots	a_{j}^{i}	\cdots	a_{n-1}^{i}			b^{i}
\vdots		\vdots		\vdots		\vdots	
a_{0}^{k-1}	\cdots	a_{j}^{k-1}	\cdots	a_{n-1}^{k-1}		b^{k-1}	
π	\cdots	π	\cdots	π		\Longrightarrow	π
r		r		r		r	

Galois connection

\mathcal{F} set of functions, \mathcal{R} set of relations
Invariants and polymorphisms:

$$
\begin{aligned}
& \operatorname{Inv}(\mathcal{F})=\{r: \forall f \in \mathcal{F} f \text { preserves } r\} \\
& \operatorname{Pol}(\mathcal{R})=\{f: \forall r \in \mathcal{R} f \text { preserves } r\}
\end{aligned}
$$

\Longrightarrow Galois connection: $\mathcal{R} \subseteq \operatorname{Inv}(\mathcal{F}) \Longleftrightarrow \mathcal{F} \subseteq \operatorname{Pol}(\mathcal{R})$

- $\operatorname{Pol}(\operatorname{Inv}(\mathcal{F})), \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$ closure operators closed sets $=$ range of Pol, Inv (resp.)
- Inv, Pol are mutually inverse dual isomorphisms of the complete lattices of closed sets

Basic correspondence

Theorem [Gei68,BKKR69]

If B is finite:

- Galois-closed sets of functions = clones
- Galois-closed sets of relations = coclones

Definition

Coclone $=$ set of relations closed under definitions by primitive positive FO formulas:

$$
R\left(x^{0}, \ldots, x^{k-1}\right) \Leftrightarrow \exists x^{k}, \ldots, x^{\prime} \bigwedge_{i<m} \varphi_{i}\left(x^{0}, \ldots, x^{\prime}\right)
$$

where each φ_{i} is atomic

Coclones (cont'd)

Equivalently: a set of relations is a coclone if it contains the identity $x_{0}=x_{1}$, and is closed under

- variable permutation and identification
- finite Cartesian products and intersections
- projection on a subset of variables

Closely related to constraint satisfaction problems

Variants

A host of generalizations of this Galois connection appear in the literature (e.g., [Isk71,Ros71,Ros83,Cou05,Ker12]):

- infinite base set
- partial functions, multifunctions
- functions $A^{n} \rightarrow B$
- categorial setting

Interlude: reversible computing

(1) Clones and coclones: the classical case
(2) Interlude: reversible computing

3 Clones and coclones revamped

Computation in the physical world

Conventional models:
computation can destroy the input on a whim

$$
\langle x, y\rangle \mapsto x+y
$$

Reality check:

Landauer's principle

Erasure of n bits of information incurs an $n k \log 2$ increase of entropy elsewhere in the system
\Longrightarrow dissipates energy as heat

The underlying time-evolution operators of quantum field theory are reversible

Reversible computing

Reversible computation models:
only allow operations that can be inverted

$$
\langle x, y\rangle \mapsto\langle x, x+y\rangle
$$

Typical formalisms: circuits using reversible gates

- Classical computing:
- motivated by energy efficiency
- n-bit reversible gate $=$ permutation $\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- Quantum computing:
- n qubits of memory $=$ Hilbert space $\mathbb{C}^{2^{n}}$
- quantum gate $=$ unitary linear operator
\Longrightarrow inherently reversible

Clones of reversible transformations

Reversible operations computable from a fixed set of gates:

- variable permutations, dummy variables
- composition
- ancilla bits: preset constant inputs, required to return to the original state at the end
\Longrightarrow notion of "reversible clones"

Recently: [AGS15] gave complete classification for $B=\{0,1\}$
(\approx Post's lattice for reversible operations)

Clones and coclones revamped

(1) Clones and coclones: the classical case

2 Interlude: reversible computing
(3) Clones and coclones revamped

Goal

Generalize the clone-coclone Galois connection to encompass reversible clones

Let's first have a look at some simple reversible clones on $\{0,1\}$

Examples

- Conservative operations $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ preserve Hamming weight

$$
f(\vec{a})=\vec{b} \Longrightarrow \sum_{i<n} a_{i}=\sum_{i<n} b_{i}
$$

- Mod-k preserving operations: Hamming weight modulo k

$$
f(\vec{a})=\vec{b} \Longrightarrow \sum_{i<n} a_{i} \equiv \sum_{i<n} b_{i} \quad(\bmod k)
$$

Permutations "can count": invariants can't be just relations

Examples (cont'd)

- Affine operations $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ $f(\vec{x})=A \vec{x}+\vec{c}$, where $\vec{c} \in \mathbb{F}_{2}^{n}, A \in \mathbb{F}_{2}^{n \times n}$ non-singular
- \Longleftrightarrow each component $f_{i}:\{0,1\}^{n} \rightarrow\{0,1\}$ affine
- classical invariant: f_{i} affine \Longleftrightarrow preserves the relation $a+b+c+d=0$ on \mathbb{F}_{2}^{4}
- let $w: \mathbb{F}_{2}^{4} \rightarrow \mathbb{F}_{2}, w\left(a^{0}, a^{1}, a^{2}, a^{3}\right)=a^{0}+a^{1}+a^{2}+a^{3}$
- identify $\mathbb{F}_{2}=\{0,1\}=\langle\{0,1\}, 0, \vee\rangle$
- $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ affine \Longleftrightarrow

$$
\begin{aligned}
& f\left(a_{0}^{0}, \ldots, a_{n-1}^{0}\right)=\left\langle b_{0}^{0}, \ldots, b_{m-1}^{0}\right\rangle, \ldots, \\
& f\left(a_{0}^{3}, \ldots, a_{n-1}^{3}\right)=\left\langle b_{0}^{3}, \ldots, b_{m-1}^{3}\right\rangle
\end{aligned}
$$

implies

$$
\bigvee_{i<n} w\left(a_{i}^{0}, a_{i}^{1}, a_{i}^{2}, a_{i}^{3}\right) \geq \bigvee_{i<m} w\left(b_{i}^{0}, b_{i}^{1}, b_{i}^{2}, b_{i}^{3}\right)
$$

General case

We consider a preservation relation between

- partial multifunctions $f: B^{n} \Rightarrow B^{m}$
- formally: $f \subseteq B^{n} \times B^{m}, n, m \geq 0$
- $f(\vec{x}) \approx \vec{y}$ denotes $\langle\vec{x}, \vec{y}\rangle \in f$
- $\operatorname{Pmf}=\bigcup_{n, m} \operatorname{Pmf}_{n, m}$
- "weight functions" $w: B^{k} \rightarrow M$
- $\langle M, 1, \cdot, \leq\rangle$ partially ordered monoid, $k \geq 0$
- $\mathrm{Wgt}=\bigcup_{k} \mathrm{Wgt}_{k}$

Preservation

$f: B^{n} \Rightarrow B^{m}$ preserves $w: B^{k} \rightarrow M$:

$$
\begin{array}{ccccccccc}
a_{0}^{0} & \cdots & a_{j}^{0} & \cdots & a_{n-1}^{0} & & b_{0}^{0} & \cdots & b_{m-1}^{0} \\
\vdots & & \vdots & & \vdots & f & \vdots & & \vdots \\
a_{0}^{i} & \cdots & a_{j}^{i} & \cdots & a_{n-1}^{i} & & b_{0}^{i} & \cdots & b_{m-1}^{i} \\
\vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
a_{0}^{k-1} \cdots & a_{j}^{k-1} & \cdots & a_{n-1}^{k-1} & & b_{0}^{k-1} \cdots & b_{m-1}^{k-1} \\
& & & & & & & & \\
& & & & & & & \\
w\left(a_{0}\right) \cdots & w\left(a_{j}\right) & \cdots & w\left(a_{n-1}\right) & \leq & w\left(b_{0}\right) \cdots & \cdots\left(b_{m-1}\right)
\end{array}
$$

Invariants and polymorphisms

The preservation relation induces a Galois connection

Definition

$$
\text { If } \begin{aligned}
\mathcal{F} & \subseteq \operatorname{Pmf}, \mathcal{W} \subseteq \mathrm{Wgt}: \\
\operatorname{Inv}(\mathcal{F}) & =\{w \in \mathrm{Wgt}: \forall f \in \mathcal{F} f \text { preserves } w\} \\
\operatorname{Pol}(\mathcal{W}) & =\{f \in \operatorname{Pmf}: \forall w \in \mathcal{W} f \text { preserves } w\}
\end{aligned}
$$

What are the closed classes?

Clones

$\operatorname{Pol}(\mathcal{W})$ has the following properties:

Definition

$\mathcal{C} \subseteq \operatorname{Pmf}$ is a pmf clone if

- (identity) $\mathrm{id}_{n}: B^{n} \rightarrow B^{n}$ is in \mathcal{C}
- (composition) $f: B^{n} \Rightarrow B^{m}, g: B^{m} \Rightarrow B^{r}$ in \mathcal{C} $\Longrightarrow g \circ f: B^{n} \Rightarrow B^{r}$ in \mathcal{C}
- (products) $\quad f: B^{n} \Rightarrow B^{m}, g: B^{n^{\prime}} \Rightarrow B^{m^{\prime}}$ in \mathcal{C} $\Longrightarrow f \times g: B^{n+n^{\prime}} \Rightarrow B^{m+m^{\prime}}$ in \mathcal{C} $(f \times g)\left(x, x^{\prime}\right) \approx\left\langle y, y^{\prime}\right\rangle \Longleftrightarrow f(x) \approx y, g\left(x^{\prime}\right) \approx y^{\prime}$
- (topology) $\mathcal{C} \cap \operatorname{Pmf}_{n, m}$ is topologically closed \ldots

Topological closure

Two interesting topologies on $\{0,1\}$:

- $\{0,1\}_{H}$ discrete (Hausdorff)
- $\{0,1\}_{S}$ Sierpiński: $\{0\}$ closed, but $\{1\}$ not

Lemma

Let $C \subseteq \mathcal{P}(X) \approx\{0,1\}^{X}$. TFAE:

- C is closed in $\{0,1\}_{S}^{X}$
- C is closed in $\{0,1\}_{H}^{X}$ and under subsets
- C is closed under directed unions and subsets
- $Y \in C$ iff all finite $Y^{\prime} \subseteq Y$ are in C

Previous slide: apply to $\mathrm{Pmf}_{n, m}=\mathcal{P}\left(B^{n} \times B^{m}\right)$

Coclones

$\operatorname{Inv}(\mathcal{F})$ has the following properties:

Definition

$\mathcal{D} \subseteq \mathrm{Wgt}$ is a weight coclone if

- (variable manipulation) $w: B^{k} \rightarrow M$ in $\mathcal{D}, \varrho: k \rightarrow I$

$$
\Longrightarrow w\left(x^{\varrho(0)}, \ldots, x^{\varrho(k-1)}\right): B^{\prime} \rightarrow M \text { in } \mathcal{D}
$$

- (homomorphisms) $w: B^{k} \rightarrow M$ in $\mathcal{D}, \varphi: M \rightarrow N$ $\Longrightarrow \varphi \circ \mathrm{w}: B^{k} \rightarrow N$ in \mathcal{D}
- (direct products) $w_{\alpha}: B^{k} \rightarrow M_{\alpha}$ in $\mathcal{D} \quad(\alpha \in I)$ $\Longrightarrow\left\langle w_{\alpha}(x)\right\rangle_{\alpha \in I}: B^{k} \rightarrow \prod_{\alpha \in I} M_{\alpha}$ in \mathcal{D}
- (submonoids) $w: B^{k} \rightarrow M$ in $\mathcal{D}, w\left[B^{k}\right] \subseteq N \subseteq M$ $\Longrightarrow w: B^{k} \rightarrow N$ in \mathcal{D}

Galois connection

Main theorem

For any B :

- Galois-closed sets of pmf $=$ pmf clones
- Galois-closed classes of weights $=$ weight coclones

Smaller invariants

Invariants of a pmf clone \mathcal{C} form a proper class
Better: $\mathcal{C}=\operatorname{Pol}(\mathcal{W})$ s.t. for each $w: B^{k} \rightarrow M$ in \mathcal{W} :

- M is generated by $w\left[B^{k}\right]$
- call such weights tight
- M finitely generated if B finite
- M is subdirectly irreducible (as a pomonoid)

Interesting case: (unordered) commutative monoids

- f.g. subdirectly irreducible are finite [Mal58]
- known structure [Sch66,Gri77]

Variants

We might want to restrict Pmf or Wgt, or impose additional closure conditions, e.g.

- dimensions of $f: B^{n} \Rightarrow B^{m}$:
- $n, m \geq 1, m=1, n=m$
- "shape" of f :
- (partial/total) functions, permutations
- constraints on monoids:
- commutative, unordered
- constants, ancillas

Dimension constraints

$f: B^{n} \Rightarrow B^{m}$ with simple restrictions on n, m form clones \Longrightarrow correspond to inclusion of particular weights:

- $n, m \geq 1$: constant weight $c_{1}: B^{0} \rightarrow\langle\{0,1\}, 0, \vee,=\rangle$
- $n=m: c_{1}: B^{0} \rightarrow\langle\mathbb{N}, 0,+,=\rangle$
$m=1$: a clone \mathcal{C} is determined by $f: B^{n} \Rightarrow B$ iff it contains the diagonal maps $\Delta_{n}: B \rightarrow B^{n}, \Delta_{n}(x)=\langle x, \ldots, x\rangle$
On the dual side:
- tight $w: B^{k} \rightarrow M$ in $\operatorname{lnv}(\mathcal{C})$ are $\{\wedge, \top\}$-semilattices
- subdirectly irreducible: $M=\langle\{0,1\}, 1, \wedge, \leq\rangle$
\Longrightarrow weight functions $=$ relations
\Longrightarrow agrees with the classical description

Monoid restrictions

- Classes of weights $w: B^{k} \rightarrow M$ with M commutative \Longleftrightarrow clones containing variable permutations

$$
\left\langle x_{0}, \ldots, x_{n-1}\right\rangle \mapsto\left\langle x_{\pi(0)}, \ldots, x_{\pi(n-1)}\right\rangle
$$

- Classes of weights $w: B^{k} \rightarrow\langle M, 1, \cdot,=\rangle$ (i.e., unordered monoids)
\Longleftrightarrow clones closed under inverse

$$
f: B^{n} \Rightarrow B^{m} \text { in } \mathcal{C} \Longrightarrow f^{-1}: B^{m} \Rightarrow B^{n} \text { in } \mathcal{C}
$$

Uniqueness conditions

Partial functions form a clone \Longrightarrow
\mathcal{C} consists of partial functions iff
$\operatorname{Inv}(\mathcal{C})$ includes a particular weight:

- Kronecker delta $\delta: B^{2} \rightarrow\langle\{0,1\}, 1, \wedge, \leq\rangle$

Symmetrically:
\mathcal{C} consists of injective pmf iff $\operatorname{lnv}(\mathcal{C})$ includes

$$
\delta: B^{2} \rightarrow\langle\{0,1\}, 1, \wedge, \geq\rangle
$$

Totality conditions

In the classical case:

- totality of functions in $\mathcal{C} \Longleftrightarrow$
closure of $\operatorname{Inv}(\mathcal{C})$ under existential quantification
- doesn't work well over infinite (uncountable) B

Definition

$w: B^{k+1} \rightarrow\langle M, 1, \cdot, \leq\rangle$ weight, $\langle M, 1, \cdot, 0,+\rangle$ semiring
Define $w^{+}: B^{k} \rightarrow\langle M, 1, \cdot, \leq\rangle$ by

$$
w^{+}\left(x^{0}, \ldots, x^{k-1}\right)=\sum_{u \in B} w\left(x^{0}, \ldots, x^{k-1}, u\right)
$$

Orders on semirings

Definition

- positively ordered semiring $=\langle M, 1, \cdot, 0,+, \leq\rangle$ s.t.
- $\langle M, 1, \cdot, 0,+\rangle$ semiring
- $\langle M, 1, \cdot, \leq\rangle$ and $\langle M, 0,+, \leq\rangle$ pomonoids, $0 \leq 1$
$=$ partially ordered semiring with least element 0
- V-semiring $=$ idempotent positively ordered semiring
- $+=V$
- complete \vee-semiring:
- V-semiring, complete lattice
- infinite distributive laws

$$
\left(\bigvee_{i \in I} x_{i}\right) y=\bigvee_{i \in I} x_{i} y \quad y \bigvee_{i \in I} x_{i}=\bigvee_{i \in I} y x_{i}
$$

Total clones

$\mathcal{C}=\operatorname{Pol}(\mathcal{D}), \mathcal{D}=\operatorname{Inv}(\mathcal{C})$
For B countable, the following are equivalent:

- \mathcal{C} is generated by total multifunctions
- $w: B^{k+1} \rightarrow M$ is in \mathcal{D}, M is a complete V-semiring $\Longrightarrow w^{+}: B^{k} \rightarrow M$ is in \mathcal{D}

A symmetric condition characterizes clones of surjective pmf
For B finite, TFAE:

- \mathcal{C} is generated by mf extending a bijective function
- $w: B^{k+1} \rightarrow M$ is in \mathcal{D}, M is a positively ordered semiring $\Longrightarrow w^{+}: B^{k} \rightarrow M$ is in \mathcal{D}

Ancillas

$\mathcal{C}=\operatorname{Pol}(\mathcal{D}), \mathcal{D}=\operatorname{Inv}(\mathcal{C})$
The following are equivalent:

- \mathcal{C} supports ancillas
$a \in B, f: B^{n+1} \Rightarrow B^{m+1}$ in $\mathcal{C} \Longrightarrow f_{a}: B^{n} \Rightarrow B^{m}$ in \mathcal{C}

$$
f_{a}(\vec{x}) \approx \vec{y} \Longleftrightarrow f(a, \vec{x}) \approx\langle a, \vec{y}\rangle
$$

- \mathcal{D} is generated by $w: B^{k} \rightarrow M$ s.t. the diagonal weights $z=w(u, \ldots, u)$ for $u \in B$ are left-order-cancellative

$$
z x \leq z y \Longrightarrow x \leq y
$$

Interferes with totality, but it mostly sorts itself out

Summary

- The standard clone-coclone duality extends to a Galois connection between partial multifunctions $B^{n} \Rightarrow B^{m}$ and pomonoid-valued functions $B^{k} \rightarrow M$
- Gracefully restricts to natural subclasses, such as total functions $B^{n} \rightarrow B^{m}$

Question

- Does it generalize further?
- Is it connected to some known duality involving pomonoids?

Thank you for attention!

References

- S. Aaronson: Classifying reversible gates, Th. Comp. Sci. SE, 2014, http://cstheory.stackexchange.com/q/25730
- S. Aaronson, D. Grier, L. Schaeffer: The classification of reversible bit operations, 2015, arXiv:1504.05155 [quant-ph]
- V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, B. A. Romov: Galois theory for Post algebras I \& II, Cybernetics 5 (1969), no. 3, 243-252, and no. 5, 531-539
- M. Couceiro: Galois connections for generalized functions and relational constraints, in: Contributions to General Algebra 16, Heyn, Klagenfurt 2005, 35-54
- D. Geiger: Closed systems of functions and predicates, Pacific J. Math. 27 (1968), 95-100
- P.A. Grillet: On subdirectly irreducible commutative semigroups, Pacific J. Math. 69 (1977), 55-71

References (cont'd)

- A. A. Iskander: Subalgebra systems of powers of partial universal algebras, Pacific J. Math. 38 (1971), 457-463
- E. Jeřábek: Answer to [Aaronson14], Th. Comp. Sci. SE, 2014
- S. Kerkhoff: A general Galois theory for operations and relations in arbitrary categories, Algebra Universalis 68 (2012), 325-352
- A.I. Malcev: On homomorphisms onto finite groups, Uchen. Zap. Ivanov. Gos. Ped. Inst. 18 (1958), 49-60, in Russian
- E. L. Post: The two-valued iterative systems of mathematical logic, Princeton University Press, 1941
- I. G. Rosenberg: A classification of universal algebras by infinitary relations, Algebra Universalis 1 (1971), 350-354
\qquad : Galois theory for partial algebras, in: Universal Algebra and Lattice Theory, LNM 1004, Springer, 1983, 257-272
- B. M. Schein: Homomorphisms and subdirect decompositions of semigroups, Pacific J. Math. 17 (1966), 529-547

