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Clones

Fix a base set B

Definition

A clone is a set C of functions f : Bn → B , n ≥ 0, s.t.

I the projections πn,i : Bn → B , πn,i(~x) = xi , are in C
I C is closed under composition:

if g : Bm → B and fi : Bn → B are in C, then

h(~x) = g(f0(~x), . . . , fm−1(~x)) : Bn → B

is in C
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Clones (cont’d)

I Clone generated by a set of functions F

= term functions of the algebra 〈B ,F〉

= functions computable by circuits over B using F -gates

I Classical computing: clones on B = {0, 1} completely
classified by [Post41]

I Clones can be studied by means of relations they preserve
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Preservation

f : Bn → B preserves r ⊆ Bk :

a00 · · · a0j · · · a0n−1 b0

...
...

... f
...

ai0 · · · aij · · · ain−1 −−−→ bi

...
...

...
...

ak−10 · · · ak−1j · · · ak−1n−1 bk−1

∈

r
· · ·

∈
r
· · ·

∈

r
=⇒

∈

r
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Galois connection

F set of functions, R set of relations

Invariants and polymorphisms:

Inv(F) = {r : ∀f ∈ F f preserves r}
Pol(R) = {f : ∀r ∈ R f preserves r}

=⇒ Galois connection: R ⊆ Inv(F) ⇐⇒ F ⊆ Pol(R)

I Pol(Inv(F)), Inv(Pol(R)) closure operators
closed sets = range of Pol, Inv (resp.)

I Inv, Pol are mutually inverse dual isomorphisms of the
complete lattices of closed sets
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Basic correspondence

Theorem [Gei68,BKKR69]

If B is finite:
I Galois-closed sets of functions = clones

I Galois-closed sets of relations = coclones

Definition

Coclone = set of relations closed under definitions by
primitive positive FO formulas:

R(x0, . . . , xk−1)⇔ ∃xk , . . . , x l
∧
i<m

ϕi(x
0, . . . , x l)

where each ϕi is atomic
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Coclones (cont’d)

Equivalently: a set of relations is a coclone if it contains the
identity x0 = x1, and is closed under

I variable permutation and identification

I finite Cartesian products and intersections

I projection on a subset of variables

Closely related to constraint satisfaction problems
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Variants

A host of generalizations of this Galois connection appear in
the literature (e.g., [Isk71,Ros71,Ros83,Cou05,Ker12]):

I infinite base set

I partial functions, multifunctions

I functions An → B

I categorial setting

I . . .
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Computation in the physical world

Conventional models:
computation can destroy the input on a whim

〈x , y〉 7→ x + y

Reality check:

Landauer’s principle

Erasure of n bits of information incurs an n k log 2
increase of entropy elsewhere in the system
=⇒ dissipates energy as heat

The underlying time-evolution operators of quantum field
theory are reversible
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Reversible computing

Reversible computation models:
only allow operations that can be inverted

〈x , y〉 7→ 〈x , x + y〉

Typical formalisms: circuits using reversible gates

I Classical computing:
I motivated by energy efficiency
I n-bit reversible gate = permutation {0, 1}n → {0, 1}n

I Quantum computing:
I n qubits of memory = Hilbert space C2n

I quantum gate = unitary linear operator
=⇒ inherently reversible
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Clones of reversible transformations

Reversible operations computable from a fixed set of gates:

I variable permutations, dummy variables

I composition

I ancilla bits: preset constant inputs, required to return to
the original state at the end

=⇒ notion of “reversible clones”

Recently: [AGS15] gave complete classification for B = {0, 1}

(≈ Post’s lattice for reversible operations)

Emil Jěrábek Generalizing the clone–coclone Galois connection TACL 2015 10:30



Clones and coclones revamped
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↓

Goal

Generalize the clone–coclone Galois connection to
encompass reversible clones

Let’s first have a look at some simple reversible clones
on {0, 1}
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Examples

I Conservative operations f : {0, 1}n → {0, 1}n
preserve Hamming weight

f (~a) = ~b =⇒
∑
i<n

ai =
∑
i<n

bi

I Mod-k preserving operations:
Hamming weight modulo k

f (~a) = ~b =⇒
∑
i<n

ai ≡
∑
i<n

bi (mod k)

Permutations “can count”: invariants can’t be just relations
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Examples (cont’d)

I Affine operations f : {0, 1}n → {0, 1}n

f (~x) = A~x + ~c , where ~c ∈ Fn
2, A ∈ Fn×n

2 non-singular
I ⇐⇒ each component fi : {0, 1}n → {0, 1} affine

I classical invariant: fi affine ⇐⇒ preserves the relation
a + b + c + d = 0 on F4

2

I let w : F4
2 → F2, w(a0, a1, a2, a3) = a0 + a1 + a2 + a3

I identify F2 = {0, 1} = 〈{0, 1}, 0,∨〉
I f : {0, 1}n → {0, 1}m affine ⇐⇒

f (a00, . . . , a
0
n−1) = 〈b00, . . . , b0m−1〉, . . . ,

f (a30, . . . , a
3
n−1) = 〈b30, . . . , b3m−1〉

implies∨
i<n

w(a0i , a
1
i , a

2
i , a

3
i ) ≥

∨
i<m

w(b0i , b
1
i , b

2
i , b

3
i )
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General case

We consider a preservation relation between

I partial multifunctions f : Bn ⇒ Bm

I formally: f ⊆ Bn × Bm, n,m ≥ 0

I f (~x) ≈ ~y denotes 〈~x , ~y〉 ∈ f

I Pmf =
⋃

n,m Pmfn,m

I “weight functions” w : Bk → M
I 〈M, 1, ·,≤〉 partially ordered monoid, k ≥ 0

I Wgt =
⋃

k Wgtk
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Preservation

f : Bn ⇒ Bm preserves w : Bk → M :

a00 · · · a0j · · · a0n−1 b00 . . . b0m−1
...

...
... f

...
...

ai0 · · · aij · · · ain−1 −−−→ bi0 · · · bim−1
...

...
...

...
...

ak−10 · · · ak−1j · · · ak−1n−1 bk−10 · · · bk−1m−1y w
y

w(a0) · · · w(aj) · · · w(an−1) ≤ w(b0) · · · w(bm−1)
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Invariants and polymorphisms

The preservation relation induces a Galois connection

Definition

If F ⊆ Pmf, W ⊆ Wgt:

Inv(F) = {w ∈ Wgt : ∀f ∈ F f preserves w}
Pol(W) = {f ∈ Pmf : ∀w ∈ W f preserves w}

What are the closed classes?
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Clones

Pol(W) has the following properties:

Definition

C ⊆ Pmf is a pmf clone if

I (identity) idn : Bn → Bn is in C
I (composition) f : Bn ⇒ Bm, g : Bm ⇒ B r in C

=⇒ g ◦ f : Bn ⇒ B r in C
I (products) f : Bn ⇒ Bm, g : Bn′ ⇒ Bm′

in C
=⇒ f × g : Bn+n′ ⇒ Bm+m′

in C

(f × g)(x , x ′) ≈ 〈y , y ′〉 ⇐⇒ f (x) ≈ y , g(x ′) ≈ y ′

I (topology) C ∩ Pmfn,m is topologically closed . . .
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Topological closure

Two interesting topologies on {0, 1}:

I {0, 1}H discrete (Hausdorff)
I {0, 1}S Sierpiński: {0} closed, but {1} not

Lemma

Let C ⊆ P(X ) ≈ {0, 1}X . TFAE:

I C is closed in {0, 1}XS
I C is closed in {0, 1}XH and under subsets

I C is closed under directed unions and subsets

I Y ∈ C iff all finite Y ′ ⊆ Y are in C

Previous slide: apply to Pmfn,m = P(Bn × Bm)
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Coclones

Inv(F) has the following properties:

Definition

D ⊆ Wgt is a weight coclone if

I (variable manipulation) w : Bk → M in D, % : k → l

=⇒ w(x%(0), . . . , x%(k−1)) : B l → M in D
I (homomorphisms) w : Bk → M in D, ϕ : M → N

=⇒ ϕ ◦ w : Bk → N in D
I (direct products) wα : Bk → Mα in D (α ∈ I )

=⇒ 〈wα(x)〉α∈I : Bk →
∏

α∈I Mα in D
I (submonoids) w : Bk → M in D, w [Bk ] ⊆ N ⊆ M

=⇒ w : Bk → N in D
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Galois connection

Main theorem

For any B :

I Galois-closed sets of pmf = pmf clones

I Galois-closed classes of weights = weight coclones
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Smaller invariants

Invariants of a pmf clone C form a proper class

Better: C = Pol(W) s.t. for each w : Bk → M in W :

I M is generated by w [Bk ]
I call such weights tight

I M finitely generated if B finite

I M is subdirectly irreducible (as a pomonoid)

Interesting case: (unordered) commutative monoids

I f.g. subdirectly irreducible are finite [Mal58]

I known structure [Sch66,Gri77]
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Variants

We might want to restrict Pmf or Wgt,
or impose additional closure conditions, e.g.

I dimensions of f : Bn ⇒ Bm:
I n,m ≥ 1, m = 1, n = m

I “shape” of f :
I (partial/total) functions, permutations

I constraints on monoids:
I commutative, unordered

I constants, ancillas
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Dimension constraints

f : Bn ⇒ Bm with simple restrictions on n,m form clones
=⇒ correspond to inclusion of particular weights:

I n,m ≥ 1: constant weight c1 : B0 → 〈{0, 1}, 0,∨,=〉
I n = m: c1 : B0 → 〈N, 0,+,=〉

m = 1: a clone C is determined by f : Bn ⇒ B iff it contains
the diagonal maps ∆n : B → Bn, ∆n(x) = 〈x , . . . , x〉
On the dual side:

I tight w : Bk → M in Inv(C) are {∧,>}-semilattices

I subdirectly irreducible: M = 〈{0, 1}, 1,∧,≤〉
=⇒ weight functions = relations
=⇒ agrees with the classical description
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Monoid restrictions

I Classes of weights w : Bk → M with M commutative
⇐⇒ clones containing variable permutations

〈x0, . . . , xn−1〉 7→ 〈xπ(0), . . . , xπ(n−1)〉

I Classes of weights w : Bk → 〈M , 1, ·,=〉
(i.e., unordered monoids)
⇐⇒ clones closed under inverse

f : Bn ⇒ Bm in C =⇒ f −1 : Bm ⇒ Bn in C
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Uniqueness conditions

Partial functions form a clone =⇒
C consists of partial functions iff
Inv(C) includes a particular weight:

I Kronecker delta δ : B2 → 〈{0, 1}, 1,∧,≤〉

Symmetrically:

C consists of injective pmf iff
Inv(C) includes

δ : B2 → 〈{0, 1}, 1,∧,≥〉
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Totality conditions

In the classical case:

I totality of functions in C ⇐⇒
closure of Inv(C) under existential quantification

I doesn’t work well over infinite (uncountable) B

Definition

w : Bk+1 → 〈M , 1, ·,≤〉 weight, 〈M , 1, ·, 0,+〉 semiring

Define w+ : Bk → 〈M , 1, ·,≤〉 by

w+(x0, . . . , xk−1) =
∑
u∈B

w(x0, . . . , xk−1, u)
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Orders on semirings

Definition
I positively ordered semiring = 〈M , 1, ·, 0,+,≤〉 s.t.

I 〈M, 1, ·, 0,+〉 semiring
I 〈M, 1, ·,≤〉 and 〈M, 0,+,≤〉 pomonoids, 0 ≤ 1

= partially ordered semiring with least element 0

I ∨-semiring = idempotent positively ordered semiring
I + = ∨

I complete ∨-semiring:
I ∨-semiring, complete lattice
I infinite distributive laws(∨

i∈I
xi

)
y =

∨
i∈I

xiy y
∨
i∈I

xi =
∨
i∈I

yxi
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Total clones

C = Pol(D), D = Inv(C)

For B countable, the following are equivalent:

I C is generated by total multifunctions

I w : Bk+1 → M is in D, M is a complete ∨-semiring
=⇒ w+ : Bk → M is in D

A symmetric condition characterizes clones of surjective pmf

For B finite, TFAE:

I C is generated by mf extending a bijective function

I w : Bk+1 → M is in D, M is a positively ordered semiring
=⇒ w+ : Bk → M is in D
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Ancillas

C = Pol(D), D = Inv(C)

The following are equivalent:

I C supports ancillas

a ∈ B , f : Bn+1 ⇒ Bm+1 in C =⇒ fa : Bn ⇒ Bm in C

fa(~x) ≈ ~y ⇐⇒ f (a, ~x) ≈ 〈a, ~y〉

I D is generated by w : Bk → M s.t. the diagonal weights
z = w(u, . . . , u) for u ∈ B are left-order-cancellative

zx ≤ zy =⇒ x ≤ y

Interferes with totality, but it mostly sorts itself out
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Summary

I The standard clone–coclone duality extends to a Galois
connection between partial multifunctions Bn ⇒ Bm and
pomonoid-valued functions Bk → M

I Gracefully restricts to natural subclasses, such as total
functions Bn → Bm

Question

I Does it generalize further?

I Is it connected to some known duality involving
pomonoids?
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Thank you for attention!
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