Comparing presentations of algebraic theories

Marek Zawadowski
(joint work with Stanisław Szawiel)
University of Warsaw

TACL, Ischia
June 22, 2015

Categories of equational theories

Equational theory

$T=(L, A)$

- $L=\bigcup_{n} L_{n}$ - set of operations,
- $t\left(\vec{x}^{n}\right): X$ - term (over L) in a context $X, \vec{x}^{n}=x_{1}, \ldots, x_{n} \subseteq X$,
- $s\left(\vec{x}^{n}\right)=t\left(\vec{y}^{n}\right): X$ equations in contexts,
- A is a set of equations in finite contexts $\vec{x}^{n}, n \in \omega$.

Interpretations: morphisms of equational theory
$I: T \rightarrow T^{\prime}=\left(L^{\prime}, A^{\prime}\right)$

- $I_{n}: L_{n} \rightarrow \mathcal{T} r\left(L^{\prime}, \vec{x}^{n}\right)$, for $n \in \omega$ functions,
- extends to $\bar{I}_{n}: \mathcal{T} r\left(L, \vec{x}^{n}\right) \rightarrow \mathcal{T} r\left(L^{\prime}, \vec{x}^{n}\right)$,
- $A^{\prime} \vdash \bar{l}(t)=\bar{l}(s): \vec{x}^{n}$ for $t=s: \vec{x}^{n}$ in A.

We identify two such interpretations if they are provably equal.

Categories of equational theories

Restrictions:

- shape of equations: $s=t: \vec{x}^{n}$
regular all variables from \vec{x}^{n} occur both sides,
linear-regular all variables from \vec{x}^{n} occur on both sides exactly once,
rigid linear-regular and if

$$
\begin{aligned}
& A \vdash t\left(x_{1}, \ldots, x_{n}\right)=t\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right): \vec{x}^{n}, \text { then } \\
& \sigma=i d_{\underline{n}} .
\end{aligned}
$$

- shape of interpretations: $L_{n} \ni f \mapsto t: \vec{x}^{n}$
regular all variables form \vec{x}^{n} occur in t,
linear-regular all variables form \vec{x}^{n} occur in t exactly once, rigid as above.

We have categories: RiET \rightarrow LrET \rightarrow RegET \rightarrow ET .

Algebraic presentations

Algebraic presentations of categories of equational theories

Equivalent descriptions of the category ET and its subcategories...
For objetcs (theories) we need to specify:

- Data: some terms in some contexts modulo equations (e-terms)
- Operations:
- composition (substitution of e-terms)
- identities/projections/actions on e-terms

Morphisms (of theories) will be always obvious: just preserving the data involved.

Algebraic presentations Monads

Monads (on Set)
(T, η, μ):

- all terms in all contexts: $T(X)$-set of e-terms in context X,
- monad composition: flattening terms on terms to terms:

$$
\mu_{X}: T^{2}(X) \rightarrow T(X)
$$

- projections:

$$
\begin{gathered}
\eta_{X}: X \rightarrow T(X) \\
x \mapsto x: X
\end{gathered}
$$

- all actions: $f: X \rightarrow Y$ a function;

$$
T(f): T(X) \rightarrow T(Y)
$$

action of f on e-terms in context X,

- + monad axioms.

Morphisms of monads are natural transformations $\tau: T \rightarrow T^{\prime}$ compatible with η 's and μ 's.

Algebraic presentations

 Subcategories of the category of monadsRestrictions: categorical properties of T and natural transformations η and μ.

- Properties of T (finitary)
regular T preserves pullbacks along monos (semi-analytic),
linear-regular T preserves weak wide pullbacks (analytic), rigid T preserves wide pullbacks (polynomial).
- Properties of η and μ
regular naturality square for monos are pullbacks (semi-cartesian),
linear-regular naturality square for all functions are weak pullbacks (weakly-cartesian),
rigid naturality square for all functions are pullbacks (cartesian).

Algebraic presentations

 Subcategories of the category of monadsWe have categories of monads on Set:
PolyMnd \rightarrow AnMnd \rightarrow SanMnd \rightarrow Mnd.

Algebraic presentations Lawvere theories

Lawvere theories $\pi: \mathbb{F}^{O P} \rightarrow \mathbf{T}$

- finite tuples of e-terms in contexts $\vec{x}^{n}, n \in \omega$,
- usual categorical composition,
- projections (images of π),
- \mathbf{T} is a category, \mathbb{F} is the category of finite sets $\{1, \ldots, n\}$ $n \in \omega$ and functions, π is bijective on objects and preserves products.

Morphisms of Lawvere theories are functors preserving projections.
LT - the category of Lawvere theories.

Algebraic presentations

Subcategories of the category of Lawvere theories

Restrictions: factorization systems on L with the right class orthogonal to a subclass of morphisms from \mathbb{F}, possibly with some additional properties.

- Factorization systems
regular the class of right orthogonal maps to the images of surjections under $\pi: \mathbb{F} \rightarrow \mathbf{T}$,
linear-regular the class of right orthogonal maps to the images of all functions under $\pi: \mathbb{F} \rightarrow \mathbf{T}$,
rigid as above and the functions

$$
\begin{gathered}
\rho_{n}: S_{n} \times A u t_{\mathbf{T}}(1)^{n} \longrightarrow A u t_{\mathbf{T}}(n) \\
\left(\sigma, a_{1}, \ldots, a_{n}\right) \mapsto a_{1} \times \ldots \times a_{n} \circ \pi_{\sigma}
\end{gathered}
$$

are bijections.

Algebraic presentations

Subcategories of the category of Lawvere theories

The morphisms of the above Lawvere theories have to preserve the factorization systems (e.i. right and left classes).

We have categories of Lawvere theories:

$$
\text { RiLT } \rightarrow \text { AnLT } \rightarrow \text { RegLT } \rightarrow \text { LT. }
$$

Algebraic presentations Operads

Operads

- O_{n} some 'essential' e-terms in contexts $\vec{x}^{n}, n \in \omega$,
- operadic composition ('disjoint domain composition'):

$$
O_{n_{1}} \times \ldots, O_{n_{k}} \times O_{k} \longrightarrow O_{\sum_{i}^{k} n_{i}}
$$

- identity $\iota \in O_{1}$,
- actions: $\mathbb{F}(\underline{n}, \underline{m}) \times O_{n} \rightarrow O_{m}$

$$
\left\langle f, t\left(x_{1}, \ldots, x_{m}\right)\right\rangle \mapsto t\left(x_{f(1)}, \ldots, x_{f(n)}\right)
$$

- plus compatibility of actions with compositions.

Morphisms of \mathcal{F}-operads send n-ary operations to n-ary operations preserving identity, compositions, and actions.

FOp - the category of operads with action of \mathbb{F}.

Algebraic presentations

 Subcategories of the category of F -operdsRestrictions: are on the actions on operations.

- Actions
regular we consider actions of surjections only,
linear-regular (=symmetric operad) we consider actions of bijections only,
rigid as above and the actions must be free.
The notions a morphism of operads remains the same but it means something else here, the operations in operads are NOT all term operations but only those that are 'essential' for the theory. They constitute the right classes of morphisms (having 1 as the codomain) in factorization systems of the corresponding Lawvere theories.

We have categories of operads:

$$
\mathrm{RiOp} \rightarrow \mathrm{SOp} \rightarrow \mathrm{RegOp} \rightarrow \text { FOp }
$$

Algebraic presentations Clones

(Abstract) Clones

- e-terms in contexts $\vec{x}^{n}, n \in \omega$,
- clonic composition ('same domain composition'):

$$
O_{n}^{k} \times O_{k} \longrightarrow O_{n}
$$

- projections $\pi_{i}^{n}, 1 \leq i \leq n$.

Morphisms of clones send n-ary operations to n-ary operations preserving projections and compositions.

ACI - the category of clones.

Algebraic presentations Subcategories of the category of clones?

Restrictions: ???.
One can import the conditions from the other presentations but the conditions look foreign to abstract clones...

Do we have categories of clones:

$$
? ? ? \rightarrow ? ? ? \rightarrow ? ? ? \rightarrow \text { FOp? }
$$

Algebraic Presentations of Equational Theories

Equational Theories

ET- all equational theories

RegET- regular equational theories

LrET- linear-regular equational theories

LrET- linear-regular equational theories

Thank You for Your Attention!

