Stable modal logics

${\sf Guram}^2$ and ${\sf Nick}^1$ ${\sf Bezhanishvili}$ and ${\sf Julia}\ {\sf Ilin}^1$

¹Institute of Logic, Language and Computation, Universiteit van Amsterdam, The Netherlands

²Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico

Introduction and Motivation

- Filtration and selective filtration are two main tools to establish the finite model property (fmp) in modal logic.
- It is a well-known result of Fine that transitive subframe logics are well-behaved with respect to selective filtration, and hence have the fmp.
- The recently introduced stable logics¹ behave well with respect to filtration, and hence provide another class of logics with the fmp.

In this talk, we continue the study of stable modal logics.

^{1[1]} G. and N. Bezhanishvili, R. lemhoff, Stable canonical rules submitted. 🗈 🛌 💿 🧠 🔿

Outline

1 Stable logics and the fmp

2 Stable logics and stable rules

3 K4-stable modal logics

4 A continuum of examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Let $\mathfrak{B} = (B, \Diamond_B)$ and $\mathfrak{A} = (A, \Diamond_A)$ be modal algebras. We say that \mathfrak{B} is a *stable subalgebra* of \mathfrak{A} if *B* is a Boolean subalgebra of *A* and

 $\Diamond_A b \leq \Diamond_B b$ for all $b \in B$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $\mathfrak{B} = (B, \Diamond_B)$ and $\mathfrak{A} = (A, \Diamond_A)$ be modal algebras. We say that \mathfrak{B} is a *stable subalgebra* of \mathfrak{A} if *B* is a Boolean subalgebra of *A* and

 $\Diamond_A b \leq \Diamond_B b$ for all $b \in B$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

■ Or, dual terms: there is a surjective and continuous *R*-preserving map 𝔄_{*} → 𝔅_{*}.

Let $\mathfrak{B} = (B, \Diamond_B)$ and $\mathfrak{A} = (A, \Diamond_A)$ be modal algebras. We say that \mathfrak{B} is a *stable subalgebra* of \mathfrak{A} if *B* is a Boolean subalgebra of *A* and

 $\Diamond_A b \leq \Diamond_B b$ for all $b \in B$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Or, dual terms: there is a surjective and continuous *R*-preserving map 𝔄_{*} → 𝔅_{*}.
- A class *K* of modal algebras is called *stable* if it is closed under stable subalgebras.

Let $\mathfrak{B} = (B, \Diamond_B)$ and $\mathfrak{A} = (A, \Diamond_A)$ be modal algebras. We say that \mathfrak{B} is a *stable subalgebra* of \mathfrak{A} if *B* is a Boolean subalgebra of *A* and

 $\Diamond_A b \leq \Diamond_B b$ for all $b \in B$.

- Or, dual terms: there is a surjective and continuous *R*-preserving map 𝔄_{*} → 𝔅_{*}.
- A class *K* of modal algebras is called *stable* if it is closed under stable subalgebras.
- In dual terms, *K* is stable if its dual descriptive frames are closed under *R*-preserving images.

Let $\mathfrak{B} = (B, \Diamond_B)$ and $\mathfrak{A} = (A, \Diamond_A)$ be modal algebras. We say that \mathfrak{B} is a *stable subalgebra* of \mathfrak{A} if *B* is a Boolean subalgebra of *A* and

 $\Diamond_A b \leq \Diamond_B b$ for all $b \in B$.

- Or, dual terms: there is a surjective and continuous *R*-preserving map 𝔄_{*} → 𝔅_{*}.
- A class *K* of modal algebras is called *stable* if it is closed under stable subalgebras.
- In dual terms, *K* is stable if its dual descriptive frames are closed under *R*-preserving images.

Definition

 $L \in \mathsf{NExt}(\mathbf{K})$ is called *stable* if $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$ for some stable class \mathcal{K} .

Proposition

Stable modal logics have the fmp.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

Stable modal logics have the fmp.

• Let *L* be a stable modal logic and suppose $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$, where \mathcal{K} is a stable class of modal algebras. Suppose $L \not\vdash \varphi$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proposition

Stable modal logics have the fmp.

• Let *L* be a stable modal logic and suppose $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$, where \mathcal{K} is a stable class of modal algebras. Suppose $L \not\vdash \varphi$.

• There is $\mathfrak{A} = (A, \Diamond) \in \mathcal{K}$ and $V : \operatorname{Prop} \to A$ such that $V(\varphi) \neq 1$.

Proposition

Stable modal logics have the fmp.

- Let *L* be a stable modal logic and suppose $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$, where \mathcal{K} is a stable class of modal algebras. Suppose $L \not\vdash \varphi$.
- There is $\mathfrak{A} = (A, \Diamond) \in \mathcal{K}$ and $V : \operatorname{Prop} \to A$ such that $V(\varphi) \neq 1$.
- Let A' be the Boolean subalgebra of A generated by V(Sub(φ)). A' is finite, since Boolean algebras form a locally finite variety.

Proposition

Stable modal logics have the fmp.

- Let *L* be a stable modal logic and suppose $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$, where \mathcal{K} is a stable class of modal algebras. Suppose $L \not\vdash \varphi$.
- There is $\mathfrak{A} = (A, \Diamond) \in \mathcal{K}$ and $V : \operatorname{Prop} \to A$ such that $V(\varphi) \neq 1$.
- Let A' be the Boolean subalgebra of A generated by V(Sub(φ)). A' is finite, since Boolean algebras form a locally finite variety.

For a ∈ A' let ◊'a := ∧{b ∈ A' | ◊a ≤ b}. Then 𝔄' = (A', ◊') is a stable subalgebra of 𝔄. Since ◊a = ◊'a for all ◊a ∈ V(Sub(φ)), V witnesses that 𝔄' ⊭ φ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Proposition

Stable modal logics have the fmp.

- Let *L* be a stable modal logic and suppose $\mathcal{V}_L = \mathcal{V}(\mathcal{K})$, where \mathcal{K} is a stable class of modal algebras. Suppose $L \not\vdash \varphi$.
- There is $\mathfrak{A} = (A, \Diamond) \in \mathcal{K}$ and $V : \operatorname{Prop} \to A$ such that $V(\varphi) \neq 1$.
- Let A' be the Boolean subalgebra of A generated by V(Sub(φ)). A' is finite, since Boolean algebras form a locally finite variety.
- For a ∈ A' let ◊'a := ∧{b ∈ A' | ◊a ≤ b}. Then 𝔄' = (A', ◊') is a stable subalgebra of 𝔄. Since ◊a = ◊'a for all ◊a ∈ V(Sub(φ)), V witnesses that 𝔄' ⊭ φ.

• Moreover, $\mathfrak{A}' \in \mathcal{K}$ since \mathcal{K} is stable. So $\mathfrak{A}' \models L$.

Recap: logics axiomatized by rules

- A modal multi-conclusion rule is an expression Γ/Δ, where Γ and Δ are finite sets of modal formulas.
- $\mathfrak{A} = (A, \Diamond) \models \Gamma/\Delta$, provided for every valuation $V : \operatorname{Prop} \to A$, if $V(\varphi) = 1$ for all $\varphi \in \Gamma$, then there is $\psi \in \Delta$ with $V(\psi) = 1$.
- A set Σ of multi-conclusion rules axiomatizes a universal class of model algebras that we denote by U_Σ.
- A multi-conclusion consequence relation Σ axiomatizes a logic L iff $\mathcal{V}_L = \mathcal{V}(\mathcal{U}_{\Sigma})$.

Stable rules

• Let $\mathfrak{A} = (A, \Diamond)$ be a finite modal algebra. For every $a \in A$ let p_a be a propositional letter. The *stable rule associated with* \mathfrak{A} is $\rho(\mathfrak{A}) = \Gamma/\Delta$, where

$$\begin{split} \Gamma &= \{ p_{a \lor b} \leftrightarrow p_a \lor p_b : a, b \in A \} \cup \\ &\{ p_\neg a \leftrightarrow \neg p_a : a \in A \} \cup \\ &\{ \Diamond p_a \to p_{\Diamond a} : a \in A \}, \end{split}$$

and $\Delta = \{p_a : a \neq 1\}.$

Stable rules

• Let $\mathfrak{A} = (A, \Diamond)$ be a finite modal algebra. For every $a \in A$ let p_a be a propositional letter. The *stable rule associated with* \mathfrak{A} is $\rho(\mathfrak{A}) = \Gamma/\Delta$, where

$$\begin{split} \Gamma &= \{ p_{a \lor b} \leftrightarrow p_a \lor p_b : a, b \in A \} \cup \\ &\{ p_\neg a \leftrightarrow \neg p_a : a \in A \} \cup \\ &\{ \Diamond p_a \to p_{\Diamond a} : a \in A \}, \end{split}$$

and $\Delta = \{p_a : a \neq 1\}.$

Theorem

Let $\mathfrak{B} = (B, \Diamond)$ be a modal algebra.

 $\mathfrak{B} \not\models \rho(\mathfrak{A})$ iff \mathfrak{A} is a stable subalgebra of \mathfrak{B} .

Stable logics and stable rules

Characterization of stable modal logics

Theorem

Let $L \in NExt(\mathbf{K})$ and let \mathcal{V}_L be its corresponding variety of modal algebras. TFAE:

- **1** L is stable, i.e. \mathcal{V}_L is generated by a stable class.
- **2** \mathcal{V}_L is generated by a stable universal class.
- **3** *L* is axiomatizable by stable rules.

Examples of stable logics and axiomatization

Recall that:

 $\mathsf{K}\mathsf{D} = \mathsf{K} + \Box p \rightarrow \Diamond p$ is the logic of serial frames;

 $\mathbf{KT} = \mathbf{K} + \mathbf{p} \rightarrow \Diamond \mathbf{p}$ is the logic of reflexive frames.

 $S5 = KT + \Diamond p \rightarrow \Box \Diamond p$ is the logic of frames with an equivalence relation.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

These logics are stable.

Examples of stable logics and axiomatization

Recall that:

 $\mathsf{K}\mathsf{D} = \mathsf{K} + \Box p \rightarrow \Diamond p$ is the logic of serial frames;

 $\mathbf{KT} = \mathbf{K} + \mathbf{p} \rightarrow \Diamond \mathbf{p}$ is the logic of reflexive frames.

 $S5 = KT + \Diamond p \rightarrow \Box \Diamond p$ is the logic of frames with an equivalence relation.

These logics are stable. In fact,

KD is axiomatizable by $\rho(\bullet)$ and $\rho(\stackrel{\bullet}{\uparrow})$, **KT** is axiomatizable by $\rho(\bullet)$ and $\rho(\stackrel{\bullet}{\to})$,

S5 is axiomatizable by $\rho(\bullet)$, $\rho(\bullet)$, $\rho(\uparrow)$ and $\rho(\bullet)$

(• depicts an irreflexive point, \circ depicts a reflexive point and $\rho(\mathfrak{F})$ for a frame \mathfrak{F} stands for the stable rule associated with the dual algebra of \mathfrak{F} .)

K4 is not a stable logic.

- **K4** is not a stable logic.
- A class \mathcal{K} of K4-algebras is called K4-stable if for every K4-algebra $\mathfrak{A} = (A, \Diamond_A)$ and every stable subalgebra $\mathfrak{B} = (B, \Diamond_B)$ that is a K4-algebra,

$$\mathfrak{A} \in \mathcal{K} \quad \Rightarrow \quad \mathfrak{B} \in \mathcal{K}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- **K4** is not a stable logic.
- A class \mathcal{K} of K4-algebras is called K4-*stable* if for every K4-algebra $\mathfrak{A} = (A, \Diamond_A)$ and every stable subalgebra $\mathfrak{B} = (B, \Diamond_B)$ that is a K4-algebra,

$$\mathfrak{A} \in \mathcal{K} \quad \Rightarrow \quad \mathfrak{B} \in \mathcal{K}.$$

Definition

 $L \in \mathsf{NExt}\mathsf{K4}$ is called $\mathsf{K4}$ -stable if \mathcal{V}_L is generated by a $\mathsf{K4}$ -stable class.

- **K4** is not a stable logic.
- A class \mathcal{K} of K4-algebras is called K4-*stable* if for every K4-algebra $\mathfrak{A} = (A, \Diamond_A)$ and every stable subalgebra $\mathfrak{B} = (B, \Diamond_B)$ that is a K4-algebra,

$$\mathfrak{A} \in \mathcal{K} \quad \Rightarrow \quad \mathfrak{B} \in \mathcal{K}.$$

Definition

 $L \in \mathsf{NExt}\mathsf{K4}$ is called $\mathsf{K4}$ -stable if \mathcal{V}_L is generated by a $\mathsf{K4}$ -stable class.

Proposition

K4-stable logics have the fmp.

Stable formulas

• For a formula φ let $\Box^+ \varphi := \Box \varphi \wedge \varphi$.

Let 𝔅 = (𝔅, ◊) be a finite subdirectly irreducible (s.i.) K4-algebra. The *stable formula* associated with 𝔅 is defined as

$$\gamma(\mathfrak{A}) := \bigwedge \{ \Box^+ \gamma \mid \gamma \in \mathsf{\Gamma} \} \to \bigvee \{ \Box^+ \delta \mid \delta \in \Delta \},$$

where $\rho(\mathfrak{A}) = \Gamma/\Delta$.

Theorem

For every K4-algebra $\mathfrak{B} = (B, \Diamond)$ TFAE:

1 $\mathfrak{B} \not\models \gamma(\mathfrak{A}).$

2 There is a s.i. homomorphic image C = (C, ◊) of B such that A is a stable subalgebra of C.

Characterization of K4-stable logics

A **K4**-algebra \mathfrak{A} is called *well-connected* if $\Box^+ a \lor \Box^+ b = 1$ implies a = 1 or b = 1 for all $a, b \in \mathfrak{A}$.

Theorem

Let $L \in NExt(K4)$, let \mathcal{V}_L be the variety corresponding to L and let \mathcal{V}_{wc} be the well-connected members of \mathcal{V}_L . TFAE:

- **1** L is K4-stable, i.e. \mathcal{V}_L is generated by a K4-stable class.
- **2** \mathcal{V}_L is generated by a **K4**-stable universal class.
- 3 \mathcal{V}_{wc} is stable.

Characterization of K4-stable logics

A **K4**-algebra \mathfrak{A} is called *well-connected* if $\Box^+ a \lor \Box^+ b = 1$ implies a = 1 or b = 1 for all $a, b \in \mathfrak{A}$.

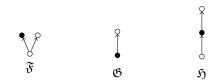
Theorem

Let $L \in NExt(K4)$, let \mathcal{V}_L be the variety corresponding to L and let \mathcal{V}_{wc} be the well-connected members of \mathcal{V}_L . TFAE:

- **1** L is K4-stable, i.e. \mathcal{V}_L is generated by a K4-stable class.
- **2** \mathcal{V}_L is generated by a **K4**-stable universal class.
- 3 \mathcal{V}_{wc} is stable.

Moreover, every K4-stable logic is axiomatizable by stable formulas.

■ However, not every logic L ∈ NExt(K4) axiomatized by stable formulas is stable. Consider:

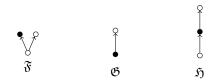


Claim

 $K4 + \gamma(\mathfrak{G}^*)$ is not K4-stable.

 $\mathfrak{F}^* \models \gamma(\mathfrak{G}^*), \mathfrak{H}$ is a stable image of \mathfrak{F} , but $\mathfrak{H}^* \not\models \gamma(\mathfrak{G}^*).$

■ However, not every logic L ∈ NExt(K4) axiomatized by stable formulas is stable. Consider:



Claim

 $K4 + \gamma(\mathfrak{G}^*)$ is not K4-stable.

 $\mathfrak{F}^* \models \gamma(\mathfrak{G}^*), \mathfrak{H}$ is a stable image of \mathfrak{F} , but $\mathfrak{H}^* \not\models \gamma(\mathfrak{G}^*).$

Proposition

1 Suppose $L = \mathbf{K4} + \{\gamma(\mathfrak{A}_i) \mid i \in I\}$ such that for all $i \in I$, \mathfrak{A}_{i*} has a reflexive root. Then L is **K4**-stable.

2 $L \in NExt(S4)$ is stable iff it is axiomatizable by stable formulas of S4-algebras.

Stable modal logics

Examples of K4 and S4-stable modal logics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

1
$$D4 = K4 + \gamma(\bullet);$$

2 $K4.2 = K4 + \gamma(\diamond\diamond);$
3 $K4.3 = K4 + \gamma(\diamond\diamond\circ) + \gamma(\diamond\diamond\circ);$
4 $K4B = K4 + \gamma(\diamond);$
5 $S4 = K4 + \gamma(\bullet) + \gamma(\diamond\circ);$
6 $S4.2 = S4 + \gamma(\diamond\diamond\circ);$
7 $S4.3 = S4 + \gamma(\diamond\diamond\circ) + \gamma(\diamond\diamond\circ);$
8 $S5 = S4 + \gamma(\diamond\circ).$

A continuum of examples

A continuum of stable logics

Theorem

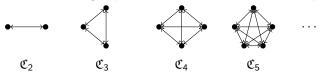
- **1** There is a continuum of non-transitive stable logics.
- 2 There is a continuum of K4-stable logics between K4 and S4.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

3 There is a continuum of **S4**-stable logics.

A continuum of stable logics

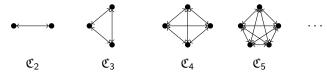
Consider the following sequences of "clusters with irreflexive points"



▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

A continuum of stable logics

Consider the following sequences of "clusters with irreflexive points"



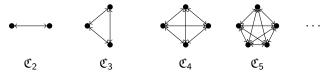
• For $I \subseteq \mathbb{N}_{\geq 2}$

 $\mathcal{X}_I := \{\mathfrak{A} = (A, \Diamond) \mid \exists n \in I \text{ and } \mathfrak{A} \text{ is a stable subalgebra of } \mathfrak{C}_n^*\}$

Since \mathcal{X}_l is a stable class, $\mathcal{V}(\mathcal{X}_l)$ is the variety of a stable logic L_l .

A continuum of stable logics

Consider the following sequences of "clusters with irreflexive points"



For
$$I \subseteq \mathbb{N}_{\geq 2}$$

 $\mathcal{X}_I := \{\mathfrak{A} = (A, \Diamond) \mid \exists n \in I \text{ and } \mathfrak{A} \text{ is a stable subalgebra of } \mathfrak{C}_n^*\}$

Since \mathcal{X}_I is a stable class, $\mathcal{V}(\mathcal{X}_I)$ is the variety of a stable logic L_I .

Claim

If
$$I \neq J \subseteq \mathbb{N}_{\geq 2}$$
, then $L_I \neq L_J$.

■ The collection $L_I, I \subseteq \mathbb{N}_{\geq 2}$ provides a continuum of non-transitive stable logics.

Summary

- Stable logics form a large class of normal modal logics that are well-behaved with respect to the method of filtration.
- They play the same role in the theory of filtration as transitive subframe logics play in the theory of selective filtration.
- Stable logics over K can be axiomatized by stable rules. Stable logics over K4 can be axiomatized by stable formulas.
- There is a continuum of non-transitive stable logics and a continuum of K4-stable logics.