Yet another ring-theoretic characterisation of *P*-frames

Title

Oghenetega Ighedo

Department of Mathematical Sciences University of South Africa

Topology, Algebra, and Categories in Logic: TACL 2015 Ischia

(24 June 2015)

O. Ighedo (Unisa)

Characterising P-frames

< ロ > < 同 > < 三 > < 三 >

Background

Throughout, the term ring means a commutative ring with identity; and frame means a completely regular frame.

Let *A* be a ring. We denote by Max(A) the set of all maximal ideals of *A*. For any $a \in A$, we set

 $\mathfrak{M}(a) = \{ M \in \mathsf{Max}(A) \mid a \in M \}.$

The following definition comes from

Definition An ideal / of a ring A is a z-ideal if

 $\mathfrak{M}(a) = \mathfrak{M}(b)$ and $a \in I \implies b \in I$

Background

Throughout, the term ring means a commutative ring with identity; and frame means a completely regular frame.

Let A be a ring. We denote by Max(A) the set of all maximal ideals of A. For any $a \in A$, we set

 $\mathfrak{M}(a) = \{ M \in \mathsf{Max}(A) \mid a \in M \}.$

The following definition comes from

G. Mason *z-Ideals and Prime Ideals* J. Algebra **26** (1973), 280–297.

Definition

An ideal *I* of a ring *A* is a *z*-ideal if

 $\mathfrak{M}(a) = \mathfrak{M}(b)$ and $a \in I \implies b \in I$

- Every maximal ideal is a z-ideal.
 - Every minimal prime ideal is a z-ideal.
- Intersections of z-ideals are z-ideals.
- An ideal Q of RL is a z-ideal if and only if.

$\forall lpha, eta \in \mathcal{R}L; \ \operatorname{coz} lpha = \operatorname{coz} eta \ ext{and} \ lpha \in \mathcal{Q} \quad \Longrightarrow \quad eta \in \mathcal{Q}.$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements.
 RL is reduced.
- von Neumann regular if, for every a ∈ A, there exists b ∈ A such that a = a²b.

э

- Every maximal ideal is a z-ideal.
- 2 Every minimal prime ideal is a *z*-ideal.

Intersections of z-ideals are z-ideals.

An ideal Q of RL is a z-ideal if and only if

$\forall lpha, eta \in \mathcal{R}$ L; coz lpha =coz eta and $lpha \in \mathcal{Q} \quad \Longrightarrow \quad eta \in \mathcal{Q}$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements.
 RL is reduced.
- von Neumann regular if, for every a ∈ A, there exists b ∈ A such that a = a²b.

・ロン ・聞と ・ ヨン・ モン・

- Every maximal ideal is a z-ideal.
- 2 Every minimal prime ideal is a *z*-ideal.
- Intersections of *z*-ideals are *z*-ideals.

An ideal Q of RL is a z-ideal if and only if

 $\forall lpha, eta \in \mathcal{R}L; \ \mathsf{coz}\, lpha = \mathsf{coz}\, eta \ \mathsf{and} \ lpha \in \mathcal{Q} \quad \Longrightarrow \quad eta \in \mathcal{Q}$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements.
 RL is reduced.
- von Neumann regular if, for every a ∈ A, there exists b ∈ A such that a = a²b.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Every maximal ideal is a z-ideal.
- 2 Every minimal prime ideal is a *z*-ideal.
- Intersections of z-ideals are z-ideals.
- An ideal Q of RL is a z-ideal if and only if

 $\forall \alpha, \beta \in \mathcal{R}L; \ \operatorname{coz} \alpha = \operatorname{coz} \beta \ \text{and} \ \alpha \in \mathcal{Q} \implies \beta \in \mathcal{Q}.$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements.
 RL is reduced.
- on Neumann regular if, for every a ∈ A, there exists b ∈ A such that a = a²b.

< ロ > < 同 > < 回 > < 回 >

- Every maximal ideal is a z-ideal.
- 2 Every minimal prime ideal is a *z*-ideal.
- Intersections of z-ideals are z-ideals.
- An ideal Q of RL is a z-ideal if and only if

 $\forall \alpha, \beta \in \mathcal{R}L; \ \operatorname{coz} \alpha = \operatorname{coz} \beta \ \operatorname{and} \ \alpha \in \mathcal{Q} \implies \beta \in \mathcal{Q}.$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements. *RL* is reduced.
 - von Neumann regular if, for every $a \in A$, there exists $b \in A$ such that $a = a^2 b$.

< ロ > < 同 > < 回 > < 回 >

- Every maximal ideal is a z-ideal.
- 2 Every minimal prime ideal is a *z*-ideal.
- Intersections of z-ideals are z-ideals.
- An ideal Q of RL is a z-ideal if and only if

 $\forall \alpha, \beta \in \mathcal{R}L; \ \operatorname{coz} \alpha = \operatorname{coz} \beta \ \operatorname{and} \ \alpha \in \mathcal{Q} \implies \beta \in \mathcal{Q}.$

Recall that a ring A is said to be:

- reduced (or semiprime) if it has no nonzero nilpotent elements. *RL* is reduced.
- von Neumann regular if, for every *a* ∈ *A*, there exists *b* ∈ *A* such that *a* = *a*²*b*.

-

• essential (or large) if it intersects every nonzero ideal nontrivially.

$\sqrt{I}=\{a\in A\mid a^n\in I ext{ for some } n\in \mathbb{N}\}.$

The ideal \sqrt{I} is called the radical of *I*.

An ideal I of an ℓ -ring A is called:

• convex if, for any $a, b \in A$,

 $0 \le a \le b$ and $b \in I \implies a \in I$.

• absolutely convex if, for any $a, b \in A$,

$0 \leq |a| \leq |b|$ and $b \in I \implies a \in I$.

- essential (or large) if it intersects every nonzero ideal nontrivially.
- a radical ideal if $I = \sqrt{I}$, where

 $\sqrt{I} = \{ a \in A \mid a^n \in I \text{ for some } n \in \mathbb{N} \}.$

The ideal \sqrt{I} is called the radical of *I*.

An ideal I of an ℓ -ring A is called:

• convex if, for any $a, b \in A$,

 $0 \le a \le b$ and $b \in I \implies a \in I$.

• absolutely convex if, for any $a, b \in A$

$0 \leq |a| \leq |b|$ and $b \in I \implies a \in I$.

- essential (or large) if it intersects every nonzero ideal nontrivially.
- a radical ideal if $I = \sqrt{I}$, where

 $\sqrt{I} = \{ a \in A \mid a^n \in I \text{ for some } n \in \mathbb{N} \}.$

The ideal \sqrt{I} is called the radical of *I*.

An ideal I of an ℓ -ring A is called:

• convex if, for any $a, b \in A$,

 $0 \le a \le b$ and $b \in I \implies a \in I$.

absolutely convex if, for any a, b ∈ A

$0 \leq |a| \leq |b|$ and $b \in I \implies a \in I$.

(日)

- essential (or large) if it intersects every nonzero ideal nontrivially.
- a radical ideal if $I = \sqrt{I}$, where

 $\sqrt{I} = \{ a \in A \mid a^n \in I \text{ for some } n \in \mathbb{N} \}.$

The ideal \sqrt{I} is called the radical of *I*.

An ideal I of an ℓ -ring A is called:

• convex if, for any $a, b \in A$,

 $0 \le a \le b$ and $b \in I \implies a \in I$.

• absolutely convex if, for any $a, b \in A$,

 $0 \le |a| \le |b|$ and $b \in I \implies a \in I$.

<ロ> (日) (日) (日) (日) (日) (日) (0)

Recall that a Tychonoff space X is called a *P*-space if every zero-set of X is open. These spaces have several algebraic characterizations in terms of their function rings. One of these is that:

X is a P-space if and only if C(X) is von Neumann regular.

Extending this notion to pointfree topology, Ball and Walters-Wayland

define a frame L to be a P-frame if, for every $c \in \text{Coz } L$, $c \lor c^* = 1$. Clearly,

X is a P-space \iff $\mathfrak{O}X$ is a P-frame;

so that we have a conservative extension of the topological notion.

O. Ighedo (Unisa)

< ロ > < 同 > < 回 > < 回 > .

Recall that a Tychonoff space X is called a *P*-space if every zero-set of X is open. These spaces have several algebraic characterizations in terms of their function rings. One of these is that:

X is a P-space if and only if C(X) is von Neumann regular.

Extending this notion to pointfree topology, Ball and Walters-Wayland

R.N. Ball and J. Walters-Wayland *C- and C* -quotients in pointfree topology* Dissert. Math. (Rozprawy Mat.) Vol. **412** (2002), 62pp.

define a frame *L* to be a *P*-frame if, for every $c \in \text{Coz } L$, $c \vee c^* = 1$.

Clearly,

X is a P-space $\iff \Omega X$ is a P-frame;

to that we have a conservative extension of the topological notion.

イロト イポト イラト イラト

Recall that a Tychonoff space X is called a *P*-space if every zero-set of X is open. These spaces have several algebraic characterizations in terms of their function rings. One of these is that:

X is a P-space if and only if C(X) is von Neumann regular.

Extending this notion to pointfree topology, Ball and Walters-Wayland

R.N. Ball and J. Walters-Wayland *C- and C* -quotients in pointfree topology* Dissert. Math. (Rozprawy Mat.) Vol. **412** (2002), 62pp.

define a frame *L* to be a *P*-frame if, for every $c \in \text{Coz } L$, $c \vee c^* = 1$.

Clearly,

X is a *P*-space $\iff \mathfrak{O}X$ is a *P*-frame;

so that we have a conservative extension of the topological notion.

O. Ighedo (Unisa)

Many ring-theoretic characterizations of *P*-spaces are preserved in the larger context of frames. For instance:

- L is a P-frame iff RL is von Neumann regular (Banaschewski and Hong, 2003).
- The following are equivalent for *L* (Dube, 2009):
 - L is a P-frame.
 - Every ideal of $\mathcal{R}L$ is pure.
 - $\langle \alpha, \beta \rangle = \langle \alpha^2 + \beta^2 \rangle.$

Many ring-theoretic characterizations of *P*-spaces are preserved in the larger context of frames. For instance:

 L is a P-frame iff RL is von Neumann regular (Banaschewski and Hong, 2003).

The following are equivalent for L (Dube, 2009):

L is a P-frame.

- Every ideal of *RL* is pure.
- $\langle \alpha, \beta \rangle = \langle \alpha^2 + \beta^2 \rangle.$

Many ring-theoretic characterizations of *P*-spaces are preserved in the larger context of frames. For instance:

- L is a *P*-frame iff *RL* is von Neumann regular (Banaschewski and Hong, 2003).
- 2 The following are equivalent for *L* (Dube, 2009):
 - L is a P-frame.
 - Every ideal of $\mathcal{R}L$ is pure.
 - $\bullet \ \langle \alpha,\beta\rangle = \langle \alpha^{\mathbf{2}}+\beta^{\mathbf{2}}\rangle.$

There are properties of frames the proofs of whose ring-theoretic characterisations "piggyback" on their topological counterparts, via the fact that

 $\mathcal{R}^*L \cong \mathcal{R}(\beta L) \cong \mathcal{C}(X),$

for the Tychonoff space $X = \Sigma(\beta L)$. Typically, these properties are such that *L* has the property if and only if βL has the property. Being a *P*-frame is **not** one such, so frame-theoretic proofs need to be "built from scratch", so to speak.

Here is a manual for building the proof of the main results stated in the abstract.

< ロ > < 同 > < 三 > < 三 >

There are properties of frames the proofs of whose ring-theoretic characterisations "piggyback" on their topological counterparts, via the fact that

 $\mathcal{R}^*L\cong \mathcal{R}(\beta L)\cong \mathcal{C}(X),$

for the Tychonoff space $X = \Sigma(\beta L)$. Typically, these properties are such that *L* has the property if and only if βL has the property. Being a *P*-frame is **not** one such, so frame-theoretic proofs need to be "built from scratch", so to speak.

Here is a manual for building the proof of the main results stated in the abstract.

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

First, we introduce the following terminology. We say a ring A is *z*-good if it has the property that an ideal of A is a *z*-ideal if and only if its radical is a *z*-ideal.

Lemma

A z-good ring is von Neumann regular iff every prime ideal in it is a z-ideal.

So it remains to show that *RL* is *z*-good since *L* is a *P*-frame precisely when *RL* is von Neumann regular. For this we need the following lemma.

Lemma

Let L be a completely regular frame.

 Every positive element in RL has an nth root, for every positive integer n.

• Let $\alpha, \beta \in \mathcal{R}L$. If $|\alpha| \leq |\beta|^q$ for some q > 1 in \mathbb{Q} , then α is a multiple of β .

First, we introduce the following terminology. We say a ring A is *z*-good if it has the property that an ideal of A is a *z*-ideal if and only if its radical is a *z*-ideal.

Lemma

A *z*-good ring is von Neumann regular iff every prime ideal in it is a *z*-ideal.

So it remains to show that $\mathcal{R}L$ is *z*-good since *L* is a *P*-frame precisely when $\mathcal{R}L$ is von Neumann regular. For this we need the following lemma.

Lemma

Let L be a completely regular frame.

- Every positive element in R.L has an nth root, for every positive integer n.
- Let $\alpha, \beta \in \mathcal{R}L$. If $|\alpha| \leq |\beta|^q$ for some q > 1 in \mathbb{Q} , then α is a multiple of β .

First, we introduce the following terminology. We say a ring A is *z*-good if it has the property that an ideal of A is a *z*-ideal if and only if its radical is a *z*-ideal.

Lemma

A *z*-good ring is von Neumann regular iff every prime ideal in it is a *z*-ideal.

So it remains to show that $\mathcal{R}L$ is *z*-good since *L* is a *P*-frame precisely when $\mathcal{R}L$ is von Neumann regular. For this we need the following lemma.

Lemma

Let L be a completely regular frame.

- Every positive element in RL has an nth root, for every positive integer n.
- 2 Let $\alpha, \beta \in \mathcal{RL}$. If $|\alpha| \leq |\beta|^q$ for some q > 1 in \mathbb{Q} , then α is a multiple of β .

Proposition

 $\mathcal{R}L$ is a z-good ring.

Proof.

(Outline)

- Let *Q* be an ideal of $\mathcal{R}L$ such that \sqrt{Q} is a *z*-ideal.
- Suppose $\cos \beta \leq \cos \alpha$ for some $\alpha \in Q$ and $\beta \in \mathcal{RL}$.

• Write
$$\delta = \frac{\beta^+}{1+\beta^+}$$
, and observe that $\mathbf{0} \leq \delta \leq \mathbf{1}$.

• For the function $\gamma = \sum_{n=1}^{\infty} 2^{-n} \delta^{1/n}$, we have

$$\operatorname{coz} \gamma = \bigvee_n \operatorname{coz}(2^{-n}\delta^{1/n}) = \operatorname{coz} \delta = \operatorname{coz}(\beta^+) \le \operatorname{coz} \beta \le \operatorname{coz} \alpha.$$

Proof.

(Outline continuation)

• After some algebraic calculations we obtain

$$2^{-4m^2}\delta \le \gamma^{2m} = (\gamma^m)^2,$$

so that δ is a multiple of γ^m .

• This yields $\beta^+ \in Q$, and similarly, $\beta^- \in Q$, whence $\beta \in Q$.

O. Ighedo (Unisa)

We need one more preliminary result before stating the main theorem.

Lemma

Every radical ideal in RL is absolutely convex.

Putting together all the results above we arrive at:

Theorem

L is a P-frame.

- Every essential ideal in RL is a z-ideal.
- Every radical ideal in RL is a z-ideal.
- Every convex ideal in RL is a z-ideal.
- Every absolutely convex ideal in RL is a z-ideal.

э

We need one more preliminary result before stating the main theorem.

Lemma

Every radical ideal in RL is absolutely convex.

Putting together all the results above we arrive at:

Theorem

The following are equivalent for a completely regular frame L.

- L is a P-frame.
- 2 Every essential ideal in RL is a z-ideal.
- Severy radical ideal in *RL* is a *z*-ideal.
- Every convex ideal in RL is a z-ideal.
- Severy absolutely convex ideal in RL is a z-ideal.

< ロ > < 同 > < 回 > < 回 >

THANK YOU

O. Ighedo (Unisa)

э.

・ロン ・聞と ・ ヨン・ モン・