Characterization of FEP for (Distributive) Residuated Lattices via Regular (Tree) Languages

Rostislav Horčík

Definition [Henkin 1951, Evans 1969]

Definition [Henkin 1951, Evans 1969]

A class of algebras \mathbb{K} of the same type has the finite embeddability property (FEP) if every finite partial subalgebra **B** of any algebra $\mathbf{A} \in \mathbb{K}$ is embeddable into a finite algebra $\mathbf{D} \in \mathbb{K}$.

 There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.

Definition [Henkin 1951, Evans 1969]

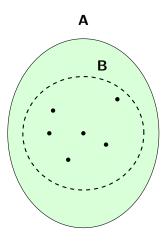
- There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.

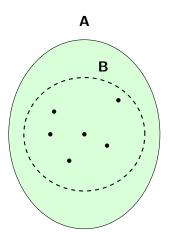
Definition [Henkin 1951, Evans 1969]

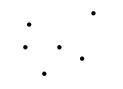
- There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.
- We are going to rephrase the above contruction in terms of recognizable sets/languages.

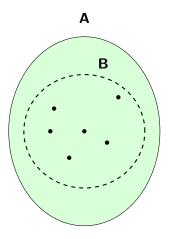
Definition [Henkin 1951, Evans 1969]

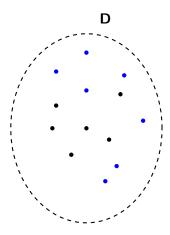
- There exists a bunch of results on the FEP for varieties of residuated lattices using the same construction of the finite algebra due to Block and van Alten.
- ► The most involved part is to prove finiteness.
- We are going to rephrase the above contruction in terms of recognizable sets/languages.
- ► This simplifies the proofs by employing results from language theory.

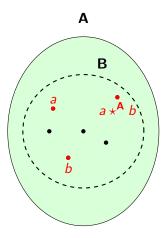


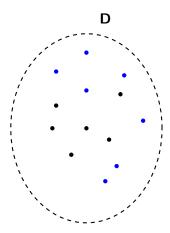


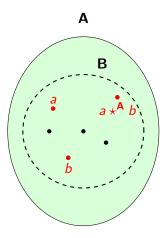


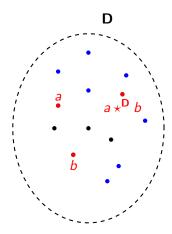












Recognizable sets

Definition

Let **A** be an algebra and $L \subseteq A$. The set L is recognizable if

- ► there is a finite algebra **D**,
- homomorphism $h: \mathbf{A} \to \mathbf{D}$ and
- ▶ ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over A are denoted Rec(A).

Recognizable sets

Definition

Let **A** be an algebra and $L \subseteq A$. The set L is recognizable if

- ► there is a finite algebra **D**,
- homomorphism $h: \mathbf{A} \to \mathbf{D}$ and
- ▶ ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over A are denoted Rec(A).

Theorem [Kleene]

Recognizable sets $\text{Rec}(\mathbf{B}^*)$ over finitely generated free monoids are precisely regular/rational languages.

The set of unary, linear polynomials on algebra \mathbf{A} is denoted $Tr(\mathbf{A})$ whose elements are called translations.

The set of unary, linear polynomials on algebra \mathbf{A} is denoted $Tr(\mathbf{A})$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

The set of unary, linear polynomials on algebra \mathbf{A} is denoted $Tr(\mathbf{A})$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

Definition

Let **A** be an algebra and $L \subseteq A$. The syntactic congruence \sim_L is defined by

$$x \sim_L y$$
 iff $\forall p \in Tr(\mathbf{A}) \colon p(x) \in L \Leftrightarrow p(y) \in L$

The set of unary, linear polynomials on algebra \mathbf{A} is denoted $Tr(\mathbf{A})$ whose elements are called translations.

E.g. $p(x) = axb \lor c$ is a translation on idempotent semiring **A**.

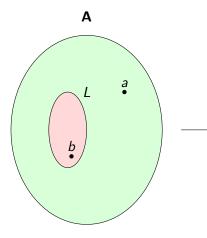
Definition

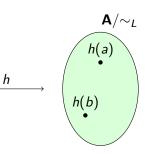
Let **A** be an algebra and $L \subseteq A$. The syntactic congruence \sim_L is defined by

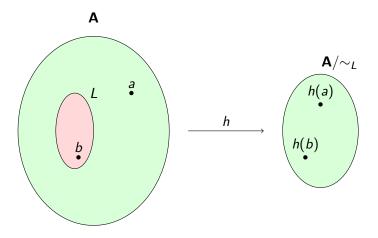
$$x \sim_L y$$
 iff $\forall p \in Tr(\mathbf{A}) \colon p(x) \in L \Leftrightarrow p(y) \in L$

Lemma

The synt. congruence \sim_L is the largest congruence saturating *L*. Thus \mathbf{A}/\sim_L is finite iff *L* is recognizable.







Given a finite subset $B \subseteq A$, if we can find recognizable sets $L_1, \ldots, L_n \subseteq A$ separating elements of B, we obtain a finite algebra $\mathbf{D} \cong \mathbf{A} / \bigcap_{i=1}^n \sim_{L_i}$ and a homomorphism $h: \mathbf{A} \to \mathbf{D}$.

Residuated lattices

Definition

A residuated lattice is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \cdot, \backslash, /, 1 \rangle$, where

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \ \langle {\it A}, \cdot, 1 \rangle \text{ is a monoid,}$
- $a \cdot b \leq c$ iff $b \leq a \setminus c$ iff $a \leq c/b$.

Residuated lattices

Definition

A residuated lattice is an algebra $\bm{\mathsf{A}}=\langle \textit{A},\wedge,\vee,\cdot,\backslash,,/,1\rangle$, where

- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \ \langle {\it A}, \cdot, 1 \rangle \text{ is a monoid,}$
- $a \cdot b \leq c$ iff $b \leq a \setminus c$ iff $a \leq c/b$.

Facts

- ⟨A, ∨, ·, 1⟩ forms an idempotent semiring because
 a(b ∨ c)d = abd ∨ acd.
- ► A finite idempotent semiring having a bottom element forms a residuated lattice.

Residuated lattices

Definition

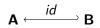
A residuated lattice is an algebra $\bm{\mathsf{A}}=\langle \textit{A},\wedge,\vee,\cdot,\backslash,,/,1\rangle$, where

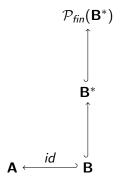
- $\langle A, \wedge, \vee \rangle$ is a lattice,
- $\blacktriangleright \ \langle {\it A}, \cdot, 1 \rangle \text{ is a monoid,}$
- $a \cdot b \leq c$ iff $b \leq a \setminus c$ iff $a \leq c/b$.

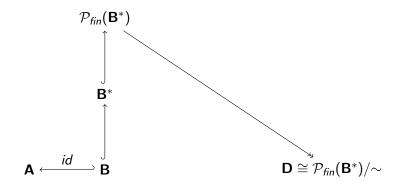
Facts

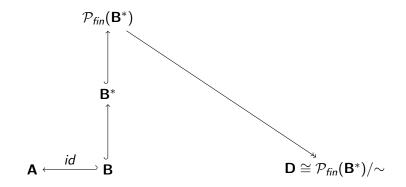
- ⟨A, ∨, ·, 1⟩ forms an idempotent semiring because
 a(b ∨ c)d = abd ∨ acd.
- ► A finite idempotent semiring having a bottom element forms a residuated lattice.

When does a variety $\mathbb K$ of residuated lattices axiomatized over $\{\vee,\cdot,1\}$ have the FEP?

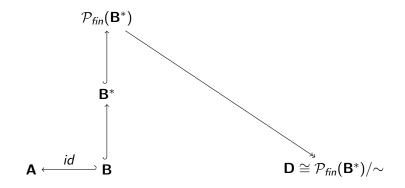




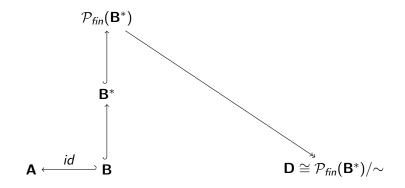




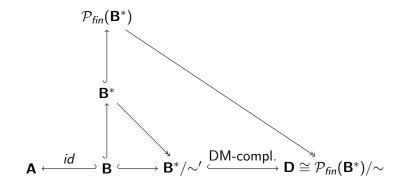
• Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.



- ▶ Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of *B*.
- $\mathcal{P}_{fin}(L_b)$'s belongs to $\operatorname{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.



- ▶ Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of *B*.
- $\mathcal{P}_{fin}(L_b)$'s belongs to $\operatorname{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.
- Define $\sim = \bigcap_{b \in B} \sim_{\mathcal{P}_{fin}(L_b)}$.



- Assume that $\{L_b \subseteq \text{Rec}(\mathbf{B}^*) \mid b \in B\}$ separate elements of B.
- $\mathcal{P}_{fin}(L_b)$'s belongs to $\operatorname{Rec}(\mathcal{P}_{fin}(\mathbf{B}^*))$ and separate B.
- Define $\sim = \bigcap_{b \in B} \sim_{\mathcal{P}_{fin}(L_b)}$.
- Define $\sim' = \bigcap_{b \in B} \sim_{L_b}$.

If $t(x_1,\ldots,x_n) \leq s(x_1,\ldots,x_n)$ is in the axiomatization of \mathbb{K} ,

If $t(x_1, \ldots, x_n) \leq s(x_1, \ldots, x_n)$ is in the axiomatization of \mathbb{K} , then we need

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

If $t(x_1, \ldots, x_n) \leq s(x_1, \ldots, x_n)$ is in the axiomatization of \mathbb{K} , then we need

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

Example

For instance $x^2 \leq x$ and $X = \{a, b\}$. Then $X^2 = \{a^2, ab, ba, b^2\}$. $\frac{p(X) = \{p(a), p(b)\} \subseteq L_c}{p(X^2) = \{p(a^2), p(ab), p(ba), p(b^2)\} \subseteq L_c}$

If $t(x_1, \ldots, x_n) \leq s(x_1, \ldots, x_n)$ is in the axiomatization of \mathbb{K} , then we need

$$\frac{p(s(X_1,\ldots,X_n))\subseteq L_c}{p(t(X_1,\ldots,X_n))\subseteq L_c}$$

for all $c \in B$, finite sets $X_1, \ldots, X_n \subseteq B^*$ and $p \in Tr(\mathbf{B}^*)$.

Example

For instance $x^2 \leq x$ and $X = \{a, b\}$. Then $X^2 = \{a^2, ab, ba, b^2\}$. $\frac{p(X) = \{p(a), p(b)\} \subseteq L_c}{p(X^2) = \{p(a^2), p(ab), p(ba), p(b^2)\} \subseteq L_c} \qquad \frac{\{p(a), p(b)\} \subseteq L_c}{p(ab) \in L_c}$ **Gentzen rules** $(a, b, c \in B, p \in Tr(\mathbf{B}^*))$ $\frac{p(a) \in L_b}{p(L_a) \subset L_b} (Cut)$ $\overline{b \in L_b}$ (Id) $\frac{p(b) \in L_c}{p(a(a \setminus b)) \in L_c} (\setminus L)$ $\overline{a \setminus L_b \subseteq L_{a \setminus b}} (\setminus \mathsf{R})$ $\frac{p(a) \in L_c}{p(a \land b) \in L_c} (\land \mathsf{L})$ $\overline{L_a \cap L_b \subseteq L_{a \wedge b}} (\wedge \mathsf{R})$ $\frac{p(ab) \in L_c}{p(a \cdot b) \in L_c} (\cdot L)$ $\frac{1}{L_{2}L_{b} \subset L_{2b}} (\cdot \mathsf{R})$ $\frac{p(\{a,b\}) \in L_c}{p(a \lor b) \in L_c} (\lor \mathsf{L})$ $\overline{L_{a} \cup L_{b} \subset L_{a \lor b}} (\lor \mathsf{R})$ $\frac{p(\varepsilon) \in L_c}{p(1) \in I_c} (1L)$ $\overline{\varepsilon \in L_1}$ (1R)

Characterization

Theorem

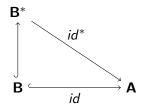
Let \mathbb{V} be a variety of residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ by a set of inequalities \mathcal{E} . T.F.A.E.

- 1. \mathbb{V} has the FEP.
- 2. For every finite partial subalgebra \boldsymbol{B} of $\boldsymbol{A} \in \mathbb{V}$ there is a collection

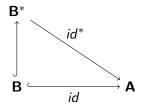
$$\{L_b \subseteq \mathsf{Rec}(\mathbf{B}^*) \mid b \in B\}$$

- ► separating elements of *B*,
- satisfying Gentzen rules and
- closed under the rules corresponding to inequalities in \mathcal{E} .

Existing results



Existing results

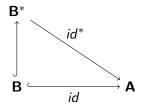


Sets of the form

$$L_b = \{x \in B^* \mid id^*(x) \leq^{\mathsf{A}} b\}$$

for $b \in B$ always satisfy all the conditions except of recognizability.

Existing results



Sets of the form

$$L_b = \{x \in B^* \mid id^*(x) \leq^{\mathsf{A}} b\}$$

for $b \in B$ always satisfy all the conditions except of recognizability. To prove the FEP, it suffices to show that L_b 's are recognizable. Higman's lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety \mathbb{V} of integral ($x \leq 1$) residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ has the FEP.

Higman's lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]

Every variety $\mathbb V$ of integral (x \leq 1) residuated lattices axiomatized over $\{\vee,\cdot,1\}$ has the FEP.

 $Rec(\mathbf{B}^*) = permutable and (co-)quasi-periodic languages.$

Higman's lemma + Generalized Myhill Theorem imply <u>Theorem</u> [Blok, van Alten, Galatos, Jipsen] Every variety \mathbb{V} of integral ($x \leq 1$) residuated lattices axiomatized over { $\vee, \cdot, 1$ } has the FEP.

 $Rec(\mathbf{B}^*) = permutable and (co-)quasi-periodic languages.$

$$\frac{ux_1 \dots x_k v \in L}{ux_{\sigma(1)} \dots x_{\sigma(k)} v \in L} \quad \frac{ux^n v \in L}{ux^m v \in L}$$

Higman's lemma + Generalized Myhill Theorem imply <u>Theorem</u> [Blok, van Alten, Galatos, Jipsen] Every variety \mathbb{V} of integral ($x \leq 1$) residuated lattices axiomatized over { $\vee, \cdot, 1$ } has the FEP.

 $Rec(\mathbf{B}^*) = permutable and (co-)quasi-periodic languages.$

$$\frac{ux_1 \dots x_k v \in L}{ux_{\sigma(1)} \dots x_{\sigma(k)} v \in L} \quad \frac{ux^n v \in L}{ux^m v \in L}$$

Theorem [van Alten]

Let \mathbb{V} be a variety of residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ satisfying xy = yx and $x^m \leq x^n$ for $m \neq n$. Then \mathbb{V} has the FEP.

Higman's lemma + Generalized Myhill Theorem imply <u>Theorem</u> [Blok, van Alten, Galatos, Jipsen] Every variety \mathbb{V} of integral ($x \leq 1$) residuated lattices axiomatized over { $\vee, \cdot, 1$ } has the FEP.

 $Rec(\mathbf{B}^*) = permutable and (co-)quasi-periodic languages.$

$$\frac{ux_1 \dots x_k v \in L}{ux_{\sigma(1)} \dots x_{\sigma(k)} v \in L} \quad \frac{ux^n v \in L}{ux^m v \in L}$$

Theorem [van Alten]

Let \mathbb{V} be a variety of residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ satisfying xy = yx and $x^m \leq x^n$ for $m \neq n$. Then \mathbb{V} has the FEP.

Theorem [Cardona, Galatos]

Let \mathbb{V} be a variety of residuated lattices axiomatized over $\{\vee, \cdot, 1\}$ satisfying $xyx = x^2y$ and $x^m \leq x^n$ for $m \neq n$. Then \mathbb{V} has the FEP.

Characterization for distributive varieties

F(B) denotes the free meet-semilattice-ordered monoid gen. by B.

Characterization for distributive varieties

 $\mathbf{F}(B)$ denotes the free meet-semilattice-ordered monoid gen. by B. Theorem

Let \mathbb{V} be a variety of distributive residuated lattices axiomatized over $\{\wedge, \vee, \cdot, 1\}$ by a set of inequalities \mathcal{E} . T.F.A.E.

- 1. \mathbb{V} has the FEP.
- 2. For every finite partial subalgebra \boldsymbol{B} of $\boldsymbol{A} \in \mathbb{V}$ there is a collection

 $\{L_b \subseteq \operatorname{Rec}(\mathbf{F}(B)) \mid b \in B\}$

- ► separating elements of *B*,
- satisfying Gentzen rules and
- closed under the rules corresponding to inequalities in \mathcal{E} .

Using Kruskal Tree Theorem and Generalized Myhill Theorem for tree languages, we immediately obtain:

Theorem [Galatos]

Every subvariety of distributive integral residuated lattices axiomatized over $\{\land,\lor,\cdot,1\}$ has the FEP.

Conclusions

 One can employ recognizability criteria from language theory which might simplify the proof of finiteness.

Conclusions

- One can employ recognizability criteria from language theory which might simplify the proof of finiteness.
- ► Is it possible to characterize varieties axiomatized over {∨, ·, 1} having the FEP via the characterization of recognizable/regular languages?

Conclusions

- One can employ recognizability criteria from language theory which might simplify the proof of finiteness.
- ► Is it possible to characterize varieties axiomatized over {∨, ·, 1} having the FEP via the characterization of recognizable/regular languages?
- Is it necessary to consider other sets than

$$L_b = \{x \in B^* \mid id^*(x) \le b\}?$$

Other sets are used in the proofs of FMP and undecidability proofs.

Thank you!