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Introduction

Definition [Henkin 1951, Evans 1969]
A class of algebras K of the same type has the finite embeddability
property (FEP) if every finite partial subalgebra B of any algebra
A ∈ K is embeddable into a finite algebra D ∈ K.

I There exists a bunch of results on the FEP for varieties of
residuated lattices using the same construction of the finite
algebra due to Block and van Alten.

I The most involved part is to prove finiteness.

I We are going to rephrase the above contruction in terms of
recognizable sets/languages.

I This simplifies the proofs by employing results from language
theory.
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Recognizable sets

Definition
Let A be an algebra and L ⊆ A. The set L is recognizable if

I there is a finite algebra D,
I homomorphism h : A→ D and
I ker(h) saturates L, i.e., L is a union of congruence classes.

Recognizable sets over A are denoted Rec(A).

Theorem [Kleene]
Recognizable sets Rec(B∗) over finitely generated free monoids are
precisely regular/rational languages.
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Syntactic congruences

The set of unary, linear polynomials on algebra A is denoted Tr(A)
whose elements are called translations.

E.g. p(x) = axb ∨ c is a translation on idempotent semiring A.

Definition
Let A be an algebra and L ⊆ A. The syntactic congruence ∼L is
defined by

x ∼L y iff ∀p ∈ Tr(A) : p(x) ∈ L⇔ p(y) ∈ L

Lemma
The synt. congruence ∼L is the largest congruence saturating L.
Thus A/∼L is finite iff L is recognizable.
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Given a finite subset B ⊆ A, if we can find recognizable sets
L1, . . . , Ln ⊆ A separating elements of B, we obtain a finite algebra
D ∼= A/

⋂n
i=1∼Li and a homomorphism h : A→ D.
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Residuated lattices

Definition
A residuated lattice is an algebra A = 〈A,∧,∨, ·, \, /, 1〉, where

I 〈A,∧,∨〉 is a lattice,
I 〈A, ·, 1〉 is a monoid,
I a · b ≤ c iff b ≤ a\c iff a ≤ c/b.

Facts

I 〈A,∨, ·, 1〉 forms an idempotent semiring because
a(b ∨ c)d = abd ∨ acd .

I A finite idempotent semiring having a bottom element forms a
residuated lattice.

When does a variety K of residuated lattices axiomatized over
{∨, ·, 1} have the FEP?
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Construction of the finite algebra D

A B
id

B∗

Pfin(B∗)

D ∼= Pfin(B∗)/∼B∗/∼′
DM-compl.

I Assume that {Lb ⊆ Rec(B∗) | b ∈ B} separate elements of B.
I Pfin(Lb)’s belongs to Rec(Pfin(B∗)) and separate B.
I Define ∼ =

⋂
b∈B ∼Pfin(Lb).

I Define ∼′ =
⋂
b∈B ∼Lb .
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Does D belong to K?

If t(x1, . . . , xn) ≤ s(x1, . . . , xn) is in the axiomatization of K,

then
we need

p(s(X1, . . . , Xn)) ⊆ Lc
p(t(X1, . . . , Xn)) ⊆ Lc

for all c ∈ B, finite sets X1, . . . , Xn ⊆ B∗ and p ∈ Tr(B∗).

Example
For instance x2 ≤ x and X = {a, b}. Then X 2 = {a2, ab, ba, b2}.

p(X ) = {p(a), p(b)} ⊆ Lc
p(X 2) = {p(a2), p(ab), p(ba), p(b2)} ⊆ Lc

{p(a), p(b)} ⊆ Lc
p(ab) ∈ Lc
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Gentzen rules (a, b, c ∈ B, p ∈ Tr(B∗))
p(a) ∈ Lb (Cut)

p(La) ⊆ Lb
(Id)b ∈ Lb

p(b) ∈ Lc (\L)
p(a(a\b)) ∈ Lc

(\R)
a\Lb ⊆ La\b

p(a) ∈ Lc (∧L)
p(a ∧ b) ∈ Lc

(∧R)La ∩ Lb ⊆ La∧b

p(ab) ∈ Lc (·L)
p(a · b) ∈ Lc

(·R)LaLb ⊆ La·b

p({a, b}) ∈ Lc (∨L)
p(a ∨ b) ∈ Lc

(∨R)La ∪ Lb ⊆ La∨b

p(ε) ∈ Lc (1L)
p(1) ∈ Lc

(1R)
ε ∈ L1



Characterization

Theorem
Let V be a variety of residuated lattices axiomatized over {∨, ·, 1}
by a set of inequalities E . T.F.A.E.
1. V has the FEP.

2. For every finite partial subalgebra B of A ∈ V there is a
collection

{Lb ⊆ Rec(B∗) | b ∈ B}

I separating elements of B,
I satisfying Gentzen rules and
I closed under the rules corresponding to inequalities in E .



Existing results

B A

B∗

id

id∗

Sets of the form

Lb = {x ∈ B∗ | id∗(x) ≤A b}

for b ∈ B always satisfy all the conditions except of recognizability.

To prove the FEP, it suffices to show that Lb’s are recognizable.
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Higman’s lemma + Generalized Myhill Theorem imply

Theorem [Blok, van Alten, Galatos, Jipsen]
Every variety V of integral (x ≤ 1) residuated lattices axiomatized
over {∨, ·, 1} has the FEP.

Rec(B∗) = permutable and (co-)quasi-periodic languages.

ux1 . . . xkv ∈ L
uxσ(1) . . . xσ(k)v ∈ L

uxnv ∈ L
uxmv ∈ L

Theorem [van Alten]
Let V be a variety of residuated lattices axiomatized over {∨, ·, 1}
satisfying xy = yx and xm ≤ xn for m 6= n. Then V has the FEP.

Theorem [Cardona, Galatos]
Let V be a variety of residuated lattices axiomatized over {∨, ·, 1}
satisfying xyx = x2y and xm ≤ xn for m 6= n. Then V has the FEP.
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Characterization for distributive varieties

F(B) denotes the free meet-semilattice-ordered monoid gen. by B.

Theorem
Let V be a variety of distributive residuated lattices axiomatized
over {∧,∨, ·, 1} by a set of inequalities E . T.F.A.E.
1. V has the FEP.

2. For every finite partial subalgebra B of A ∈ V there is a
collection

{Lb ⊆ Rec(F(B)) | b ∈ B}

I separating elements of B,
I satisfying Gentzen rules and
I closed under the rules corresponding to inequalities in E .
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Existing result

Using Kruskal Tree Theorem and Generalized Myhill Theorem for
tree languages, we immediately obtain:

Theorem [Galatos]
Every subvariety of distributive integral residuated lattices
axiomatized over {∧,∨, ·, 1} has the FEP.



Conclusions

I One can employ recognizability criteria from language theory
which might simplify the proof of finiteness.

I Is it possible to characterize varieties axiomatized over
{∨, ·, 1} having the FEP via the characterization of
recognizable/regular languages?

I Is it necessary to consider other sets than

Lb = {x ∈ B∗ | id∗(x) ≤ b}?

Other sets are used in the proofs of FMP and undecidability
proofs.
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Thank you!


