Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Mai Gehrke LIAFA, CNRS and Université Paris 7

23 June 2015 Based on joint work with Sam van Gool and Anna Carla Russo

Direct products

Let A be an abstract algebra, if

$$A \cong B \times C$$

then

▶
$$\exists \theta, \theta' \in Con(A)$$
 with $B \cong A/\theta$ and $C \cong A/\theta'$

Direct products

Let A be an abstract algebra, if

$$A \cong B \times C$$

then

• $\exists \theta, \theta' \in Con(A)$ with $B \cong A/\theta$ and $C \cong A/\theta'$

•
$$q_{\theta} \times q_{\theta'} : A \to A/\theta \times A/\theta'$$
 is injective

 $\theta \cap \theta' = \Delta_A$

Direct products

Let A be an abstract algebra, if

$$A \cong B \times C$$

then

• $\exists \theta, \theta' \in Con(A)$ with $B \cong A/\theta$ and $C \cong A/\theta'$

•
$$q_{ heta} imes q_{ heta'} : A o A/ heta imes A/ heta'$$
 is injective

 $\theta \cap \theta' = \Delta_A$

(Patch) ∀a, b ∈ A ∃c ∈ A with aθc and bθ'c or, equivalently,

$$\theta \circ \theta' = \nabla_{\mathcal{A}}$$

(that is, $q_{\theta} \times q_{\theta'} : A/\theta \times A/\theta'$ is surjective)

2/22

Direct product decompositions of A

These correspond to pairs of factor congruences of A

- ▶ $\theta, \theta' \in Con(A)$
- ► $\theta \land \theta' = 0_{Con(A)}$ and $\theta \lor \theta' = 1_{Con(A)}$ (complementary pair)
- $\theta \circ \theta' = \theta' \circ \theta$ (permuting pair)

Very rarely are there enough factor congruences. A few cases:

- Finite Boolean algebras (BAs)
- Finitely generated Abelian groups

Lack of common refinement

Example: Klein four group $V = \mathbb{Z}_2 \times \mathbb{Z}_2$

It has three non-trivial proper subgroups: $H_1 = \{(0,0), (0,1)\}, H_2 = \{(0,0), (1,0)\}, H_3 = \{(0,0), (1,1)\}$

Also

$$H_1 \times H_2 \cong V \cong H_1 \times H_3$$

but no common refinement of these two decompositions exists.

BA products have common refinement

Common refinement

$$B \cong B_{13} \times B_{14} \times B_{23} \times B_{24}$$

where B_{ij} is the dual of $X_i \cap X_j$

(BA = pure calculus of common refinement of direct products)

・ロト (四) (日) (日) (日) (日) (日)

Product decompositions as given by elements

For BAs	$B \cong B_1 \times B_2$
---------	--------------------------

 \implies $\exists ! a \in B$ with $a \leftrightarrow (1,0)$

 \implies $B_1 = \downarrow a$ and $B_2 = \downarrow \neg a$

The pairs of complementary elements of B are in one-to-one correspondence with direct product decompositions of B

(If the algebraic type has a (unary tuple) '0' and a (unary tuple) '1' with $0 = 1 \implies$ trivial algebra, then factor congruences are given by 'central' elements) [Vaggione]

Direct product decomposition of infinite BAs The sheaf of direct factors of *B*

 $\begin{array}{c} \Gamma: B^{op} \longrightarrow \mathcal{BA} \\ a \mapsto \ \downarrow a \end{array}$

For $a \leq b$ the restriction map is given by $\downarrow b \rightarrow \downarrow a, x \mapsto a \land x$

(this corresponds to a sheaf over the dual space X of B; the patching property comes from the common refinement property)

Étale space incarnation: $p: E \rightarrow X$ local homeomorphism

X = Stone dual space of B, $E = \bigcup_{x \in X} 2_x$

Generalization to abstract algebras

[Comer, Werner, Burris, Davey, Willard, Vaggione,...]

- For sheaf one needs B ⊆ Con(A) relatively complemented distributive sublattice of pairwise permuting congruences
- BFC property: set of *all* factor congruences forms such a sublattice

Stone Representation Theorem: In a variety with BFC every algebra is representable as the global sections of a sheaf over a Boolean space with directly indecomposable stalks

(equalizers are clopen rather than just open iff for each $(a, b) \in A^2$ there is a least factor congruence θ with $(a, b) \in \theta$) Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Sheaves with values in a variety $\ensuremath{\mathcal{V}}$

$$\Gamma \colon \mathcal{O}(Y)^{\mathrm{op}} o \mathcal{V}$$
 a functor satisfying a patching property

or

 $p\colon E\to Y$ a local homeomorphism with each fiber in $\mathcal V$ continuously over Y

(From
$$\Gamma$$
 to p)
- $E = \bigcup_{y \in Y} \{y\} \times A_y$
- $A_y = \varinjlim \{\Gamma(V) \to \Gamma(U) \mid U \subseteq V \text{ both in } \mathcal{N}(y)\}$
- topology on E induced by the $s \in \Gamma(U)$ viewed as sections of p

$$(From p to \Gamma)$$

$$\Gamma(U) = \{s : U \to E \mid s \text{ continuous section of } p\}$$

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Sheaves over non-Hausdorff spaces

- are pertinent when we can't decompose as full products
- if $\mathcal{N}(y) \subseteq \mathcal{N}(y')$, then s(y) determines s(y') for any section s
- the algebra of global sections embeds in $\Pi_{y \in \min(Y)} A_y$ if $Y = \uparrow \min(Y)$
- a DL is NOT representable with each stalk the lattice 2 over its spectral dual (leads to the work with Anna Carla)

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras \Box Stably compact spaces

Stably compact spaces and compact ordered spaces

Stably compact spaces

- common generalisation of spectral spaces and compact Hausdorff spaces
- precisely the continuous retracts of spectral spaces

They are easier to describe via compact ordered spaces, which are (Y, τ, \leq) , with

- (Y, τ) a compact Hausdorff space
- \leq a partial order on Y
- \leq \subseteq Y \times Y closed in the product topology

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras L Stably compact spaces

Stably compact spaces

Given a compact ordered space (Y, τ, \leq), let

$$au^{\uparrow} = au \cap \mathcal{U}(Y, \leq) \quad ext{ and } \quad au^{\downarrow} = au \cap \mathcal{D}(Y, \leq)$$

Theorem

The spaces $Y^{\uparrow} = (Y, \tau^{\uparrow})$ for (Y, τ, \leq) a compact ordered space are precisely the stably compact spaces

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras L Stably compact spaces

Moving between Y^{\uparrow} and Y^{\downarrow}

$$\mathcal{S}(Y^{\uparrow}) = ext{co-}\mathcal{S}(Y^{\downarrow}) = \mathcal{U}(Y, \leq)$$

 $\mathcal{C}(Y^{\uparrow}) = \mathcal{KS}(Y^{\downarrow})$

In particular Y^{\uparrow} and Y^{\downarrow} are interdefinable without reference to (Y,τ,\leq)

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras \Box Duality for c-soft sheaf representations of DLs

c-soft sheaf representations of DLs

A sheaf $\Gamma : \mathcal{O}(Y^{\uparrow}) \to \mathcal{DL}$ is a sheaf representation of a distributive lattice *A* provided

 $A \cong \Gamma(Y)$

A sheaf representation of A is c-soft provided each section over a compact-saturated subset of Y^{\uparrow} extends to a global section

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras \Box Duality for c-soft sheaf representations of DLs

Permuting congruences from c-soft representations

From a sheaf representation $\Gamma : \mathcal{O}(Y^{\uparrow}) \to \mathcal{DL}$ of A, we get a map

 $\theta_{(_)}: \mathcal{KS}(Y^{\uparrow})^{\mathrm{op}} \to \mathit{Con}(A)$

given by $a \theta_K b$ iff $s(a) \upharpoonright K = s(b) \upharpoonright K$

If Γ is c-soft then we get by patch that this map is a frame homomorphism and any two congruences in the image permute with each other

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras — Duality for c-soft sheaf representations of DLs

Duality for c-soft representations

Let (X, π, \leq) be the Priestley space of A, i.e. (X, π) is the Stone space of the Booleanization A^- of A, then

$$Con(A) = Con(A^{-}) = C(X, \pi)^{\mathrm{op}} \cong O(X, \pi)$$

by Stone/Priestley duality and, as we've seen,

$$\mathcal{KS}(Y^{\uparrow})^{\mathrm{op}} = \mathcal{C}(Y^{\downarrow})^{\mathrm{op}} \cong \mathcal{O}(Y^{\downarrow})$$

Proposition

A c-soft sheaf representation $\Gamma : \mathcal{O}(Y^{\uparrow}) \to \mathcal{DL}$ of a distributive lattice A yields a frame homomorphism

$$\mathcal{O}(Y^{\downarrow}) \to \mathcal{O}(X,\pi)$$

or equivalently a continuous map $q: (X, \pi) \rightarrow Y^{\downarrow}$

16 / 22

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras \Box Duality for c-soft sheaf representations of DLs

Duality for permuting congruences

Proposition

Let A be a distributive lattice with Priestley dual (X, π, \leq) , and let θ_1 and θ_2 be congruences of A corresponding to the closed subsets X_1 and X_2 of X. Then the following are equivalent:

- the congruences θ_1 and θ_2 permute;
- for every x, x' ∈ X with one in X₁ and the other in X₂, if x ≤ x' then there exists x'' ∈ X₁ ∩ X₂ such that x ≤ x'' ≤ x'. In this case, X₁ ∩ X₂ is the closed subspace dual to the congruence θ₁ ∨ θ₂ = θ₁ ∘ θ₂.

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras \Box Duality for c-soft sheaf representations of DLs

Duality for c-soft sheaf representations

Let (X, π, \leq) be a Priestley space. We say that $q : X \to Y^{\downarrow}$ is an *interpolating decomposition* if it is continuous and for all $x, x' \in X$ with $x \leq x'$, there exists $x'' \in X$ such that $x \leq x'' \leq x'$ and $q(x), q(x') \leq q(x'')$.

Theorem

Let A be a distributive lattice with dual Priestley space X, and let Y be a compact ordered space. There is a bijective correspondence between interpolating decompositions of X over Y^{\downarrow} and isomorphism classes of c-soft sheaf representations of A over Y^{\uparrow} .

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras - Sheaf representations of MV-algebras

The map k and the Dubuc-Poveda representation

(Joint work with Sam van Gool and Vincenzo Marra)

Let A be an MV-algebra, X the Priestley space of its lattice reduct

 $A \rightarrow \operatorname{\mathsf{KCon}}_{MV}(A), a \mapsto \langle a \rangle$

is a bounded lattice homomorphism and thus the Priestley dual Y of $\text{KCon}_{MV}(A)$ (the MV-spectrum) is a closed subspace of X.

• There is an interpolating decomposition $k: X \longrightarrow Y^{\downarrow}$

As a consequence any MV-algebra is representable as the global sections of a c-soft sheaf over Y^{\uparrow} whose stalks are MV-chains

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras - Sheaf representations of MV-algebras

The map m and the Filipoiu-Georgescu representation

For A, X, and Y as above, let Z be the maximal points of Y. Because $\operatorname{KCon}_{MV}(A)$ is a hereditarily normal lattice, there is a continuous map

 $m: Y \longrightarrow Z, y \mapsto$ unique maximal point above y

- KCon_{MV}(A) is representable over Z with directly indecomposable stalks
- A is representable as the global sections of a c-soft sheaf over Z whose stalks are local MV-algebras

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras Priestley and Esakia sums

Other decompositions over a Priestley space

Let A be a distributive lattice and (X, π, \leq) its dual space. Let $Y = (X, \pi)$

 $id_X:(X,\pi)\to Y$

is not interpolation for the order on X, but it yields a Boolean sheaf representation with each stalk the 2-element lattice of A^- over Y

- ► A is isomorphic to the sublattice of order preserving global sections of this sheaf (this is the content of Stone/Priestley duality for DLs)
- If A is a Heyting algebra, then the same is true, but the implication on A is not stalk-wise but uses the implication of U(Y, ≤)

Duality for sheaf representations and related decompositions of distributive lattice ordered algebras Priestley and Esakia sums

Jipsen-Montagna Priestley and Esakia sums

This is a representation theory using subalgebras of Boolean sheaves

Let A be a distributive lattice and (X, π, \leq) its dual space. Let (Y, τ, \leq) be another Priestley space. A continuous map

 $f:(X,\pi)\to(Y,\tau)$

yields a Boolean sheaf representation of A^- over (Y, τ) . We say (X, π, \leq) is a Priestley sum over Y if in addition

$$f(x) \leq f(x') \implies x \leq x'$$

In this case (X, \leq) is isomorphic to the lexicographic ordering $\bigcup_{y \in Y} \{y\} \times X_y$ where $X_y = f^{-1}(\{y\})$