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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

Direct products
Let A be an abstract algebra, if

A ∼= B × C

then
I ∃θ, θ′ ∈ Con(A) with B ∼= A/θ and C ∼= A/θ′

I qθ × qθ′ : A→ A/θ × A/θ′ is injective

θ ∩ θ′ = ∆A

I (Patch) ∀a, b ∈ A ∃c ∈ A with aθc and bθ′c
or, equivalently,

θ ◦ θ′ = ∇A

(that is, qθ × qθ′ : A/θ × A/θ′ is surjective)
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

Direct product decompositions of A

These correspond to pairs of factor congruences of A

I θ, θ′ ∈ Con(A)

I θ ∧ θ′ = 0Con(A) and θ ∨ θ′ = 1Con(A)
(complementary pair)

I θ ◦ θ′ = θ′ ◦ θ
(permuting pair)

Very rarely are there enough factor congruences. A few cases:
I Finite Boolean algebras (BAs)
I Finitely generated Abelian groups
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

Lack of common refinement

Example: Klein four group V = Z2 × Z2

It has three non-trivial proper subgroups:
H1 = {(0, 0), (0, 1)},H2 = {(0, 0), (1, 0)},H3 = {(0, 0), (1, 1)}

Also
H1 × H2 ∼= V ∼= H1 × H3

but no common refinement of these two decompositions exists.
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

BA products have common refinement

B finite BA ←→ X finite set

B ∼= B1 × B2 ←→ X = X1 ·∪X2

B ∼= B3 × B4 ←→ X = X3 ·∪X4

(Birkhoff duality)

Common refinement

B ∼= B13 × B14 × B23 × B24

where Bij is the dual of Xi ∩ Xj

(BA = pure calculus of common refinement of direct products)
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

Product decompositions as given by elements

For BAs B ∼= B1 × B2

=⇒ ∃ ! a ∈ B with a! (1, 0)

=⇒ B1 = ↓a and B2 = ↓¬a

The pairs of complementary elements of B are in one-to-one
correspondence with direct product decompositions of B

(If the algebraic type has a (unary tuple) ‘0’ and a (unary tuple) ‘1’
with 0 = 1 =⇒ trivial algebra, then factor congruences are given
by ‘central’ elements) [Vaggione]
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Direct product decompositions

Direct product decomposition of infinite BAs
The sheaf of direct factors of B

Γ : Bop −→ BA
a 7→ ↓a

For a ≤ b the restriction map is given by ↓b → ↓a, x 7→ a ∧ x

(this corresponds to a sheaf over the dual space X of B ; the
patching property comes from the common refinement property)

Étale space incarnation: p : E → X local homeomorphism

X = Stone dual space of B , E =
⋃

x∈X 2x
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Direct product decompositions

Generalization to abstract algebras
[Comer, Werner, Burris, Davey, Willard, Vaggione,...]

I For sheaf one needs B ⊆ Con(A) relatively complemented
distributive sublattice of pairwise permuting congruences

I BFC property: set of all factor congruences forms such a
sublattice

Stone Representation Theorem: In a variety with BFC every algebra
is representable as the global sections of a sheaf over a Boolean
space with directly indecomposable stalks

(equalizers are clopen rather than just open iff for each (a, b) ∈ A2

there is a least factor congruence θ with (a, b) ∈ θ)
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Sheaf representations of algebras

Sheaves with values in a variety V
Γ: O(Y )op → V a functor satisfying a patching property
or
p : E → Y a local homeomorphism with each fiber in V
continuously over Y

(From Γ to p)
- E =

⋃
y∈Y {y} × Ay

- Ay = lim−→{Γ(V )→ Γ(U) | U ⊆ V both in N (y)}
- topology on E induced by the s ∈ Γ(U) viewed as sections of p

(From p to Γ)
Γ(U) = {s : U → E | s continuous section of p}
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Sheaf representations of algebras

Sheaves over non-Hausdorff spaces

- are pertinent when we can’t decompose as full products

- if N (y) ⊆ N (y ′), then s(y) determines s(y ′) for any section s

- the algebra of global sections embeds in Πy∈min(Y )Ay if
Y = ↑min(Y )

- a DL is NOT representable with each stalk the lattice 2 over
its spectral dual (leads to the work with Anna Carla)

10 / 22



Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Stably compact spaces

Stably compact spaces and compact ordered spaces

Stably compact spaces
- common generalisation of spectral spaces and compact
Hausdorff spaces

- precisely the continuous retracts of spectral spaces

They are easier to describe via compact ordered spaces, which are
(Y , τ,≤), with

- (Y , τ) a compact Hausdorff space
- ≤ a partial order on Y

- ≤ ⊆ Y × Y closed in the product topology
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Stably compact spaces

Stably compact spaces

Given a compact ordered space (Y , τ,≤), let

τ↑ = τ ∩ U(Y ,≤) and τ↓ = τ ∩ D(Y ,≤)

Theorem
The spaces Y ↑ = (Y , τ↑) for (Y , τ,≤) a compact ordered space
are precisely the stably compact spaces
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Stably compact spaces

Moving between Y ↑ and Y ↓

O = opens
C = closed
S = saturated = intersections of opens
K = compacts
co- = complements

S(Y ↑) = co-S(Y ↓) = U(Y ,≤)

C(Y ↑) = KS(Y ↓)

In particular Y ↑ and Y ↓ are interdefinable without reference to
(Y , τ,≤)
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Duality for c-soft sheaf representations of DLs

c-soft sheaf representations of DLs

A sheaf Γ : O(Y ↑)→ DL is a sheaf representation of a distributive
lattice A provided

A ∼= Γ(Y )

A sheaf representation of A is c-soft provided each section over a
compact-saturated subset of Y ↑ extends to a global section
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Duality for sheaf representations and related decompositions of distributive lattice ordered algebras

Duality for c-soft sheaf representations of DLs

Permuting congruences from c-soft representations

From a sheaf representation Γ : O(Y ↑)→ DL of A, we get a map

θ( ) : KS(Y ↑)op → Con(A)

given by a θK b iff s(a) � K = s(b) � K

If Γ is c-soft then we get by patch that this map is a frame
homomorphism and any two congruences in the image permute
with each other
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Duality for c-soft sheaf representations of DLs

Duality for c-soft representations
Let (X , π,≤) be the Priestley space of A, i.e. (X , π) is the Stone
space of the Booleanization A− of A, then

Con(A) = Con(A−) = C(X , π)op ∼= O(X , π)

by Stone/Priestley duality and, as we’ve seen,

KS(Y ↑)op = C(Y ↓)op ∼= O(Y ↓)

Proposition
A c-soft sheaf representation Γ : O(Y ↑)→ DL of a distributive
lattice A yields a frame homomorphism

O(Y ↓)→ O(X , π)

or equivalently a continuous map q : (X , π)→ Y ↓
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Duality for c-soft sheaf representations of DLs

Duality for permuting congruences

Proposition
Let A be a distributive lattice with Priestley dual (X , π,≤), and let
θ1 and θ2 be congruences of A corresponding to the closed subsets
X1 and X2 of X . Then the following are equivalent:

- the congruences θ1 and θ2 permute;
- for every x , x ′ ∈ X with one in X1 and the other in X2, if
x ≤ x ′ then there exists x ′′ ∈ X1 ∩ X2 such that x ≤ x ′′ ≤ x ′.

In this case, X1 ∩ X2 is the closed subspace dual to the congruence
θ1 ∨ θ2 = θ1 ◦ θ2.
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Duality for c-soft sheaf representations

Let (X , π,≤) be a Priestley space. We say that q : X → Y ↓ is an
interpolating decomposition if it is continuous and for all x , x ′ ∈ X
with x ≤ x ′, there exists x ′′ ∈ X such that x ≤ x ′′ ≤ x ′ and
q(x), q(x ′) ≤ q(x ′′).

Theorem
Let A be a distributive lattice with dual Priestley space X , and let
Y be a compact ordered space. There is a bijective correspondence
between interpolating decompositions of X over Y ↓ and
isomorphism classes of c-soft sheaf representations of A over Y ↑.
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Sheaf representations of MV-algebras

The map k and the Dubuc-Poveda representation

(Joint work with Sam van Gool and Vincenzo Marra)

Let A be an MV-algebra, X the Priestley space of its lattice reduct

A → KConMV (A), a 7→ <a>

is a bounded lattice homomorphism and thus the Priestley dual Y
of KConMV (A) (the MV-spectrum) is a closed subspace of X .

I There is an interpolating decomposition k : X −→ Y ↓

As a consequence any MV-algebra is representable as the global
sections of a c-soft sheaf over Y ↑ whose stalks are MV-chains
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Sheaf representations of MV-algebras

The map m and the Filipoiu-Georgescu representation

For A, X , and Y as above, let Z be the maximal points of Y .
Because KConMV (A) is a hereditarily normal lattice, there is a
continuous map

m : Y −→ Z , y 7→ unique maximal point above y

I KConMV (A) is representable over Z with directly
indecomposable stalks

I A is representable as the global sections of a c-soft sheaf over
Z whose stalks are local MV-algebras
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Priestley and Esakia sums

Other decompositions over a Priestley space
Let A be a distributive lattice and (X , π,≤) its dual space. Let
Y = (X , π)

idX : (X , π)→ Y

is not interpolation for the order on X , but it yields a Boolean sheaf
representation with each stalk the 2-element lattice of A− over Y

I A is isomorphic to the sublattice of order preserving global
sections of this sheaf (this is the content of Stone/Priestley
duality for DLs)

I If A is a Heyting algebra, then the same is true, but the
implication on A is not stalk-wise but uses the implication of
U(Y ,≤)
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Priestley and Esakia sums

Jipsen-Montagna Priestley and Esakia sums

This is a representation theory using subalgebras of Boolean sheaves

Let A be a distributive lattice and (X , π,≤) its dual space. Let
(Y , τ,≤) be another Priestley space. A continuous map

f : (X , π)→ (Y , τ)

yields a Boolean sheaf representation of A− over (Y , τ). We say
(X , π,≤) is a Priestley sum over Y if in addition

f (x) ≤ f (x ′) =⇒ x ≤ x ′

In this case (X ,≤) is isomorphic to the lexicographic ordering⋃
y∈Y {y} × Xy where Xy = f −1({y})
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