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(A, o) topological space
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> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:
> that a space is compact/connected
» L, is decidable on the class of all T3 spaces
» L; is not decidable on the classes of all Tg, Ty, T> spaces resp.
» Lindstrom thm.: there is no language on topological models
more expressive than L£; enjoying compactness and
Lowenheim-Skolem thm.
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> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})
> [3 topological base

» ¢(x,X) € Ly invariant under changing base if its truth value
on A = (A, 3,{P#}) does not change by replacing 3 with a
base 7 that generates the same topology as 3

» L, is invariant under changing base

» every formula in £y invariant under changing base is equivalent
to a formula in L;
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> P

» for every formulas ¢ and ¥:
> o, pAY
> (d)y

» for every formula ¢ and graded operator {":
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> truth of {"p, =0 ¢ is independent from the point of evaluation
> call them sentences of L,
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thesis follows



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,

» L; decidable on the class of all T3 models



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,
» L; decidable on the class of all T3 models

> for every cand. «, check ¢ <> a on the class of all T3 models

O
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1. For every formula o € L, there is a formula ¢(x) € Ly such
that for every T3 model A and point a € A we have that
A |= pla] if and only if A, a = «
2. For every formula p(x) € L there is a formula o € L, such
that for every T3 model A and point a € A we have that:
» A= pla] ifand only if A,a = «
» quantifier depth of ¢(x) = modal depth of
3. There is a computable translation between formulas o(x) in
L and formulas in L,
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» there is a model A, Ty but not T3, bisimilar to a T3 model B

> L; can express that a space is T3

v

if £, were equivalent to £; on T, spaces

v

A would be T3: contradiction

v

corollary: L, cannot express T3ness on the class of all T»
models
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» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model

» completeness on the class of all T3 models:

> given a maximal consistent set I
> build a Kripke model validating the axioms and satisfying I
> turn the Kripke model into a T3 model satisfying '

» T1 OT7 OT3
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Theorem 7
The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

checking PTIME properties of a forest of

polynomially many

polynomially deep

rooted trees

(properties) that regards

either the set of all root nodes

or one branch at a time
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Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces
» R" (n € w)
» over R we can split (d) and {Q"},c. in their future and past
components
> If we replace (d) with ¢ in L,,, does the new L, capture L;
on T3 spaces?
> What is the fragment of first-order logic that L, corresponds
to in the standard Kripke semantics?
» How does it relate to the (loosely) guarded fragment?
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