Modal characterization of a first order language for topology

Alberto Gatto
Imperial College London
alberto.gatto@imperial.ac.uk

Summary

- first order language \mathcal{L}_{t} for topology
- modal language \mathcal{L}_{m} for topology
- original results
- open questions

Summary

- first order language \mathcal{L}_{t} for topology
- modal language \mathcal{L}_{m} for topology
- original results
- open questions

Summary

- first order language \mathcal{L}_{t} for topology
- modal language \mathcal{L}_{m} for topology
- original results
- open questions

Summary

- first order language \mathcal{L}_{t} for topology
- modal language \mathcal{L}_{m} for topology
- original results
- open questions

First order language \mathcal{L}_{t} for topology
－topological model：
－given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
－topological model for \mathcal{L}
－ $\mathcal{A}=\left(A, \sigma,\left\{R_{i}^{A}\right\},\left\{f_{i}^{A}\right\},\left\{C_{i}^{\mathcal{A}}\right\}\right)$
－(A, σ) topological space
－$\left(\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$ interpretation of \mathcal{L} in \mathcal{A}

First order language \mathcal{L}_{t} for topology

- topological model:

```
* given a signature \mathcal{L}=({\mp@subsup{R}{i}{}},{\mp@subsup{f}{i}{}},{\mp@subsup{c}{i}{}})
- topological model for }\mathcal{L
-\mathcal{A}=(A,\sigma,{\mp@subsup{R}{i}{\mathcal{A}}},{\mp@subsup{f}{i}{\mathcal{A}}},{\mp@subsup{c}{i}{\mathcal{A}}})
* (A,\sigma) topological space
- ({晶疋}},{\mp@subsup{f}{i}{\mathcal{A}}},{\mp@subsup{c}{i}{\mathcal{A}}})\mathrm{ interpretation of }\mathcal{L}\mathrm{ in }\mathcal{A
```


First order language \mathcal{L}_{t} for topology

- topological model:
- given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
- topological model for \mathcal{L}

- (A, σ) topological space
$\Rightarrow\left(\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$ interpretation of \mathcal{L} in \mathcal{A}

First order language \mathcal{L}_{t} for topology

－topological model：
－given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
－topological model for \mathcal{L}

First order language \mathcal{L}_{t} for topology

－topological model：
－given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
－topological model for \mathcal{L}
－ $\mathcal{A}=\left(A, \sigma,\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$

First order language \mathcal{L}_{t} for topology

－topological model：
－given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
－topological model for \mathcal{L}
－ $\mathcal{A}=\left(A, \sigma,\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$
－(A, σ) topological space

First order language \mathcal{L}_{t} for topology

- topological model:
- given a signature $\mathcal{L}=\left(\left\{R_{i}\right\},\left\{f_{i}\right\},\left\{c_{i}\right\}\right)$
- topological model for \mathcal{L}
- $\mathcal{A}=\left(A, \sigma,\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$
- (A, σ) topological space
- $\left(\left\{R_{i}^{\mathcal{A}}\right\},\left\{f_{i}^{\mathcal{A}}\right\},\left\{c_{i}^{\mathcal{A}}\right\}\right)$ interpretation of \mathcal{L} in \mathcal{A}

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :

```
- two-sorted first order language
- \(x, y, \ldots\) point-sort variables
- \(U, V, \ldots\) open-sort variables
- = equality symbol
- \(\varepsilon\) set membership symbol
- symbols in \(\mathcal{L}\)
\(\checkmark \neg, \wedge(\vee, \rightarrow\), \(\leftrightarrow\) usual abbreviations \()\)
- \(\exists x, \forall x\) existential/universal point-sort quantification
- \(\exists U, \forall U\) existential/universal open-sort quantification
```


First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language

```
* x,y,\ldots point-sort variables
- U,V,\ldots. open-sort variables
- = equality symbol
* \varepsilon set membership symbol
- symbols in L
\nabla \neg, ^(\vee, ->, \leftrightarrow usual abbreviations)
* \existsx, \forallx existential/universal point-sort quantification
* \existsU,\forallU existential/universal open-sort quantification
```


First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, ... open-sort variables
- = equality symbol
- ε set membership symbol
- symbols in \mathcal{L}
$\checkmark \neg, \wedge(\vee, \rightarrow$, \leftrightarrow usual abbreviations $)$
- $\exists x, \forall x$ existential/universal point-sort quantification
- $\exists U, \forall U$ existential/universal open-sort quantification

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, \ldots open-sort variables
- = equality symbol
- ε set membership symbol
- symbols in \mathcal{L}
$\checkmark \neg, \wedge(\mathrm{V}, \rightarrow, \leftrightarrow$ usual abbreviations)
- $\exists x, \forall x$ existential/universal point-sort quantification - $\exists U, \forall U$ existential/universal open-sort quantification

First order language \mathcal{L}_{t} for topology

－language \mathcal{L}_{t} ：
－two－sorted first order language
－x, y, \ldots point－sort variables
－U, V, \ldots open－sort variables
－＝equality symbol
－ε set membership symbol
－symbols in \mathcal{L}
$\triangleright \neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations $)$
－$\exists x, \forall x$ existential／universal point－sort quantification －$\exists U, \forall U$ existential／universal open－sort quantification

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, \ldots open-sort variables
- = equality symbol
- ε set membership symbol
- symbols in \mathcal{L}
- $\neg, \wedge(\mathrm{V}, \rightarrow$, \leftrightarrow usual abbreviations $)$
- $\exists x, \forall x$ existential/universal point-sort quantification - $\exists U, \forall U$ existential/universal open-sort quantification

First order language \mathcal{L}_{t} for topology

－language \mathcal{L}_{t} ：
－two－sorted first order language
－x, y, \ldots point－sort variables
－U, V, \ldots open－sort variables
－＝equality symbol
－ε set membership symbol
－symbols in \mathcal{L}
$\checkmark \neg, \wedge(\mathrm{V}, \rightarrow, \leftrightarrow$ usual abbreviations $)$
－$\exists x, \forall x$ existential／universal point－sort quantification －$\exists U, \forall U$ existential／universal open－sort quantification

First order language \mathcal{L}_{t} for topology

－language \mathcal{L}_{t} ：
－two－sorted first order language
－x, y, \ldots point－sort variables
－U, V, \ldots open－sort variables
－＝equality symbol
－ε set membership symbol
－ $\mathcal{L}:=\left\{P_{i} \mid i \in \omega\right\}$ with P_{i} point－sort unary relation symbol
$\neg \neg, \wedge(\vee, \rightarrow$ ，\leftrightarrow usual abbreviations）
－$\exists x, \forall x$ existential／universal point－sort quantification －$\exists U, \forall U$ existential／universal open－sort quantification

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, \ldots open-sort variables
- = equality symbol
- ε set membership symbol
- $\mathcal{L}:=\left\{P_{i} \mid i \in \omega\right\}$ with P_{i} point-sort unary relation symbol
$-\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- $\exists x, \forall x$ existential/universal point-sort quantification

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, \ldots open-sort variables
- = equality symbol
- ε set membership symbol
- $\mathcal{L}:=\left\{P_{i} \mid i \in \omega\right\}$ with P_{i} point-sort unary relation symbol
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- $\exists x, \forall x$ existential/universal point-sort quantification
> $\exists U, \forall U$ existential/universal open-sort quantification

First order language \mathcal{L}_{t} for topology

- language \mathcal{L}_{t} :
- two-sorted first order language
- x, y, \ldots point-sort variables
- U, V, \ldots open-sort variables
- = equality symbol
- ε set membership symbol
- $\mathcal{L}:=\left\{P_{i} \mid i \in \omega\right\}$ with P_{i} point-sort unary relation symbol
$\checkmark \neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations $)$
- $\exists x, \forall x$ existential/universal point-sort quantification
- $\exists U, \forall U$ existential/universal open-sort quantification

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :

```
> for every point-sort var.s x,y, open-sort var.s U,V and P}
    * x}=y,U=V,x\inU,P(x
* for every formulas }\varphi\mathrm{ and }v\mathrm{ , and point-sort variable }x\mathrm{ :
* open-sort quantification in the form:
> }\forallU(x\inU->\varphi
    * U}\mathrm{ is an open-sort variable
    v x is a point-sort variable
    * all free occ.s of U}\mathrm{ in }\varphi\mathrm{ are positive (within an even nb. of }\negs\mathrm{ )
> \existsU(x\inU\wedge\varphi)
    - U is an open-sort variable
    * x is a point-sort variable
    > all free occ.s of U in }\varphi\mathrm{ are negative (within an odd nb. of }\negs\mathrm{ )
```


First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

- open-sort quantification in the form:
- $\forall U(x \in U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even $n b$. of $\neg s$)
- $\exists U(x \in U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd $n b$. of $\neg s$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y$,
- for every formulas φ and ψ and point-sort variable x :

```
* open-sort quantification in the form:
- }\forallU(x\inU->\varphi
    > U}\mathrm{ is an open-sort variable
    * x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are positive (within an even nb. of as)
> \existsU(x\inU\wedge\varphi)
    - U is an open-sort variable
    * x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are negative (within an odd nb. of }\negs\mathrm{ )
```


First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V$,

```
* for every formulas }\varphi\mathrm{ and }\psi\mathrm{ and point-sort variable x:
- open-sort quantification in the form:
- }\forallU(x\varepsilonU->\varphi
    * U is an open-sort variable
    v x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are positive (within an even nb. of }\negs\mathrm{ )
* \existsU(x\inU \ \varphi)
    - U is an open-sort variable
    * x is a point-sort variable
    * all free occ.s of U}\mathrm{ in }\varphi\mathrm{ are negative (within an odd nb. of }\neg\textrm{s}\mathrm{ )
```


First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U$,

```
* for every formulas }\varphi\mathrm{ and }\psi\mathrm{ and point-sort variable x:
- open-sort quantification in the form:
- }\forallU(x\varepsilonU->\varphi
    * U is an open-sort variable
    - x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are positive (within an even nb. of }\negs\mathrm{ )
* \existsU(x\inU \ \varphi)
    - U is an open-sort variable
    * x is a point-sort variable
    * all free occ.s of U' in \varphi are negative (within an odd nb. of }\neg\textrm{s}\mathrm{ )
```


First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$

- open-sort quantification in the form:
- $\forall U(x \in U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- $\exists U(x \in U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :

```
> open-sort quantification in the form:
> }\forallU(x\inU->\varphi
    > U}\mathrm{ is an open-sort variable
    | x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are positive (within an even nb. of }\negs\mathrm{ )
    - U is an open-sort variable
    * x is a point-sort variable
    * all free occ.s of U in }\varphi\mathrm{ are negative (within an odd nb. of }\negs\mathrm{ )
```


First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi$,
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- $\exists U(x \in U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb . of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi$,
- open-sort quantification in the form:
- $\forall U(x \in U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- $\exists U(x \in U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

－formulas of \mathcal{L}_{t} ：
－for every point－sort var．s x, y ，open－sort var．s U, V and $P \in \mathcal{L}$ ：
－$x=y, U=V, x \varepsilon U, P(x)$
－for every formulas φ and ψ and point－sort variable x ：
－$\neg \varphi, \varphi \wedge \psi, \exists x \varphi$,
$>$ open－sort quantification in the form：
－$\forall U(x \varepsilon U \rightarrow \varphi)$
－U is an open－sort variable
－x is a point－sort variable
－all free occ．s of U in φ are positive（within an even nb．of $\neg s$ ）
－$\exists U(x \in U \wedge \varphi)$
－U is an open－sort variable
－x is a point－sort variable
－all free occ．s of U in φ are negative（within an odd nb．of $\neg \mathrm{s}$ ）

First order language \mathcal{L}_{t} for topology

－formulas of \mathcal{L}_{t} ：
－for every point－sort var．s x, y ，open－sort var．s U, V and $P \in \mathcal{L}$ ：
－$x=y, U=V, x \varepsilon U, P(x)$
－for every formulas φ and ψ and point－sort variable x ：
－$\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
\Rightarrow open－sort quantification in the form：
－$\forall U(x \varepsilon U \rightarrow \varphi)$
－U is an open－sort variable
－x is a point－sort variable
－all free occ．s of U in φ are positive（within an even nb．of $\neg s$ ）
－$\exists U(x \in U \wedge \varphi)$
－U is an open－sort variable
－x is a point－sort variable
－all free occ．s of U in φ are negative（within an odd nb ．of $\neg \mathrm{s}$ ）

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- $\exists U(x \in U \wedge \varphi)$
- U is an onen-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg s$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
* all free occ.s of U in φ are positive (within an even nb. of $\neg s$)
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of $\neg \mathrm{s}$)
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of \neg s)
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg s$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \varepsilon U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \varepsilon U \wedge \varphi)$
- U is an open-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg \mathrm{s}$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \varepsilon U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb. of $\neg s$)

First order language \mathcal{L}_{t} for topology

- formulas of \mathcal{L}_{t} :
- for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:
- $x=y, U=V, x \varepsilon U, P(x)$
- for every formulas φ and ψ and point-sort variable x :
- $\neg \varphi, \varphi \wedge \psi, \exists x \varphi, \forall x \varphi$
- open-sort quantification in the form:
- $\forall U(x \varepsilon U \rightarrow \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \varepsilon U \wedge \varphi)$
- U is an open-sort variable
- x is a point-sort variable
- all free occ.s of U in φ are negative (within an odd nb . of \neg s)

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \exists y(\neg x=y \wedge y \varepsilon U \wedge P(y)))$
- if we allow open quantification in the form:
- $\forall U_{\varphi}$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \neg y \varepsilon U))$
$\begin{aligned} & \text { - if we allow open quantification in the form: } \\ & \text { - } \forall U \varphi \text { with } \varphi \text { an arbitrary formula } \\ & \text { - } \exists U \varphi \text { with } \varphi \text { an arbitrary formula } \\ & \text { - then we obtain } \mathcal{L}_{2} \\ & \text { - } \mathcal{L}_{t} \subseteq \mathcal{L}_{2}\end{aligned}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U_{\varphi}$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U_{\varphi}$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- examples of formulas in \mathcal{L}_{t} :
- $\forall U(x \varepsilon U \rightarrow \underbrace{\exists y(\neg x=y \wedge y \varepsilon U \wedge P(y))}_{\varphi})$
- $\forall x \forall y(\neg x=y \rightarrow \exists U(x \varepsilon U \wedge \underbrace{\neg y \varepsilon U}_{\varphi}))$
- if we allow open quantification in the form:
- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_{2}
- $\mathcal{L}_{t} \subseteq \mathcal{L}_{2}$

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :

```
* L L
- L\mathcal{L}
    - To, T1, T , , T3
    * triviality, discreteness
- L}\mp@subsup{\mathcal{L}}{t}{}\mathrm{ cannot express:
    * that a space is compact/connected
* L}\mp@subsup{\mathcal{L}}{t}{}\mathrm{ is decidable on the class of all }\mp@subsup{T}{3}{}\mathrm{ spaces
```



```
* Lindström thm.: there is no language on topological models
more expressive than }\mp@subsup{\mathcal{L}}{t}{}\mathrm{ enjoying compactness and
Löwenheim-Skolem thm.
```


First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.

```
* L t can express:
    - To, T1, T T , T3
    - triviality, discreteness
| \mathcal{L}
    * that a space is compact/connected
/ \mathcal{L}}
* L\mathcal{L}
* Lindström thm.: there is no language on topological models
more expressive than }\mp@subsup{\mathcal{L}}{t}{}\mathrm{ enjoying compactness and
Löwenheim-Skolem thm.
```


First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $T_{0}, T_{1}, T_{2}, T_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
- that a space is compact/connected
- \mathcal{L}_{t} is decidable on the class of all T_{3} spaces
- \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp.
- Lindström thm.: there is no language on topological models more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim-Skolem thm.

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
 Löwenheim-Skolem thm.

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
- that a space is compact/connected
\mathcal{L}_{+}is decidable on the class of all T_{3} spaces
- \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp.
- Lindström thm.: there is no language on topological models more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim-Skolem thm.

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
> - that a space is compact/connected
> - \mathcal{L}_{t} is decidable on the class of all T_{3} spaces
> - \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp - Lindström thm.: there is no language on topological models more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim-Skolem thm.

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
- that a space is compact/connected

First order language \mathcal{L}_{t} for topology

－properties of \mathcal{L}_{t} ：
－ \mathcal{L}_{t} enjoys compactness and Löwenheim－Skolem thm．
－ \mathcal{L}_{t} can express：
－ $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
－triviality，discreteness
－ \mathcal{L}_{t} cannot express：
－that a space is compact／connected
－ \mathcal{L}_{t} is decidable on the class of all T_{3} spaces
－ \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp．
－Lindström thm．：there is no language on topological models more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim－Skolem thm．

First order language \mathcal{L}_{t} for topology

－properties of \mathcal{L}_{t} ：
－ \mathcal{L}_{t} enjoys compactness and Löwenheim－Skolem thm．
－ \mathcal{L}_{t} can express：
－ $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
－triviality，discreteness
－ \mathcal{L}_{t} cannot express：
－that a space is compact／connected
－ \mathcal{L}_{t} is decidable on the class of all T_{3} spaces
－ \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp．
more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim－Skolem thm．

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- \mathcal{L}_{t} enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_{t} can express:
- $\mathrm{T}_{0}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$
- triviality, discreteness
- \mathcal{L}_{t} cannot express:
- that a space is compact/connected
- \mathcal{L}_{t} is decidable on the class of all T_{3} spaces
- \mathcal{L}_{t} is not decidable on the classes of all T_{0}, T_{1}, T_{2} spaces resp.
- Lindström thm.: there is no language on topological models more expressive than \mathcal{L}_{t} enjoying compactness and Löwenheim-Skolem thm.

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- $\mathcal{L}_{t}, \mathcal{L}_{2}$ over basoid models: $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- $\varphi(\bar{x}, \bar{X}) \in \mathcal{L}_{2}$ invariant under changing base if its truth value on $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$ does not change by replacing β with a base γ that generates the same topology as β
- \mathcal{L}_{t} is invariant under changing base
- every formula in \mathcal{L}_{2} invariant under changing base is equivalent to a formula in \mathcal{L}_{t}

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- $\mathcal{L}_{t}, \mathcal{L}_{2}$ over basoid models: $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- β topological base
- $\varphi(\bar{x}, \bar{X}) \in \mathcal{L}_{2}$ invariant under changing base if its truth value on $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$ does not change by replacing β with a base γ that generates the same topology as β
- \mathcal{L}_{t} is invariant under changing base
- every formula in \mathcal{L}_{2} invariant under changing base is equivalent to a formula in \mathcal{L}_{t}

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- $\mathcal{L}_{t}, \mathcal{L}_{2}$ over basoid models: $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- β topological base
- $\varphi(\bar{x}, \bar{X}) \in \mathcal{L}_{2}$ invariant under changing base if its truth value on $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$ does not change by replacing β with a base γ that generates the same topology as β
- every formula in \mathcal{L}_{2} invariant under changing base is equivalent to a formula in \mathcal{L}_{t}

First order language \mathcal{L}_{t} for topology

- properties of \mathcal{L}_{t} :
- $\mathcal{L}_{t}, \mathcal{L}_{2}$ over basoid models: $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- β topological base
- $\varphi(\bar{x}, \bar{X}) \in \mathcal{L}_{2}$ invariant under changing base if its truth value on $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$ does not change by replacing β with a base γ that generates the same topology as β
- \mathcal{L}_{t} is invariant under changing base
- every formula in \mathcal{L}_{2} invariant under changing base is equivalent
to a formula in \mathcal{L}_{t}

First order language \mathcal{L}_{t} for topology

－properties of \mathcal{L}_{t} ：
－ $\mathcal{L}_{t}, \mathcal{L}_{2}$ over basoid models： $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
－β topological base
－$\varphi(\bar{x}, \bar{X}) \in \mathcal{L}_{2}$ invariant under changing base if its truth value on $\mathcal{A}=\left(A, \beta,\left\{P_{i}^{\mathcal{A}}\right\}\right)$ does not change by replacing β with a base γ that generates the same topology as β
－ \mathcal{L}_{t} is invariant under changing base
－every formula in \mathcal{L}_{2} invariant under changing base is equivalent to a formula in \mathcal{L}_{t}

Modal language \mathcal{L}_{m} for topology

> topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$

- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
$\triangleright \neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations $)$
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b=\varphi$
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$
- [d] abbreviates $\neg\langle d\rangle \neg$
- \square^{n} abbreviates $\neg \vee^{n} \neg$
- $\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \vee^{n} \varphi$:
- $\mathcal{A}, a \models \diamond^{!n} \varphi$ iff exist exactly n points $b \in A$ with $\mathcal{A}, b=\varphi$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :

```
- \mathcal{L}={\mp@subsup{P}{i}{}}\mathrm{ as propositional variables}
\vee \neg,^ (\vee,->,\leftrightarrow usual abbreviations)
* derivative operator \langled\rangle:
    * \mathcal{A,a}\models\langled\rangle\varphi iff in every nbh of a exists b}=a\mathrm{ st }\mathcal{A},b\models
graded operators {}{\mp@subsup{\diamond}{}{n}\mp@subsup{}}{n\in\omega}{}\mathrm{ :
```



```
* [d] abbreviates }\neg\langled\rangle
- }\mp@subsup{\square}{}{n}\mathrm{ abbreviates }\neg\mp@subsup{\}{}{n}
> }\mp@subsup{\Delta}{}{!n}\varphi\mathrm{ abbreviates }\mp@subsup{\Delta}{}{n-1}\varphi\wedge\neg\mp@subsup{\nabla}{}{n}\varphi
* \mathcal{A,a}=\mp@subsup{\diamond}{}{!n}\varphi\mathrm{ iff exist exactly n points }b\inA\mathrm{ with }\mathcal{A},b\models\varphi
```


Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables

- derivative operator $\langle d\rangle$:
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations $)$
- derivative operator $\langle d\rangle$:
graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $\mathcal{A}, a \vDash \Delta^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b=\varphi$
\square
- $\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \diamond^{n} \varphi$:
- $\mathcal{A}, a \models \diamond^{!n} \varphi$ iff exist exactly n points $b \in A$ with $\mathcal{A}, b=\varphi$

Modal language \mathcal{L}_{m} for topology

－topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
－language \mathcal{L}_{m} ：
－ $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
$-\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations）
－derivative operator $\langle d\rangle$ ：
－graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$ ：
－ $\mathcal{A}, a \vDash \Delta^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b=\varphi$

－$\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \diamond^{n} \varphi$ ：
－ $\mathcal{A}, a \vDash \diamond^{!n} \varphi$ iff exist exactly n points $b \in A$ with $\mathcal{A}, b=\varphi$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations $)$
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $[d]$ abbreviates $\neg\langle d\rangle \neg$
- \square^{n} abbreviates $\left.\neg\right\rangle^{n} \neg$
- $\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \nabla^{n} \varphi$:
* $\mathcal{A}, a=\Delta^{!n} \varphi$ iff exist exactly n points $b \in A$ with $\mathcal{A}, b=\varphi$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$
- [d] abbreviates $\neg\langle d\rangle \neg$

Modal language \mathcal{L}_{m} for topology

－topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
－language \mathcal{L}_{m} ：
－ $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
－$\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations）
－derivative operator $\langle d\rangle$ ：
－ $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
－graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$ ：
－ $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$
－［d］abbreviates $\neg\langle d\rangle \neg$
－\square^{n} abbreviates $\neg \diamond^{n} \neg$

Modal language \mathcal{L}_{m} for topology

- topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
- language \mathcal{L}_{m} :
- $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
- $\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations)
- derivative operator $\langle d\rangle$:
- $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
- graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$:
- $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$
- [d] abbreviates $\neg\langle d\rangle \neg$
- \square^{n} abbreviates $\neg \diamond^{n} \neg$
- $\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \diamond^{n} \varphi$:

Modal language \mathcal{L}_{m} for topology

－topological models $\mathcal{A}=\left(A, \sigma,\left\{P_{i}^{\mathcal{A}}\right\}\right)$
－language \mathcal{L}_{m} ：
－ $\mathcal{L}=\left\{P_{i}\right\}$ as propositional variables
－$\neg, \wedge(\vee, \rightarrow, \leftrightarrow$ usual abbreviations）
－derivative operator $\langle d\rangle$ ：
－ $\mathcal{A}, a \models\langle d\rangle \varphi$ iff in every nbh of a exists $b \neq a$ st $\mathcal{A}, b \models \varphi$
－graded operators $\left\{\diamond^{n}\right\}_{n \in \omega}$ ：
－ $\mathcal{A}, a \models \diamond^{n} \varphi$ iff exist more than n points $b \in A$ with $\mathcal{A}, b \models \varphi$
－［d］abbreviates $\neg\langle d\rangle \neg$
－\square^{n} abbreviates $\neg \diamond^{n} \neg$
－$\diamond^{!n} \varphi$ abbreviates $\diamond^{n-1} \varphi \wedge \neg \diamond^{n} \varphi$ ：
－ $\mathcal{A}, a \models \diamond^{!n} \varphi$ iff exist exactly n points $b \in A$ with $\mathcal{A}, b \models \varphi$

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- for every formulas φ and ψ :
- for every formula φ and graded operator \diamond^{n} :
> truth of $\Delta^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation - call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- for every formulas φ and ψ :
- for every formula φ and graded operator \diamond^{n} :
> truth of $\Delta^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation - call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
$>$ for every formulas φ and ψ :
- for every formula φ and graded operator \diamond^{n} :
> truth of $\Delta^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation - call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
- for every formula φ and graded operator \diamond^{n} :
- truth of $\diamond^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation - call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
- $\neg \varphi, \varphi \wedge \psi$
- for every formula φ and graded operator \diamond^{n} :
> truth of $\nabla^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
- call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
- $\neg \varphi, \varphi \wedge \psi$
- $\langle d\rangle \varphi$
- for every formula φ and graded operator \diamond^{n} :
- truth of $\nabla^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
- call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
$-\neg \varphi, \varphi \wedge \psi$
- $\langle d\rangle \varphi$
- for every formula φ and graded operator \diamond^{n} :
- truth of $\nabla^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
- call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
$-\neg \varphi, \varphi \wedge \psi$
- $\langle d\rangle \varphi$
- for every formula φ and graded operator \diamond^{n} :
- $\nabla^{n} \varphi$
> truth of $\Delta^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
- call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

- formulas of \mathcal{L}_{m} :
- for every $P \in \mathcal{L}$:
- P
- for every formulas φ and ψ :
$-\neg \varphi, \varphi \wedge \psi$
- $\langle d\rangle \varphi$
- for every formula φ and graded operator \diamond^{n} :
- $\diamond^{n} \varphi$
- truth of $\diamond^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
- call them sentences of \mathcal{L}_{m}

Modal language \mathcal{L}_{m} for topology

－formulas of \mathcal{L}_{m} ：
－for every $P \in \mathcal{L}$ ：
－P
－for every formulas φ and ψ ：
－$\neg \varphi, \varphi \wedge \psi$
－$\langle d\rangle \varphi$
－for every formula φ and graded operator \diamond^{n} ：
－$\nabla^{n} \varphi$
－truth of $\diamond^{n} \varphi, \neg \nabla^{n} \varphi$ is independent from the point of evaluation
－call them sentences of \mathcal{L}_{m}

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

- via usual standard translation
- $S T_{x}(\langle d\rangle \varphi):=\forall U\left(x \varepsilon U \rightarrow \exists y\left(\neg x=y \wedge y \in U \wedge S T_{y}(\varphi)\right)\right)$
$\Rightarrow S T_{x}\left(\diamond^{n} \varphi\right):=\exists x_{0} \ldots \exists x_{n}\left(\bigwedge_{i \neq j} \neg x_{i}=x_{j} \wedge \bigwedge_{i \in n+1} S T_{x_{i}}(\varphi)\right)$
- both formulas are in \mathcal{L}_{t}

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

- via usual standard translation
- $S T_{x}(\langle d\rangle \varphi):=\forall U\left(x \varepsilon U \rightarrow \exists y\left(\neg x=y \wedge y \in U \wedge S T_{y}(\varphi)\right)\right)$
$\Rightarrow S T_{x}\left(\diamond^{n} \varphi\right):=\exists x_{0} \ldots \exists x_{n}\left(\bigwedge_{i \neq j} \neg x_{i}=x_{j} \wedge \bigwedge_{i \in n+1} S T_{x_{i}}(\varphi)\right)$
- both formulas are in \mathcal{L}_{t}

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$ Proof．
－via usual standard translation

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof．
－via usual standard translation
－$S T_{x}(\langle d\rangle \varphi):=\forall U\left(x \varepsilon U \rightarrow \exists y\left(\neg x=y \wedge y \varepsilon U \wedge S T_{y}(\varphi)\right)\right)$
－both formulas are in \mathcal{L}_{t}

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof．
－via usual standard translation
－$S T_{x}(\langle d\rangle \varphi):=\forall U\left(x \varepsilon U \rightarrow \exists y\left(\neg x=y \wedge y \varepsilon U \wedge S T_{y}(\varphi)\right)\right)$
－$S T_{x}\left(\diamond^{n} \varphi\right):=\exists x_{0} \ldots \exists x_{n}\left(\bigwedge_{i \neq j} \neg x_{i}=x_{j} \wedge \bigwedge_{i \in n+1} S T_{x_{i}}(\varphi)\right)$
－both formulas are in \mathcal{L}_{t}

Original results

Theorem 1
For every sentence $\alpha \in \mathcal{L}_{m}$ there is a sentence $\varphi \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof．
－via usual standard translation
－$S T_{x}(\langle d\rangle \varphi):=\forall U\left(x \varepsilon U \rightarrow \exists y\left(\neg x=y \wedge y \varepsilon U \wedge S T_{y}(\varphi)\right)\right)$
－$S T_{x}\left(\diamond^{n} \varphi\right):=\exists x_{0} \ldots \exists x_{n}\left(\bigwedge_{i \neq j} \neg x_{i}=x_{j} \wedge \bigwedge_{i \in n+1} S T_{x_{i}}(\varphi)\right)$
－both formulas are in \mathcal{L}_{t}

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:
$\Rightarrow \mathcal{A}=\varphi$ if and only if $\mathcal{A}=\alpha$

- quantifier depth of $\varphi=$ modal depth of α
- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(A, B)$
\Rightarrow then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod. dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α
- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
\Rightarrow then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod.
dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α
- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
\Rightarrow then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod.
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod.
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
\Rightarrow then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod.
> than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod. dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 2
For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod. dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$

Original results

Theorem 2

For every sentence φ of \mathcal{L}_{t} there is a sentence $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of $\varphi=$ modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_{n}(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_{t} with quant. dep. n
- if T_{3} mod.s \mathcal{A} and \mathcal{B} agree on the sent.s of \mathcal{L}_{m} with mod. dep. n
- than Player II has a winning strategy in $G_{n}(\mathcal{A}, \mathcal{B})$
- thesis follows

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m}

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
- there is a sentence in \mathcal{R}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{C}_{t} decidable on the class of all T_{3} models
\Rightarrow for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m} Proof.

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
\Rightarrow there is a sentence in \mathcal{L}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{L}_{t} decidable on the class of all T_{3} models
- for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m}
Proof.

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
- there is a sentence in \mathcal{L}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{L}_{t} decidable on the class of all T_{3} models
- for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m}
Proof.

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
- there is a sentence in \mathcal{L}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{L}_{t} decidable on the class of all T_{3} models
- for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m}
Proof.

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
- there is a sentence in \mathcal{L}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{L}_{t} decidable on the class of all T_{3} models
- for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 3
There is a computable trans. between sent.s in \mathcal{L}_{t} and sent.s in \mathcal{L}_{m}
Proof.

- sentence $\varphi \in \mathcal{L}_{t}$ with quant. dep. n
- there is a sentence in \mathcal{L}_{m} with modal depth n equivalent to φ on T_{3} models
- finitely many candidates $\alpha \in \mathcal{L}_{m}$
- \mathcal{L}_{t} decidable on the class of all T_{3} models
- for every cand. α, check $\varphi \leftrightarrow \alpha$ on the class of all T_{3} models

Original results

Theorem 4

1. For every formula $\alpha \in \mathcal{L}_{m}$ there is a formula $\varphi(x) \in \mathcal{L}_{t}$ such that for every T_{3} model \mathcal{A} and point $a \in \mathcal{A}$ we have that $\mathcal{A} \models \varphi[a]$ if and only if $\mathcal{A}, a \models \alpha$
2. For every formula $\varphi(x) \in \mathcal{L}_{t}$ there is a formula $\alpha \in \mathcal{L}_{m}$ such that for every T_{3} model \mathcal{A} and point $a \in \mathcal{A}$ we have that:

- $\mathcal{A} \models \varphi[a]$ if and only if $\mathcal{A}, a \models \alpha$
- quantifier depth of $\varphi(x)=$ modal depth of α

3. There is a computable translation between formulas $\varphi(x)$ in \mathcal{L}_{t} and formulas in \mathcal{L}_{m}

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

- adequate notion of bisimulation for \mathcal{L}_{m}
Δ there is a model $1, T_{2}$ but not T_{3}, hisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
- A would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models Proof.

- adequate notion of bisimulation for \mathcal{L}_{m}
v there is a model \mathcal{A}, T_{2} but not T_{3}, bisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{+}on T_{2} spaces
- \mathcal{A} would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models
Proof.

- adequate notion of bisimulation for \mathcal{L}_{m}
- there is a model $\mathcal{A}, \mathrm{T}_{2}$ but not T_{3}, bisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
- \mathcal{A} would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models
Proof．
－adequate notion of bisimulation for \mathcal{L}_{m}
－there is a model $\mathcal{A}, \mathrm{T}_{2}$ but not T_{3} ，bisimilar to a T_{3} model \mathcal{B}
－ \mathcal{L}_{t} can express that a space is T_{3}
－if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
－ \mathcal{A} would be T_{3} ：contradiction
－corollary： \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models
Proof.

- adequate notion of bisimulation for \mathcal{L}_{m}
- there is a model $\mathcal{A}, \mathrm{T}_{2}$ but not T_{3}, bisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
- \mathcal{A} would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models
Proof.

- adequate notion of bisimulation for \mathcal{L}_{m}
- there is a model $\mathcal{A}, \mathrm{T}_{2}$ but not T_{3}, bisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
- \mathcal{A} would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 5
\mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models
Proof.

- adequate notion of bisimulation for \mathcal{L}_{m}
- there is a model $\mathcal{A}, \mathrm{T}_{2}$ but not T_{3}, bisimilar to a T_{3} model \mathcal{B}
- \mathcal{L}_{t} can express that a space is T_{3}
- if \mathcal{L}_{m} were equivalent to \mathcal{L}_{t} on T_{2} spaces
- \mathcal{A} would be T_{3} : contradiction
- corollary: \mathcal{L}_{m} cannot express T_{3} ness on the class of all T_{2} models

Original results

Theorem 6
The \mathcal{L}_{m}-theory of the classes all T_{3}, T_{2}, T_{1} models (resp.) is rec. axiomatizable

- all propositional tautologies

Original results

Theorem 6

The \mathcal{L}_{m}-theory of the classes all T_{3}, T_{2}, T_{1} models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\diamond^{n+1} p \rightarrow \diamond^{n} p$
- $\square^{0}(p \rightarrow q) \rightarrow\left(\diamond^{n} p \rightarrow \diamond^{n} q\right)$
$-\nabla^{!0}(p \wedge q) \rightarrow\left(\left(\diamond^{!n_{1}} p \wedge \delta^{!n_{2}} q\right) \rightarrow \diamond^{!n_{1}+n_{2}}(p \vee q)\right)$
- $\square^{0} p \rightarrow p$
- $\diamond^{n} p \rightarrow \square^{0} \diamond^{n} p$
- $[d](p \rightarrow q) \rightarrow([d] p \rightarrow[d] q)$
- $[d] p \rightarrow[d][d] p$
- $\langle d\rangle p \rightarrow \diamond^{n} p$
$-\frac{\varphi}{\varphi(\chi / p)}, \frac{\varphi, \varphi \rightarrow \psi}{\psi}, \frac{\varphi}{\square^{0} \varphi}, \frac{\varphi}{[d] \varphi}$

Original results

Theorem 6

The \mathcal{L}_{m}-theory of the classes all T_{3}, T_{2}, T_{1} models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\nabla^{n+1} p \rightarrow \diamond^{n} p$
- $\square^{0}(p \rightarrow q) \rightarrow\left(\diamond^{n} p \rightarrow \nabla^{n} q\right)$
- $\Delta^{!0}(p \wedge q) \rightarrow\left(\left(\Delta^{!n_{1}} p \wedge \nabla^{!n_{2}} q\right) \rightarrow \Delta^{!n_{1}+n_{2}}(p \vee q)\right)$
- $\square^{0} p \rightarrow p$
- $\diamond^{n} p \rightarrow \square^{0} \diamond^{n} p$
- $[d](p \rightarrow q) \rightarrow([d] p \rightarrow[d] q)$
- $[d] p \rightarrow[d][d] p$
- $\langle d\rangle p \rightarrow \diamond^{n} p$
- $\frac{\varphi}{\varphi(\chi / p)}, \frac{\varphi, \varphi \rightarrow \psi}{\psi}, \frac{\varphi}{\square^{0} \varphi}, \frac{\varphi}{[d] \varphi}$

Original results

Theorem 6

The \mathcal{L}_{m}-theory of the classes all T_{3}, T_{2}, T_{1} models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\diamond^{n+1} p \rightarrow \diamond^{n} p$
- $\square^{0}(p \rightarrow q) \rightarrow\left(\diamond^{n} p \rightarrow \diamond^{n} q\right)$
$-\nabla^{!0}(p \wedge q) \rightarrow\left(\left(\diamond^{!n_{1}} p \wedge \diamond^{!n_{2}} q\right) \rightarrow \diamond^{!n_{1}+n_{2}}(p \vee q)\right)$
- $\square^{0} p \rightarrow p$
- $\diamond^{n} p \rightarrow \square^{0} \diamond^{n} p$
- $[d](p \rightarrow q) \rightarrow([d] p \rightarrow[d] q)$
- $[d] p \rightarrow[d][d] p$
- $\langle d\rangle p \rightarrow \diamond^{n} p$
- $\frac{\varphi}{\varphi(\chi / p)}, \frac{\varphi, \varphi \rightarrow \psi}{\psi}, \frac{\varphi}{\square^{0} \varphi}, \frac{\varphi}{[d] \varphi}$

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
> given a maximal consistent set 「
- build a Kripke model validating the axioms and satisfying Γ
- turn the Kripke model into a T_{3} model satisfying Γ
- $\mathrm{T}_{1} \supseteq \mathrm{~T}_{2} \supseteq \mathrm{~T}_{3}$

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
- given a maximal consistent set 「- build a Kripke model validating the axioms and satisfying 「 - turn the Kripke model into a T_{3} model satisfying Γ
\square
${ }^{-} \boldsymbol{T}_{1} \supseteq \boldsymbol{T}_{2} \supseteq \boldsymbol{T}_{3}$

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
- given a maximal consistent set Γ
- build a Kripke model validating the axioms and satisfying 「 - turn the Kripke model into a T_{3} model satisfying 「
- $\mathrm{T}_{1} \supseteq \mathrm{~T}_{2} \supseteq \mathrm{~T}_{3}$

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
- given a maximal consistent set 「
- build a Kripke model validating the axioms and satisfying Γ - turn the Kripke model into a T_{3} model satisfying Γ

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
- given a maximal consistent set Γ
- build a Kripke model validating the axioms and satisfying 「 - turn the Kripke model into a T_{3} model satisfying 「

Original results

Proof．
－soundness on the class of all T_{1} models：
－axioms are valid on every T_{1} topological model
－inference rules preserve validities on every T_{1} topological model
－completeness on the class of all T_{3} models：
－given a maximal consistent set 「
－build a Kripke model validating the axioms and satisfying Γ
－turn the Kripke model into a T_{3} model satisfying 「

Original results

Proof.

- soundness on the class of all T_{1} models:
- axioms are valid on every T_{1} topological model
- inference rules preserve validities on every T_{1} topological model
- completeness on the class of all T_{3} models:
- given a maximal consistent set 「
- build a Kripke model validating the axioms and satisfying Γ
- turn the Kripke model into a T_{3} model satisfying Γ

Original results

Proof．
－soundness on the class of all T_{1} models：
－axioms are valid on every T_{1} topological model
－inference rules preserve validities on every T_{1} topological model
－completeness on the class of all T_{3} models：
－given a maximal consistent set 「
－build a Kripke model validating the axioms and satisfying Γ
－turn the Kripke model into a T_{3} model satisfying Γ
－ $\mathrm{T}_{1} \supseteq \mathrm{~T}_{2} \supseteq \mathrm{~T}_{3}$

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete
\Rightarrow the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.)
is PSPACE:

- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3},
$\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}－theory of the classes of all T_{3}, T_{2}, T_{1} models（resp．）is PSPACE－complete

Proof．
－the \mathcal{L}_{m}－theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models（resp．） is PSPACE：

Original results

Theorem 7
The \mathcal{L}_{m}－theory of the classes of all T_{3}, T_{2}, T_{1} models（resp．）is PSPACE－complete

Proof．
－the \mathcal{L}_{m}－theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models（resp．） is PSPACE：
－checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3} ， $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models（resp．）reduces to：
－checking PTIME properties of a forest of
－polynomially many
－polynomially deep
－rooted trees
－（properties）that regards
－either the set of all root nodes
－or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
> - polynomially many
> - polynomially deep
> - rooted trees
> - (properties) that regards
> - either the set of all root nodes
> - or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 7
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete

Proof.

- the \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE:
- checking the satisfiability of $\varphi \in \mathcal{L}_{m}$ on the classes of all T_{3}, $\mathrm{T}_{2}, \mathrm{~T}_{1}$ models (resp.) reduces to:
- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Original results

Theorem 8
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete:

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE-hard:
- the $\langle d\rangle$-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is K4 which is PSPACE-hard
- the $\langle d\rangle$-language $\subseteq \mathcal{L}_{m}$

Original results

Theorem 8
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete:

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE-hard:
- the $\langle d\rangle$-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is K4 which is PSPACE-hard

Original results

Theorem 8
The \mathcal{L}_{m}-theory of the classes of all T_{3}, T_{2}, T_{1} models (resp.) is PSPACE-complete:

Proof.

- the \mathcal{L}_{m}-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is PSPACE-hard:
- the $\langle d\rangle$-theory of the classes of all $\mathrm{T}_{3}, \mathrm{~T}_{2}, \mathrm{~T}_{1}$ models (resp.) is K4 which is PSPACE-hard
- the $\langle d\rangle$-language $\subseteq \mathcal{L}_{m}$

Open questions

\Rightarrow what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?

- does \mathcal{L}_{m} canture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
* μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic? - μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
∇ is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- what is the complexity of the trans. between \mathcal{L}_{t} and \mathcal{L}_{m} on T_{3} mod.s?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on classes between all T_{2} and all T_{3} ?
- does \mathcal{L}_{m} capture \mathcal{L}_{t} on other classes?
- can we increase \mathcal{L}_{m} to capture \mathcal{L}_{t} on other classes than all T_{3} models?
- hybrid logic
- How can we increase \mathcal{L}_{m} without loosing decidability?
- How can we increase \mathcal{L}_{m} beyond first order logic?
- μ-calculus
- is $\mathcal{L}_{m}+\mu$ decidable?
- is $\mathcal{L}_{m}+\mu$ invariant under changing base?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\{\left\langle^{n}\right\}_{n \in w}\right.$ in their future and past components
\rightarrow If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} snaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
$\begin{aligned} & \mathbb{R}^{n}(n \in \omega) \\ & \text { over } \mathbb{R} \text { we can split }\langle d\rangle \text { and }\left\rangle^{n}\right\}_{n \in w} \text { in their future and past } \\ & \text { components }\end{aligned}$
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\rangle^{n}\right\}_{n \in \omega}$ in their future and past components
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\{\diamond^{n}\right\}_{n \in \omega}$ in their future and past components
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\{\diamond^{n}\right\}_{n \in \omega}$ in their future and past components
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\{\diamond^{n}\right\}_{n \in \omega}$ in their future and past components
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Open questions

- study of the \mathcal{L}_{m}-theory of particular (classes of) T_{3} spaces
- metric spaces
- $\mathbb{R}^{n}(n \in \omega)$
- over \mathbb{R} we can split $\langle d\rangle$ and $\left\{\diamond^{n}\right\}_{n \in \omega}$ in their future and past components
- If we replace $\langle d\rangle$ with \diamond in \mathcal{L}_{m}, does the new \mathcal{L}_{m} capture \mathcal{L}_{t} on T_{3} spaces?
- What is the fragment of first-order logic that \mathcal{L}_{m} corresponds to in the standard Kripke semantics?
- How does it relate to the (loosely) guarded fragment?

Modal characterization of a first order language for topology

Alberto Gatto
Imperial College London
alberto.gatto@imperial.ac.uk

