Modal characterization of a first order language for topology

Alberto Gatto Imperial College London alberto.gatto@imperial.ac.uk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- first order language \mathcal{L}_t for topology
- modal language \mathcal{L}_m for topology
- original results
- open questions

- first order language \mathcal{L}_t for topology
- modal language \mathcal{L}_m for topology
- original results
- open questions

- first order language \mathcal{L}_t for topology
- modal language \mathcal{L}_m for topology
- original results
- open questions

• first order language \mathcal{L}_t for topology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- modal language \mathcal{L}_m for topology
- original results
- open questions

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$
 - $\blacktriangleright \mathcal{A} = (A, \sigma, \{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
 - (A, σ) topological space
 - $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

topological model:

- given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
- \blacktriangleright topological model for ${\cal L}$
- $\blacktriangleright \mathcal{A} = (A, \sigma, \{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
- (A, σ) topological space
- $\blacktriangleright (\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\}) \text{ interpretation of } \mathcal{L} \text{ in } \mathcal{A}$

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$
 - $\blacktriangleright \mathcal{A} = (A, \sigma, \{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
 - (A, σ) topological space
 - $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$
 - $\blacktriangleright \mathcal{A} = (A, \sigma, \{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
 - (A, σ) topological space
 - $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$
 - $\blacktriangleright \mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{R}_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
 - (A, σ) topological space
 - $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$
 - $\blacktriangleright \mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{R}_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$
 - (A, σ) topological space
 - $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

- topological model:
 - given a signature $\mathcal{L} = (\{R_i\}, \{f_i\}, \{c_i\})$
 - \blacktriangleright topological model for ${\cal L}$

$$\blacktriangleright \mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{R}_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$$

- (A, σ) topological space
- $(\{R_i^{\mathcal{A}}\}, \{f_i^{\mathcal{A}}\}, \{c_i^{\mathcal{A}}\})$ interpretation of \mathcal{L} in \mathcal{A}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• language \mathcal{L}_t :

- two-sorted first order language
- ▶ *x*, *y*, ... point-sort variables
- ▶ *U*, *V*, ... open-sort variables
- equality symbol
- ε set membership symbol
- \blacktriangleright symbols in ${\cal L}$
- $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
- ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
- ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ▶ *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - symbols in \mathcal{L}
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ▶ *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - \blacktriangleright symbols in ${\cal L}$
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - \blacktriangleright symbols in ${\cal L}$
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - \blacktriangleright symbols in ${\cal L}$
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - \blacktriangleright symbols in $\mathcal L$
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

(日) (四) (코) (코) (코)

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - symbols in $\mathcal L$
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
 - ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - U, V, \dots open-sort variables
 - equality symbol
 - ε set membership symbol
 - $\mathcal{L} := \{ P_i \, | \, i \in \omega \}$ with P_i point-sort unary relation symbol

< □ > < @ > < 注 > < 注 > ... 注 ... 注 ... 注 ...

- $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
- ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
- ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - $\mathcal{L} := \{ P_i \mid i \in \omega \}$ with P_i point-sort unary relation symbol

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

- \neg, \land ($\lor, \rightarrow, \leftrightarrow$ usual abbreviations)
- ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
- ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - $\mathcal{L} := \{ P_i \mid i \in \omega \}$ with P_i point-sort unary relation symbol

- \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
- ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
- ▶ $\exists U, \forall U$ existential/universal open-sort quantification

- language \mathcal{L}_t :
 - two-sorted first order language
 - x, y, ... point-sort variables
 - ► *U*, *V*, ... open-sort variables
 - equality symbol
 - ε set membership symbol
 - $\mathcal{L} := \{ P_i \mid i \in \omega \}$ with P_i point-sort unary relation symbol

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- \neg, \land ($\lor, \rightarrow, \leftrightarrow$ usual abbreviations)
- ▶ $\exists x, \forall x \text{ existential/universal point-sort quantification}$
- ▶ $\exists U$, $\forall U$ existential/universal open-sort quantification

• formulas of \mathcal{L}_t :

- for every point-sort var.s x, y, open-sort var.s U, V and P ∈ L:
 x = y, U = V, x∈U, P(x)
- for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

• x = y, U = V, $x \in U$, P(x)

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

• x = y, U = V, $x \in U$, P(x)

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

• x = y, U = V, $x \in U$, P(x)

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

• x = y, U = V, $x \in U$, P(x)

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

• x = y, U = V, $x \in U$, P(x)

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - ▶ *U* is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

- open-sort quantification in the form:
- $\blacktriangleright \forall U(x \varepsilon U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

- open-sort quantification in the form:
- $\forall U(x \in U \to \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)
- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

 $\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\blacktriangleright \exists U(x \varepsilon U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\exists U(x \in U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \in U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

• for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of \neg s)
- $\exists U(x \in U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

- formulas of \mathcal{L}_t :
 - ▶ for every point-sort var.s x, y, open-sort var.s U, V and $P \in \mathcal{L}$:

•
$$x = y$$
, $U = V$, $x \in U$, $P(x)$

 \blacktriangleright for every formulas φ and ψ and point-sort variable x:

$$\blacktriangleright \neg \varphi, \varphi \land \psi, \exists x \varphi, \forall x \varphi$$

open-sort quantification in the form:

•
$$\forall U(x \in U \to \varphi)$$

- U is an open-sort variable
- x is a point-sort variable
- ▶ all free occ.s of U in φ are positive (within an even nb. of ¬s)
- $\exists U(x \in U \land \varphi)$
 - U is an open-sort variable
 - x is a point-sort variable
 - ▶ all free occ.s of U in φ are negative (within an odd nb. of ¬s)

• examples of formulas in \mathcal{L}_t :

► $\forall U(x \in U \to \exists y(\neg x = y \land y \in U \land P(y)))$ ► $\forall x \forall y(\neg x = y \to \exists U(x \in U \land \neg y \in U))$

▲口> ▲圖> ▲理> ▲理> 三理 ---

- ▶ if we allow open quantification in the form:
 - $\forall U \varphi$ with φ an arbitrary formula
 - $\exists U \varphi$ with φ an arbitrary formula
 - then we obtain \mathcal{L}_2
 - $\mathcal{L}_t \subseteq \mathcal{L}_2$

• examples of formulas in \mathcal{L}_t :

 $\blacktriangleright \forall U(x \varepsilon U \to \exists y (\neg x = y \land y \varepsilon U \land P(y)))$

 $\forall x \forall y (\neg x = y \rightarrow \exists U (x \in U \land \neg y \in U))$

▶ if we allow open quantification in the form:

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2

•
$$\mathcal{L}_t \subseteq \mathcal{L}_2$$

examples of formulas in L_t:
 ∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
 ∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2

•
$$\mathcal{L}_t \subseteq \mathcal{L}_2$$

• examples of formulas in \mathcal{L}_t :

►
$$\forall U(x \in U \to \exists y(\neg x = y \land y \in U \land P(y)))$$

► $\forall x \forall y(\neg x = y \to \exists U(x \in U \land \neg y \in U))$

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2

•
$$\mathcal{L}_t \subseteq \mathcal{L}_2$$

examples of formulas in L_t:
 ∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
 ∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

▶ if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U\varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2
- $\blacktriangleright \ \mathcal{L}_t \subseteq \mathcal{L}_2$

examples of formulas in L_t:
∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2
- $\blacktriangleright \mathcal{L}_t \subseteq \mathcal{L}_2$

examples of formulas in L_t:
∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2
- $\mathcal{L}_t \subseteq \mathcal{L}_2$

examples of formulas in L_t:
 ∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
 ∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2
- $\blacktriangleright \mathcal{L}_t \subseteq \mathcal{L}_2$

examples of formulas in L_t:
 ∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
 ∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2
- $\mathcal{L}_t \subseteq \mathcal{L}_2$

examples of formulas in L_t:
 ∀U(x∈U → ∃y(¬x = y ∧ y∈U ∧ P(y)))
 ∀x∀y(¬x = y → ∃U(x∈U ∧ ¬y∈U))

if we allow open quantification in the form:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ □ □

- $\forall U \varphi$ with φ an arbitrary formula
- $\exists U \varphi$ with φ an arbitrary formula
- then we obtain \mathcal{L}_2

•
$$\mathcal{L}_t \subseteq \mathcal{L}_2$$

• properties of \mathcal{L}_t :

- \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
- \mathcal{L}_t can express:
 - $\blacktriangleright \mathsf{T}_0, \mathsf{T}_1, \mathsf{T}_2, \mathsf{T}_3$
 - triviality, discreteness
- \mathcal{L}_t cannot express:
 - that a space is compact/connected
- \mathcal{L}_t is decidable on the class of all T₃ spaces
- \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
- Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

(日) (四) (문) (문) (문)

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - $\blacktriangleright \mathsf{T}_0, \mathsf{T}_1, \mathsf{T}_2, \mathsf{T}_3$
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - $\blacktriangleright \mathsf{T}_0, \mathsf{T}_1, \mathsf{T}_2, \mathsf{T}_3$
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.

 Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - *L_t* is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 Lindström thm.: there is no language on topological models

<ロ> (四) (四) (四) (四) (四) (四) (四)

more expressive than \mathcal{L}_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

- properties of \mathcal{L}_t :
 - \mathcal{L}_t enjoys compactness and Löwenheim-Skolem thm.
 - \mathcal{L}_t can express:
 - ► T₀,T₁,T₂,T₃
 - triviality, discreteness
 - \mathcal{L}_t cannot express:
 - that a space is compact/connected
 - \mathcal{L}_t is decidable on the class of all T₃ spaces
 - \mathcal{L}_t is not decidable on the classes of all T₀, T₁, T₂ spaces resp.
 - Lindström thm.: there is no language on topological models more expressive than L_t enjoying compactness and Löwenheim-Skolem thm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- properties of \mathcal{L}_t :
 - \mathcal{L}_t , \mathcal{L}_2 over basoid models: $\mathcal{A} = (A, \beta, \{P_i^A\})$
 - β topological base
 - φ(x̄, X̄) ∈ L₂ invariant under changing base if its truth value on A = (A, β, {P_i^A}) does not change by replacing β with a base γ that generates the same topology as β
 - \mathcal{L}_t is invariant under changing base
 - \blacktriangleright every formula in \mathcal{L}_2 invariant under changing base is equivalent to a formula in \mathcal{L}_t

(日) (문) (문) (문) (문)

- properties of \mathcal{L}_t :
 - \mathcal{L}_t , \mathcal{L}_2 over basoid models: $\mathcal{A} = (\mathcal{A}, \beta, \{\mathcal{P}_i^{\mathcal{A}}\})$
 - β topological base
 - φ(x̄, X̄) ∈ L₂ invariant under changing base if its truth value on A = (A, β, {P_i^A}) does not change by replacing β with a base γ that generates the same topology as β
 - \mathcal{L}_t is invariant under changing base
 - \blacktriangleright every formula in \mathcal{L}_2 invariant under changing base is equivalent to a formula in \mathcal{L}_t

- properties of \mathcal{L}_t :
 - \mathcal{L}_t , \mathcal{L}_2 over basoid models: $\mathcal{A} = (\mathcal{A}, \beta, \{\mathcal{P}_i^{\mathcal{A}}\})$
 - β topological base
 - φ(x̄, X̄) ∈ L₂ invariant under changing base if its truth value on A = (A, β, {P_i^A}) does not change by replacing β with a base γ that generates the same topology as β
 - \mathcal{L}_t is invariant under changing base
 - \blacktriangleright every formula in \mathcal{L}_2 invariant under changing base is equivalent to a formula in \mathcal{L}_t

- properties of \mathcal{L}_t :
 - \mathcal{L}_t , \mathcal{L}_2 over basoid models: $\mathcal{A} = (\mathcal{A}, \beta, \{\mathcal{P}_i^{\mathcal{A}}\})$
 - β topological base
 - φ(x̄, X̄) ∈ L₂ invariant under changing base if its truth value on A = (A, β, {P_i^A}) does not change by replacing β with a base γ that generates the same topology as β
 - \mathcal{L}_t is invariant under changing base
 - \blacktriangleright every formula in \mathcal{L}_2 invariant under changing base is equivalent to a formula in \mathcal{L}_t

- properties of \mathcal{L}_t :
 - \mathcal{L}_t , \mathcal{L}_2 over basoid models: $\mathcal{A} = (\mathcal{A}, \beta, \{\mathcal{P}_i^{\mathcal{A}}\})$
 - β topological base
 - φ(x̄, X̄) ∈ L₂ invariant under changing base if its truth value on A = (A, β, {P_i^A}) does not change by replacing β with a base γ that generates the same topology as β
 - \mathcal{L}_t is invariant under changing base
 - \blacktriangleright every formula in \mathcal{L}_2 invariant under changing base is equivalent to a formula in \mathcal{L}_t

- topological models $\mathcal{A} = (\mathcal{A}, \sigma, \{P_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - ▶ \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - $\blacktriangleright \ \mathcal{A}, a \models \langle d \rangle \varphi \text{ iff in every nbh of } a \text{ exists } b \neq a \text{ st } \mathcal{A}, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:
 - $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$
 - [d] abbreviates $\neg \langle d \rangle \neg$
 - \square^n abbreviates $\neg \Diamond^n \neg$
 - $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - ▶ \neg , \land (\lor , \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator $\langle d \rangle$:
 - $\blacktriangleright \ \mathcal{A}, a \models \langle d \rangle \varphi \text{ iff in every nbh of } a \text{ exists } b \neq a \text{ st } \mathcal{A}, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:
 - ▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$
 - [d] abbreviates $\neg \langle d \rangle \neg$
 - \square^n abbreviates $\neg \Diamond^n \neg$
 - $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - $\neg, \land (\lor, \rightarrow, \leftrightarrow \text{ usual abbreviations})$
 - derivative operator $\langle d \rangle$:
 - $\blacktriangleright \ \mathcal{A}, a \models \langle d \rangle \varphi \text{ iff in every nbh of } a \text{ exists } b \neq a \text{ st } \mathcal{A}, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:
 - ▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$
 - [d] abbreviates $\neg \langle d \rangle \neg$
 - \square^n abbreviates $\neg \Diamond^n \neg$
 - $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{P}_i^{\mathcal{A}}\})$
- ▶ language L_m:
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - ▶ \neg , \land (\lor , \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator $\langle d \rangle$:
 - $\blacktriangleright \ \mathcal{A}, a \models \langle d \rangle \varphi \text{ iff in every nbh of } a \text{ exists } b \neq a \text{ st } \mathcal{A}, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:
 - ▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$
 - [d] abbreviates $\neg \langle d \rangle \neg$
 - \square^n abbreviates $\neg \Diamond^n \neg$
 - $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで
- topological models $\mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{P}_i^{\mathcal{A}}\})$
- ► language L_m:
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):

 $\blacktriangleright \ \mathcal{A}, a \models \langle d \rangle \varphi \text{ iff in every nbh of } a \text{ exists } b \neq a \text{ st } \mathcal{A}, b \models \varphi$

• graded operators $\{\Diamond^n\}_{n\in\omega}$:

• $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- [d] abbreviates $\neg \langle d \rangle \neg$
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

▶ $A, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points *b* ∈ *A* with $A, b \models \varphi$

- topological models $\mathcal{A} = (\mathcal{A}, \sigma, \{\mathcal{P}_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):

▶ $\mathcal{A}, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $\mathcal{A}, b \models \varphi$

• graded operators $\{\diamondsuit^n\}_{n\in\omega}$:

• $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- [d] abbreviates $\neg \langle d \rangle \neg$
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

 $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):

▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$

• graded operators $\{\diamondsuit^n\}_{n\in\omega}$:

• $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- [d] abbreviates $\neg \langle d \rangle \neg$
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

 $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ► language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:

• $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- [d] abbreviates $\neg \langle d \rangle \neg$
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

 $\blacktriangleright \ \mathcal{A}, a \models \Diamond^{!n} \varphi \text{ iff exist exactly } n \text{ points } b \in A \text{ with } \mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ► language L_m:
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:
 - ▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$
 - [d] abbreviates $\neg \langle d \rangle \neg$
 - \square^n abbreviates $\neg \Diamond^n$ -
 - $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - ▶ $A, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points *b* ∈ *A* with *A*, *b* ⊨ φ

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:

• $\mathcal{A}, a \models \Diamond^n \varphi$ iff exist more than *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- ▶ [d] abbreviates ¬⟨d⟩¬
- \square^n abbreviates $\neg \Diamond^{n}$ -
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

▶ $A, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points *b* ∈ *A* with *A*, *b* ⊨ φ

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ▶ language \mathcal{L}_m :
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:

▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$

- ▶ [d] abbreviates ¬⟨d⟩¬
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

• $\mathcal{A}, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (\mathcal{A}, \sigma, \{P_i^{\mathcal{A}}\})$
- ► language L_m:
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\Diamond^n\}_{n\in\omega}$:

▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$

- ▶ [d] abbreviates ¬⟨d⟩¬
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:

• $\mathcal{A}, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points $b \in A$ with $\mathcal{A}, b \models \varphi$

- topological models $\mathcal{A} = (A, \sigma, \{P_i^{\mathcal{A}}\})$
- ► language L_m:
 - $\mathcal{L} = \{P_i\}$ as propositional variables
 - \neg, \land (\lor, \rightarrow , \leftrightarrow usual abbreviations)
 - derivative operator (d):
 - ▶ $A, a \models \langle d \rangle \varphi$ iff in every nbh of *a* exists $b \neq a$ st $A, b \models \varphi$
 - graded operators $\{\diamondsuit^n\}_{n\in\omega}$:

▶ $A, a \models \Diamond^n \varphi$ iff exist more than *n* points *b* ∈ *A* with $A, b \models \varphi$

- ▶ [d] abbreviates ¬⟨d⟩¬
- \square^n abbreviates $\neg \Diamond^n \neg$
- $\Diamond^{!n}\varphi$ abbreviates $\Diamond^{n-1}\varphi \wedge \neg \Diamond^n\varphi$:
 - ▶ $A, a \models \Diamond^{!n} \varphi$ iff exist exactly *n* points *b* ∈ *A* with *A*, *b* ⊨ φ

• formulas of \mathcal{L}_m :

▶ for every $P \in \mathcal{L}$:

► P

 \blacktriangleright for every formulas φ and $\psi :$

$$\blacktriangleright \neg \varphi, \varphi \land \psi$$

 $\blacktriangleright \langle d \rangle \varphi$

• for every formula φ and graded operator \Diamond^n :

 $\blacktriangleright \Diamond^n \varphi$

 \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation

(日) (四) (문) (문) (문)

• call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - ▶ for every $P \in \mathcal{L}$:

► P

• for every formulas φ and ψ :

$$\blacktriangleright \neg \varphi, \varphi \land \psi$$

 $\blacktriangleright \langle \mathbf{d} \rangle \varphi$

• for every formula φ and graded operator \Diamond^n :

 $\blacktriangleright \Diamond^n \varphi$

 \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation

(日) (四) (문) (문) (문)

• call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - ▶ for every $P \in \mathcal{L}$:

► P

- for every formulas φ and ψ :
 - $\blacktriangleright \neg \varphi, \varphi \wedge \psi$
 - $\blacktriangleright \langle d \rangle \varphi$
- for every formula φ and graded operator \Diamond^n :
 - $\blacktriangleright \Diamond^n \varphi$
- \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation
 - call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - ▶ for every $P \in \mathcal{L}$:
 - ► P
 - \blacktriangleright for every formulas φ and ψ :
 - $\blacktriangleright \neg \varphi, \varphi \land \psi$
 - $\checkmark \langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\blacktriangleright \Diamond^n \varphi$
 - \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation
 - call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - \blacktriangleright for every formulas φ and $\psi :$
 - $\blacktriangleright \ \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\blacktriangleright \Diamond^n \varphi$
 - \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation
 - call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - \blacktriangleright for every formulas φ and $\psi :$
 - $\blacktriangleright \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\blacktriangleright \Diamond^n \varphi$
 - \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation
 - call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - \blacktriangleright for every formulas φ and $\psi :$
 - $\blacktriangleright \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$

 $\triangleright \Diamond^n \varphi$

- for every formula φ and graded operator \Diamond^n :
- \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation

(日) (문) (문) (문) (문)

• call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - \blacktriangleright for every formulas φ and $\psi :$
 - $\blacktriangleright \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\Diamond^n \varphi$
 - \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation
 - call them sentences of \mathcal{L}_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - for every formulas φ and ψ :
 - $\blacktriangleright \ \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\Diamond^n \varphi$
 - ▶ truth of $\Diamond^n \varphi$, $\neg \Diamond^n \varphi$ is independent from the point of evaluation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

call them sentences of L_m

- formulas of \mathcal{L}_m :
 - for every $P \in \mathcal{L}$:
 - ► P
 - for every formulas φ and ψ :
 - $\blacktriangleright \ \neg \varphi, \ \varphi \wedge \psi$
 - $\langle d \rangle \varphi$
 - for every formula φ and graded operator \Diamond^n :
 - $\Diamond^n \varphi$
 - \blacktriangleright truth of $\Diamond^n \varphi, \neg \Diamond^n \varphi$ is independent from the point of evaluation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• call them sentences of \mathcal{L}_m

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T₃ model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

via usual standard translation

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T_3 model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

via usual standard translation

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T_3 model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

- via usual standard translation
- $\blacktriangleright ST_{x}(\langle d \rangle \varphi) := \forall U(x \varepsilon U \to \exists y (\neg x = y \land y \varepsilon U \land ST_{y}(\varphi)))$

(日) (문) (문) (문) (문)

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T_3 model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

via usual standard translation

►
$$ST_x(\langle d \rangle \varphi) := \forall U(x \in U \to \exists y (\neg x = y \land y \in U \land ST_y(\varphi)))$$

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T_3 model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

via usual standard translation

$$\blacktriangleright ST_x(\langle d \rangle \varphi) := \forall U(x \varepsilon U \to \exists y (\neg x = y \land y \varepsilon U \land ST_y(\varphi)))$$

Theorem 1

For every sentence $\alpha \in \mathcal{L}_m$ there is a sentence $\varphi \in \mathcal{L}_t$ such that for every T_3 model \mathcal{A} we have that $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

Proof.

via usual standard translation

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- ▶ if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

• $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$

• quantifier depth of $\varphi = modal$ depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- ▶ if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

(日) (문) (문) (문)

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- ▶ if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- ▶ if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

- $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \alpha$
- quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

•
$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{A} \models \alpha$

• quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. n

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

•
$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{A} \models \alpha$

• quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- then \mathcal{A} and \mathcal{B} agree on the sentences of \mathcal{L}_t with quant. dep. *n*

(미) (윤) (분) (분) [(명) (명) (분) (명)

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

•
$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{A} \models \alpha$

• quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- ▶ then A and B agree on the sentences of L_t with quant. dep. *n*

(미) (**3**) (환) (환) [

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 2

For every sentence φ of \mathcal{L}_t there is a sentence $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} we have that:

•
$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{A} \models \alpha$

• quantifier depth of φ = modal depth of α

Proof.

- Ehrenfeucht-Fraïssé game $G_n(\mathcal{A}, \mathcal{B})$
- if Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- ▶ then A and B agree on the sentences of L_t with quant. dep. *n*

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = ≧

- ▶ if T₃ mod.s A and B agree on the sent.s of L_m with mod. dep. n
- ▶ than Player II has a winning strategy in $G_n(\mathcal{A}, \mathcal{B})$
- thesis follows

Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ▶ there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $lpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models

Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ▶ there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $lpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models
Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ► there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $\alpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models

Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ► there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $\alpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models

Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ► there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $\alpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models

Theorem 3

There is a computable trans. between sent.s in \mathcal{L}_t and sent.s in \mathcal{L}_m

Proof.

- sentence $\varphi \in \mathcal{L}_t$ with quant. dep. *n*
- ► there is a sentence in L_m with modal depth n equivalent to φ on T₃ models
- finitely many candidates $\alpha \in \mathcal{L}_m$
- \mathcal{L}_t decidable on the class of all T₃ models
- ▶ for every cand. α , check $\varphi \leftrightarrow \alpha$ on the class of all T₃ models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem 4

- For every formula α ∈ L_m there is a formula φ(x) ∈ L_t such that for every T₃ model A and point a ∈ A we have that A ⊨ φ[a] if and only if A, a ⊨ α
- 2. For every formula $\varphi(x) \in \mathcal{L}_t$ there is a formula $\alpha \in \mathcal{L}_m$ such that for every T_3 model \mathcal{A} and point $a \in \mathcal{A}$ we have that:

•
$$\mathcal{A} \models \varphi[\mathbf{a}]$$
 if and only if $\mathcal{A}, \mathbf{a} \models \alpha$

- quantifier depth of $\varphi(x) = modal$ depth of α
- 3. There is a computable translation between formulas $\varphi(x)$ in \mathcal{L}_t and formulas in \mathcal{L}_m

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- ▶ there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- ▶ there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- ▶ there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ▶ corollary: L_m cannot express T₃ness on the class of all T₂ models

Theorem 5

 \mathcal{L}_{m} does not capture \mathcal{L}_{t} on any class including all T_{2} models

Proof.

- adequate notion of bisimulation for \mathcal{L}_m
- ▶ there is a model A, T_2 but not T_3 , bisimilar to a T_3 model B
- \mathcal{L}_t can express that a space is T_3
- if \mathcal{L}_m were equivalent to \mathcal{L}_t on T_2 spaces
- \mathcal{A} would be T_3 : contradiction
- ► corollary: L_m cannot express T₃ness on the class of all T₂ models

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem 6

The \mathcal{L}_m -theory of the classes all T_3 , T_2 , T_1 models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\blacktriangleright \ \Diamond^{n+1} p \to \Diamond^n p$
- $\blacktriangleright \ \Box^0(p \to q) \to (\Diamond^n p \to \Diamond^n q)$
- $\blacktriangleright \Diamond^{!0}(p \land q) \to ((\Diamond^{!n_1}p \land \Diamond^{!n_2}q) \to \Diamond^{!n_1+n_2}(p \lor q))$
- $\blacktriangleright \square^0 p \rightarrow p$
- $\blacktriangleright \Diamond^n p \rightarrow \Box^0 \Diamond^n p$
- $\blacktriangleright \ [d](p \to q) \to ([d]p \to [d]q)$
- $[d]p \rightarrow [d][d]p$
- $\blacktriangleright \langle d \rangle p \to \Diamond^n p$

Theorem 6

The \mathcal{L}_m -theory of the classes all T_3 , T_2 , T_1 models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\blacktriangleright \Diamond^{n+1} p \to \Diamond^n p$

$$\blacktriangleright \ \Box^0(p \to q) \to (\Diamond^n p \to \Diamond^n q)$$

- $\blacktriangleright \Diamond^{!0}(p \land q) \to ((\Diamond^{!n_1}p \land \Diamond^{!n_2}q) \to \Diamond^{!n_1+n_2}(p \lor q))$
- ▶ $□^0 p \rightarrow p$
- $\blacktriangleright \Diamond^n p \to \Box^0 \Diamond^n p$
- $\blacktriangleright \ [d](p \to q) \to ([d]p \to [d]q)$
- $[d]p \rightarrow [d][d]p$

•
$$\langle d \rangle p \rightarrow \Diamond^n p$$

$$\blacktriangleright \quad \frac{\varphi}{\varphi(\chi/p)}, \quad \frac{\varphi, \varphi \to \psi}{\psi}, \quad \frac{\varphi}{\Box^0 \varphi}, \quad \frac{\varphi}{[d]\varphi}$$

Theorem 6

The \mathcal{L}_m -theory of the classes all T_3 , T_2 , T_1 models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\blacktriangleright \Diamond^{n+1} p \to \Diamond^n p$
- $\blacktriangleright \ \Box^0(p \to q) \to (\Diamond^n p \to \Diamond^n q)$
- $\blacktriangleright \Diamond^{!0}(p \land q) \to ((\Diamond^{!n_1}p \land \Diamond^{!n_2}q) \to \Diamond^{!n_1+n_2}(p \lor q))$
- $\Box^0 p \rightarrow p$
- $\blacktriangleright \Diamond^n p \to \Box^0 \Diamond^n p$
- ► $[d](p \rightarrow q) \rightarrow ([d]p \rightarrow [d]q)$
- $[d]p \rightarrow [d][d]p$
- $\blacktriangleright \langle d \rangle p \to \Diamond^n p$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Theorem 6

The \mathcal{L}_m -theory of the classes all T_3 , T_2 , T_1 models (resp.) is rec. axiomatizable

- all propositional tautologies
- $\blacktriangleright \Diamond^{n+1} p \to \Diamond^n p$
- $\blacktriangleright \ \Box^0(p \to q) \to (\Diamond^n p \to \Diamond^n q)$
- $\blacktriangleright \Diamond^{!0}(p \land q) \to ((\Diamond^{!n_1}p \land \Diamond^{!n_2}q) \to \Diamond^{!n_1+n_2}(p \lor q))$
- $\Box^0 p \rightarrow p$
- $\blacktriangleright \Diamond^n p \to \Box^0 \Diamond^n p$
- ► $[d](p \rightarrow q) \rightarrow ([d]p \rightarrow [d]q)$
- ▶ $[d]p \rightarrow [d][d]p$
- $\langle d \rangle p \rightarrow \Diamond^n p$

Proof.

- soundness on the class of all T₁ models:
 - ▶ axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model
- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ

- turn the Kripke model into a T_3 model satisfying Γ
- $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T_1 models:
 - axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model
- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ

- \blacktriangleright turn the Kripke model into a T_3 model satisfying Γ
- $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model

- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ
 - turn the Kripke model into a T_3 model satisfying Γ
- $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ► inference rules preserve validities on every T₁ topological model

- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ
 - turn the Kripke model into a T_3 model satisfying Γ
- $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ► inference rules preserve validities on every T₁ topological model

- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - build a Kripke model validating the axioms and satisfying Γ
 - turn the Kripke model into a T_3 model satisfying Γ
- $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model
- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ

• turn the Kripke model into a T_3 model satisfying Γ

 $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ
 - turn the Kripke model into a T_3 model satisfying Γ

 $\blacktriangleright \mathsf{T}_1 \supseteq \mathsf{T}_2 \supseteq \mathsf{T}_3$

Proof.

- soundness on the class of all T₁ models:
 - axioms are valid on every T₁ topological model
 - ▶ inference rules preserve validities on every T₁ topological model
- completeness on the class of all T₃ models:
 - given a maximal consistent set Γ
 - \blacktriangleright build a Kripke model validating the axioms and satisfying Γ

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- turn the Kripke model into a T_3 model satisfying Γ
- ► $T_1 \supseteq T_2 \supseteq T_3$

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ▶ checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ► checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ► checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ► checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ► checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - checking the satisfiability of φ ∈ L_m on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - ► checking the satisfiability of $\varphi \in \mathcal{L}_m$ on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 7

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE:
 - checking the satisfiability of φ ∈ L_m on the classes of all T₃, T₂, T₁ models (resp.) reduces to:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- checking PTIME properties of a forest of
- polynomially many
- polynomially deep
- rooted trees
- (properties) that regards
- either the set of all root nodes
- or one branch at a time

Theorem 8

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete:

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE-hard:
 - the (d)-theory of the classes of all T₃, T₂, T₁ models (resp.) is K4 which is PSPACE-hard

(中) (문) (문) (문) (문) (문)

• the $\langle d \rangle$ -language $\subseteq \mathcal{L}_m$

Theorem 8

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete:

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE-hard:
 - ► the ⟨d⟩-theory of the classes of all T₃, T₂, T₁ models (resp.) is K4 which is PSPACE-hard

▶ the $\langle d \rangle$ -language $\subseteq \mathcal{L}_m$
Original results

Theorem 8

The \mathcal{L}_m -theory of the classes of all T_3 , T_2 , T_1 models (resp.) is PSPACE-complete:

Proof.

- ► the L_m-theory of the classes of all T₃, T₂, T₁ models (resp.) is PSPACE-hard:
 - ► the ⟨d⟩-theory of the classes of all T₃, T₂, T₁ models (resp.) is K4 which is PSPACE-hard

▶ the $\langle d
angle$ -language $\subseteq \mathcal{L}_m$

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

(日) (四) (코) (코) (코) (코)

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- ▶ what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T₂ and all T₃?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- ▶ what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

(日) (문) (문) (문) (문)

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

(日) (문) (문) (문) (문)

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - ► *µ*-calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - ▶ *µ*-calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - μ -calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - ► *µ*-calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- what is the complexity of the trans. between \mathcal{L}_t and \mathcal{L}_m on T_3 mod.s?
- does \mathcal{L}_m capture \mathcal{L}_t on classes between all T_2 and all T_3 ?
- does \mathcal{L}_m capture \mathcal{L}_t on other classes?
- ► can we increase L_m to capture L_t on other classes than all T₃ models?

- hybrid logic
- How can we increase \mathcal{L}_m without loosing decidability?
- How can we increase \mathcal{L}_m beyond first order logic?
 - ► *µ*-calculus
 - is $\mathcal{L}_m + \mu$ decidable?
 - is $\mathcal{L}_m + \mu$ invariant under changing base?

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - $\blacktriangleright \mathbb{R}^n \ (n \in \omega)$
 - \blacktriangleright over $\mathbb R$ we can split $\langle d\rangle$ and $\{\Diamond^n\}_{n\in\omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ▶ What is the fragment of first-order logic that *L_m* corresponds to in the standard Kripke semantics?

<ロト <四ト <注入 <注下 <注下 <

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - $\mathbb{R}^n \ (n \in \omega)$
 - \blacktriangleright over $\mathbb R$ we can split $\langle d\rangle$ and $\{\Diamond^n\}_{n\in\omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ▶ What is the fragment of first-order logic that *L_m* corresponds to in the standard Kripke semantics?

・ロト ・四ト ・ヨト ・ヨト

- E

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - ▶ \mathbb{R}^n ($n \in \omega$)
 - over $\mathbb R$ we can split $\langle d\rangle$ and $\{\Diamond^n\}_{n\in\omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ▶ What is the fragment of first-order logic that *L_m* corresponds to in the standard Kripke semantics?

<ロト <四ト <注入 <注下 <注下 <

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - ▶ \mathbb{R}^n ($n \in \omega$)
 - ▶ over \mathbb{R} we can split $\langle d \rangle$ and $\{\Diamond^n\}_{n \in \omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ▶ What is the fragment of first-order logic that *L_m* corresponds to in the standard Kripke semantics?

(日) (四) (코) (코) (코) (코)

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - ▶ \mathbb{R}^n ($n \in \omega$)
 - ▶ over \mathbb{R} we can split $\langle d \rangle$ and $\{\Diamond^n\}_{n \in \omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ▶ What is the fragment of first-order logic that *L_m* corresponds to in the standard Kripke semantics?

(日) (四) (코) (코) (코) (코)

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - ▶ \mathbb{R}^n ($n \in \omega$)
 - ▶ over \mathbb{R} we can split $\langle d \rangle$ and $\{\Diamond^n\}_{n \in \omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ► What is the fragment of first-order logic that L_m corresponds to in the standard Kripke semantics?

(日) (四) (코) (코) (코) (코)

- ▶ study of the \mathcal{L}_m -theory of particular (classes of) T_3 spaces
 - metric spaces
 - ▶ \mathbb{R}^n ($n \in \omega$)
 - ▶ over \mathbb{R} we can split $\langle d \rangle$ and $\{\Diamond^n\}_{n \in \omega}$ in their future and past components
- If we replace ⟨d⟩ with ◊ in L_m, does the new L_m capture L_t on T₃ spaces?
- ► What is the fragment of first-order logic that L_m corresponds to in the standard Kripke semantics?

(日) (문) (문) (문) (문)

Modal characterization of a first order language for topology

Alberto Gatto Imperial College London alberto.gatto@imperial.ac.uk