Modal characterization of a first order language
for topology

Alberto Gatto
Imperial College London
alberto.gatto@imperial.ac.uk



Summary

» first order language L; for topology



Summary

» first order language L; for topology

» modal language L, for topology



Summary

» first order language L; for topology
» modal language L, for topology

» original results



Summary

v

first order language L; for topology

v

modal language L, for topology

v

original results

> open questions



First order language L; for topology



First order language L; for topology

» topological model:



First order language L; for topology

» topological model:
» given a signature £ = ({R;}, {fi},{c})



First order language L; for topology

» topological model:
» given a signature £ = ({R:}, {fi},{c})
> topological model for £



First order language L; for topology

» topological model:
» given a signature £ = ({R:}, {fi},{c})
> topological model for £

> A:(A,Uy{R,A}v{f;A}a{CIA})



First order language L; for topology

» topological model:
» given a signature £ = ({R:}, {fi},{c})
> topological model for £
> A= (Ao (R} {4} {c))
» (A, o) topological space



First order language L; for topology

» topological model:
» given a signature £ = ({R:}, {fi},{c})
topological model for £
A= (A0, {RA}{FA} {c))
(A, o) topological space
({RA}, {fA}, {c*}) interpretation of £ in A

vV vy vVvyy



First order language L; for topology

> language L;:



First order language L; for topology

» language L;:
> two-sorted first order language



First order language L; for topology

» language L;:
> two-sorted first order language
> X,Y,... point-sort variables



First order language L; for topology

> language L;:
> two-sorted first order language
> X,Y,... point-sort variables
» U, V,... open-sort variables



First order language L; for topology

> language L;:
> two-sorted first order language
> X,Y,... point-sort variables
» U, V,... open-sort variables
» = equality symbol



First order language L; for topology

> language L;:

two-sorted first order language
X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol

vV vy vy VvVYy



First order language L; for topology

> language L;:

two-sorted first order language
X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol
symbols in £

vV vy vy VvV VY



First order language L; for topology

> language L¢:

two-sorted first order language

X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol

L:={P;|i € w} with P; point-sort unary relation symbol

vV vy vy VY VY



First order language L; for topology

> language L¢:

two-sorted first order language

X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol

L:={P;|i € w} with P; point-sort unary relation symbol
=, A (V,—, <> usual abbreviations)

vV VvV vy VY VY VY



First order language L; for topology

> language L¢:

two-sorted first order language

X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol

L:={P;|i € w} with P; point-sort unary relation symbol
=, A (V,—, <> usual abbreviations)

Jx, Vx existential /universal point-sort quantification

vV vV VY VY VY VY



First order language L; for topology

> language L¢:

two-sorted first order language

X, Y, ... point-sort variables

U, V,... open-sort variables

= equality symbol

€ set membership symbol

L:={P;|i € w} with P; point-sort unary relation symbol
=, A (V,—, <> usual abbreviations)

Jx, Vx existential /universal point-sort quantification

3U, YU existential /universal open-sort quantification

vV vV vV vV VY VY VvV VY



First order language L; for topology

» formulas of L;:



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:

> x=y,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> —\(p,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> o, p AY,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> S, o A, Ixp,



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> o, e A, Ixp, Vxp



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> e, @ A, Axp, Vxp
» open-sort quantification in the form:



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> o, e A, Ixp, Vxp

» open-sort quantification in the form:
» YU(xeU — )



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
» for every formulas ¢ and v and point-sort variable x:
> o, e A, Ixp, Vxp

» open-sort quantification in the form:
» YU(xeU — )

» U is an open-sort variable



First order language L; for topology

» formulas of L;:

» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)

» for every formulas ¢ and v and point-sort variable x:
> e, @ A, Axp, Vxp

» open-sort quantification in the form:

» YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable



First order language L; for topology

» formulas of L;:

» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)

» for every formulas ¢ and v and point-sort variable x:
> o e AY, Ixp, Vxp

» open-sort quantification in the form:

» YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are positive (within an even nb. of —s)



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
for every formulas ¢ and i and point-sort variable x:
> o e AY, Ixp, Vxp
open-sort quantification in the form:
YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are positive (within an even nb. of —s)

FU(xeU A )

v

vy

v



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
for every formulas ¢ and i and point-sort variable x:
> o e AY, Ixp, Vxp
open-sort quantification in the form:
YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are positive (within an even nb. of —s)

FU(xeU A )

» U is an open-sort variable

v

vy

v



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
for every formulas ¢ and i and point-sort variable x:
> o e AY, Ixp, Vxp
open-sort quantification in the form:
YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are positive (within an even nb. of —s)

FU(xeU A )

» U is an open-sort variable
> X is a point-sort variable

v

vy

v



First order language L; for topology

» formulas of L;:
» for every point-sort var.s x, y, open-sort var.s U,V and P € L:
» x=y, U=V, xeU, P(x)
for every formulas ¢ and i and point-sort variable x:
> o e AY, Ixp, Vxp
open-sort quantification in the form:
YU(xeU — )
» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are positive (within an even nb. of —s)

FU(xeU A )

» U is an open-sort variable
> X is a point-sort variable
> all free occ.s of U in ¢ are negative (within an odd nb. of —s)

v

vy

v



First order language L; for topology

» examples of formulas in L;:



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeUA P(y)))



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

®




First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

®
» VxVy(-x =y — JU(xeU A ~yel))



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

®
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

%)
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®

» if we allow open quantification in the form:



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

%)
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®

» if we allow open quantification in the form:
» YUy with ¢ an arbitrary formula



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

%)
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®

» if we allow open quantification in the form:
» YUy with ¢ an arbitrary formula
» JUp with ¢ an arbitrary formula



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

%)
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®

» if we allow open quantification in the form:
» YUy with ¢ an arbitrary formula
» JUp with ¢ an arbitrary formula
» then we obtain £»



First order language L; for topology

» examples of formulas in L;:
» YU(xeU — Jy(—-x =y AyeU A P(y)))

%)
» VxVy(-x =y — JU(xeU A ~yel))
~—~—
®

» if we allow open quantification in the form:
» YUy with ¢ an arbitrary formula

JFUp with ¢ an arbitrary formula

then we obtain £,

L:C Ly

v vy



First order language L; for topology

> properties of L;:



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.



First order language L; for topology

> properties of L;:

» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:
> that a space is compact/connected



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:
> that a space is compact/connected

» L, is decidable on the class of all T3 spaces



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:
> that a space is compact/connected

v

L; is decidable on the class of all T3 spaces
L; is not decidable on the classes of all Ty, Ty, T, spaces resp.

v



First order language L; for topology

> properties of L;:
» L; enjoys compactness and Lowenheim-Skolem thm.
» L; can express:
> To,T1,T2,Ts
> triviality, discreteness
» L, cannot express:
> that a space is compact/connected
» L, is decidable on the class of all T3 spaces
» L; is not decidable on the classes of all Tg, Ty, T> spaces resp.
» Lindstrom thm.: there is no language on topological models
more expressive than L£; enjoying compactness and
Lowenheim-Skolem thm.



First order language L; for topology

> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})



First order language L; for topology

> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})

> [3 topological base



First order language L; for topology

> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})
> [3 topological base
» ¢(x,X) € Ly invariant under changing base if its truth value
on A = (A, 3,{P#}) does not change by replacing 3 with a
base 7 that generates the same topology as 3



First order language L; for topology

> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})
> [3 topological base
» ¢(x,X) € Ly invariant under changing base if its truth value
on A = (A, 3,{P#}) does not change by replacing 3 with a
base 7 that generates the same topology as 3
» L, is invariant under changing base



First order language L; for topology

> properties of L;:
> L, Ly over basoid models: A = (A, 3, {P})
> [3 topological base

» ¢(x,X) € Ly invariant under changing base if its truth value
on A = (A, 3,{P#}) does not change by replacing 3 with a
base 7 that generates the same topology as 3

» L, is invariant under changing base

» every formula in £y invariant under changing base is equivalent
to a formula in L;



Modal language L, for topology



Modal language L, for topology

> topological models A = (A, o, {PA})



Modal language L, for topology

> topological models A = (A, o, {PA})
> language L,:



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables
» =, A (V,—, < usual abbreviations)



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables

» =, A (V,—, < usual abbreviations)
» derivative operator (d):



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables

» =, A (V,—, < usual abbreviations)
» derivative operator (d):

» A al= (d)p iff in every nbh of aexists b# ast A, b= ¢



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables
» =, A (V,—, <> usual abbreviations)
» derivative operator (d):

» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
» graded operators {0"}peu:



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
» L = {P;} as propositional variables
» =, A (V,—, <> usual abbreviations)
» derivative operator (d):

» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
» graded operators {0"}peu:
» A, a = 0" iff exist more than n points b € A with A, b E ¢



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:

L = {P;} as propositional variables
=, A (V,—, > usual abbreviations)
derivative operator (d):

» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
graded operators {0"} e

» A, a = 0" iff exist more than n points b € A with A, b E ¢
[d] abbreviates —(d)—

v

vy

v

v



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:

L = {P;} as propositional variables
=, A (V,—, > usual abbreviations)
derivative operator (d):

» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
graded operators {0"} e

» A, a = 0" iff exist more than n points b € A with A, b E ¢
[d] abbreviates —(d)—
0" abbreviates ("=

v

vy

v

v

v



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:
L = {P;} as propositional variables
=, A (V,—, > usual abbreviations)
derivative operator (d):
» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
graded operators {0"} e
» A, a = 0" iff exist more than n points b € A with A, b E ¢
[d] abbreviates —(d)—
0" abbreviates ="~
O'"p abbreviates (" 1p A ~O"p:

v

vy

v

v

vy



Modal language L, for topology

> topological models A = (A, o, {PA})
> language Ln:

L = {P;} as propositional variables
=, A (V,—, > usual abbreviations)
derivative operator (d):

» A,a = (d)p iff in every nbh of aexists b# ast A, b= ¢
graded operators {0"} e

» A, a = 0" iff exist more than n points b € A with A, b E ¢
[d] abbreviates —(d)—
0" abbreviates ==
O'"p abbreviates (" 1p A ~O"p:

» A, al= 0" iff exist exactly n points b € A with A, b = ¢

v

vy

v

v

vy



Modal language L, for topology

» formulas of L,;:



Modal language L, for topology

» formulas of L,;:
> for every P € L:



Modal language L, for topology

» formulas of L,;:
> for every P € L:
» P



Modal language L, for topology

» formulas of L,;:
> for every P € L:
> P
» for every formulas ¢ and ¥:



Modal language L, for topology

» formulas of L,;:
> for every P € L:
> P
» for every formulas ¢ and ¥:
> e e AY



Modal language L, for topology

» formulas of L,;:
> for every P € L:
> P
» for every formulas ¢ and ¥:

> o, p AY
> (d)p



Modal language L, for topology

» formulas of L,;:
> for every P € L:
> P
» for every formulas ¢ and ¥:
> o o ANY
> (d)¢
» for every formula ¢ and graded operator {":



Modal language L, for topology

» formulas of L,;:

> for every P € L:
> P

» for every formulas ¢ and ¥:
> o, pAY
> (d)¢

» for every formula ¢ and graded operator {":
> <>"(p



Modal language L, for topology

» formulas of L,;:
> for every P € L:
> P
» for every formulas ¢ and ¥:
> o, pAY
> (d)y
» for every formula ¢ and graded operator {":
> O"p
> truth of {"p, =0 ¢ is independent from the point of evaluation



Modal language L, for topology

» formulas of L,;:

> for every P € L:
> P

» for every formulas ¢ and ¥:
> o, pAY
> (d)y

» for every formula ¢ and graded operator {":
> O"p

> truth of {"p, =0 ¢ is independent from the point of evaluation
> call them sentences of L,



Original results



Original results

Theorem 1
For every sentence a € L, there is a sentence ¢ € L such that
for every T3 model A we have that A |= ¢ if and only if A = «



Original results

Theorem 1

For every sentence a € L, there is a sentence ¢ € L such that
for every T3 model A we have that A |= ¢ if and only if A = «

Proof.

» via usual standard translation



Original results

Theorem 1

For every sentence a € L, there is a sentence ¢ € L such that
for every T3 model A we have that A |= ¢ if and only if A = «

Proof.
» via usual standard translation

» ST ((d)¢) :=VU(xeU — Jy(—x =y AyeU A ST,(¢)))



Original results

Theorem 1

For every sentence a € L, there is a sentence ¢ € L such that
for every T3 model A we have that A |= ¢ if and only if A = «

Proof.
> via usual standard translation
» ST ((d)p) :=VU(xeU — Jy(—~x =y AyeU A ST, (¥)))
> ST(O"p) := Elxo...EIx,,(/\,-# X = Xj A\ /\ienJrl ST.(¥))



Original results

Theorem 1

For every sentence a € L, there is a sentence ¢ € L such that
for every T3 model A we have that A |= ¢ if and only if A = «

Proof.

» via usual standard translation
» ST ((d)p) :=VU(xeU — Jy(—~x =y AyeU A ST, (¥)))

> ST (O"p) := EIXO..EIX,,(/\,-# X = Xj A /\iEn—i-l ST.(¥))
» both formulas are in £;



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A=y ifandonly if A E «



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A=y ifandonly if A E «

> quantifier depth of ¢ = modal depth of «



Original results

Theorem 2

For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A=y ifandonly if A E «
> quantifier depth of ¢ = modal depth of «
Proof.

» Ehrenfeucht-Fraissé game G,(A, B)



Original results

Theorem 2

For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A=y ifandonly if A E «
> quantifier depth of ¢ = modal depth of «

Proof.

» Ehrenfeucht-Fraissé game G,(A, B)
» if Player Il has a winning strategy in G,(A, B)



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A=y ifandonly if A E «
> quantifier depth of ¢ = modal depth of «

Proof.

» Ehrenfeucht-Fraissé game G,(A, B)
» if Player Il has a winning strategy in G,(A, B)

» then A and B agree on the sentences of £; with quant. dep. n



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that

for every T3 model A we have that:
» A=y ifandonly if A E «
> quantifier depth of ¢ = modal depth of «

Proof.

» Ehrenfeucht-Fraissé game G,(A, B)
» if Player Il has a winning strategy in G,(A, B)
» then A and B agree on the sentences of £; with quant. dep. n

» if T3 mod.s A and B agree on the sent.s of £, with mod.
dep. n



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

» A g ifandonly if A |E «

>

quantifier depth of ¢ = modal depth of «

Proof.

>

>

>

Ehrenfeucht-Fraissé game G,(A, B)

if Player Il has a winning strategy in G,(A, B)

then A and B agree on the sentences of £; with quant. dep. n
if T3 mod.s A and B agree on the sent.s of £,, with mod.
dep. n

than Player Il has a winning strategy in G,(A, B)



Original results

Theorem 2
For every sentence ¢ of L; there is a sentence o € L, such that
for every T3 model A we have that:

>

>

A ¢ ifandonly if A=«
quantifier depth of ¢ = modal depth of «

Proof.

>

>

>

Ehrenfeucht-Fraissé game G,(A, B)

if Player Il has a winning strategy in G,(A, B)

then A and B agree on the sentences of £; with quant. dep. n
if T3 mod.s A and B agree on the sent.s of £,, with mod.
dep. n

than Player Il has a winning strategy in G,(A, B)

thesis follows



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,

» L; decidable on the class of all T3 models



Original results

Theorem 3
There is a computable trans. between sent.s in L; and sent.s in L,

Proof.

> sentence ¢ € L; with quant. dep. n

> there is a sentence in L, with modal depth n equivalent to ¢
on T3 models

» finitely many candidates a € £,
» L; decidable on the class of all T3 models

> for every cand. «, check ¢ <> a on the class of all T3 models

O



Original results

Theorem 4

1. For every formula o € L, there is a formula ¢(x) € Ly such
that for every T3 model A and point a € A we have that
A |= pla] if and only if A, a = «
2. For every formula p(x) € L there is a formula o € L, such
that for every T3 model A and point a € A we have that:
» A= pla] ifand only if A,a = «
» quantifier depth of ¢(x) = modal depth of
3. There is a computable translation between formulas o(x) in
L and formulas in L,



Original results

Theorem 5
L, does not capture L, on any class including all T, models



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,
» there is a model A, Ty but not T3, bisimilar to a T3 model B



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,
» there is a model A, Ty but not T3, bisimilar to a T3 model B

> L; can express that a space is T3



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,
» there is a model A, Ty but not T3, bisimilar to a T3 model B

> L; can express that a space is T3

v

if £, were equivalent to £; on T, spaces



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,
» there is a model A, Ty but not T3, bisimilar to a T3 model B

> L; can express that a space is T3

v

if £, were equivalent to £; on T, spaces

v

A would be T3: contradiction



Original results

Theorem 5
L, does not capture L, on any class including all T, models

Proof.

» adequate notion of bisimulation for £,
» there is a model A, Ty but not T3, bisimilar to a T3 model B

> L; can express that a space is T3

v

if £, were equivalent to £; on T, spaces

v

A would be T3: contradiction

v

corollary: L, cannot express T3ness on the class of all T»
models



Original results

Theorem 6
The Ly,-theory of the classes all T3, Ty, T1 models (resp.) is rec.
axiomatizable



Original results

Theorem 6
The Ly,-theory of the classes all T3, Ty, T1 models (resp.) is rec.
axiomatizable

» all propositional tautologies
> O™l 5 OMp
O%(p — q) = (0"p — 0"q)
0"%pAg) = ((0'MmpAOImg) = O'mF™(pV q))
°p—p
O"p — O%"p
[d](p — q) = ([d]p — [d]q)
[d]p — [d][d]p
(d)p—QO"p
@ 0= @ @
e(x/p) v D% T [dly

v

v

v

v

v

v

v




Original results

Theorem 6
The Ly,-theory of the classes all T3, Ty, T1 models (resp.) is rec.
axiomatizable

» all propositional tautologies
O"p — O"p
%(p — q) = (0"p — O"q)
<>!0(p A q) — ((O!”lp A <>!n2q) — <>!n1+n2(p vV q))
p—p
O"p — O%"p
[d](p — q) = ([d]p — [d]q)
[d]p — [d][d]p
(d)p—QO"p
% ©, 0 =1 @ %
v(x/p) L L O %

v

v

v

v

v

v

v

v




Original results

Theorem 6
The Ly,-theory of the classes all T3, Ty, T1 models (resp.) is rec.
axiomatizable

» all propositional tautologies
O"p — O"p
%(p — q) = (0"p — O"q)
<>!0(p A q) — ((O!”lp A <>!n2q) — <>!n1+n2(p vV q))
p—p
O"p — O%"p
[d](p — q) = ([d]p — [d]q)
[d]p — [d][d]p
(d)p—QO"p
% ©, 0 =1 @ %
v(x/p) v e T [dle

v

v

v

v

v

v

v

v




Original results
Proof.

» soundness on the class of all T; models:



Original results
Proof.

» soundness on the class of all T; models:
» axioms are valid on every T; topological model



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model

» completeness on the class of all T3 models:



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model

» completeness on the class of all T3 models:
> given a maximal consistent set I



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model

» completeness on the class of all T3 models:

> given a maximal consistent set I
> build a Kripke model validating the axioms and satisfying I



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model

> inference rules preserve validities on every T; topological model
» completeness on the class of all T3 models:

> given a maximal consistent set I

> build a Kripke model validating the axioms and satisfying I

> turn the Kripke model into a T3 model satisfying '



Original results
Proof.

» soundness on the class of all T; models:

» axioms are valid on every T; topological model
> inference rules preserve validities on every T; topological model

» completeness on the class of all T3 models:

> given a maximal consistent set I
> build a Kripke model validating the axioms and satisfying I
> turn the Kripke model into a T3 model satisfying '

» T1 OT7 OT3



Original results

Theorem 7
The Ly,-theory of the classes of all T3, T,, T1 models (resp.) is
PSPACE-complete



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:
» checking PTIME properties of a forest of



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

» checking PTIME properties of a forest of

» polynomially many



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

» checking PTIME properties of a forest of

» polynomially many

> polynomially deep



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

checking PTIME properties of a forest of

polynomially many

polynomially deep

rooted trees

vV vy VvVyy



Original results

Theorem 7

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

checking PTIME properties of a forest of

polynomially many

polynomially deep

rooted trees

(properties) that regards

vV vy vy VvVYyy



Original results

Theorem 7
The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

checking PTIME properties of a forest of

polynomially many

polynomially deep

rooted trees

(properties) that regards

either the set of all root nodes

vV vy vy VvV VvVYYy



Original results

Theorem 7
The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE:

» checking the satisfiability of ¢ € L£,,, on the classes of all T3,
To, T1 models (resp.) reduces to:

checking PTIME properties of a forest of

polynomially many

polynomially deep

rooted trees

(properties) that regards

either the set of all root nodes

or one branch at a time

vV vV vy VY VY VvVYYy



Original results

Theorem 8

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete:

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE-hard:



Original results

Theorem 8

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete:

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE-hard:

» the (d)-theory of the classes of all T3, T, T1 models (resp.) is
K4 which is PSPACE-hard



Original results

Theorem 8

The Ly,-theory of the classes of all T3, Tp, T1 models (resp.) is
PSPACE-complete:

Proof.

» the L,,-theory of the classes of all T3, T, T1 models (resp.)
is PSPACE-hard:

» the (d)-theory of the classes of all T3, T, T1 models (resp.) is
K4 which is PSPACE-hard
» the (d)-language C L,



Open questions



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?



Open questions
» what is the complexity of the trans. between L£; and L, on
T3 mod.s?
» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?



Open questions
» what is the complexity of the trans. between L£; and L, on
T3 mod.s?
» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?

> hybrid logic



Open questions

>

what is the complexity of the trans. between £; and L, on
T3 mod.s?

does L, capture L; on classes between all T, and all T3?

does L, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3

models?
> hybrid logic

How can we increase L, without loosing decidability?



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?

> hybrid logic
» How can we increase L, without loosing decidability?
» How can we increase L, beyond first order logic?



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?

> hybrid logic
» How can we increase L, without loosing decidability?

» How can we increase L, beyond first order logic?
» p-calculus



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?

> hybrid logic
» How can we increase L, without loosing decidability?

» How can we increase L, beyond first order logic?
» p-calculus
> is Ly, + p decidable?



Open questions

» what is the complexity of the trans. between L£; and L, on
T3 mod.s?

» does L, capture L; on classes between all T, and all T3?

» does L,, capture L; on other classes?

» can we increase L, to capture £; on other classes than all T3
models?
» hybrid logic
» How can we increase L, without loosing decidability?
» How can we increase L, beyond first order logic?
» p-calculus

> is Ly, + p decidable?
> is Lm + p invariant under changing base?



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces

> metric spaces
» R" (n € w)



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces
» R" (n € w)
» over R we can split (d) and {Q"},c. in their future and past
components



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces
» R" (n € w)
» over R we can split (d) and {Q"},c. in their future and past
components
> If we replace (d) with ¢ in L,,, does the new L, capture L;
on T3 spaces?



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces
» R" (n € w)
» over R we can split (d) and {Q"},c. in their future and past
components
> If we replace (d) with ¢ in L, does the new L, capture L;
on T3 spaces?
> What is the fragment of first-order logic that L, corresponds
to in the standard Kripke semantics?



Open questions

» study of the Lp,-theory of particular (classes of) T3 spaces
> metric spaces
» R" (n € w)
» over R we can split (d) and {Q"},c. in their future and past
components
> If we replace (d) with ¢ in L,,, does the new L, capture L;
on T3 spaces?
> What is the fragment of first-order logic that L, corresponds
to in the standard Kripke semantics?
» How does it relate to the (loosely) guarded fragment?



Modal characterization of a first order language
for topology

Alberto Gatto
Imperial College London
alberto.gatto@imperial.ac.uk



