
Modal characterization of a first order language
for topology

Alberto Gatto
Imperial College London

alberto.gatto@imperial.ac.uk

Summary

I first order language Lt for topology

I modal language Lm for topology

I original results

I open questions

Summary

I first order language Lt for topology

I modal language Lm for topology

I original results

I open questions

Summary

I first order language Lt for topology

I modal language Lm for topology

I original results

I open questions

Summary

I first order language Lt for topology

I modal language Lm for topology

I original results

I open questions

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I topological model:
I given a signature L = ({Ri}, {fi}, {ci})
I topological model for L
I A = (A, σ, {RAi }, {f Ai }, {cAi })
I (A, σ) topological space
I ({RAi }, {f Ai }, {cAi }) interpretation of L in A

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I symbols in L
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I L := {Pi | i ∈ ω} with Pi point-sort unary relation symbol
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I L := {Pi | i ∈ ω} with Pi point-sort unary relation symbol
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I L := {Pi | i ∈ ω} with Pi point-sort unary relation symbol
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I language Lt :
I two-sorted first order language
I x , y , ... point-sort variables
I U,V , ... open-sort variables
I = equality symbol
I ε set membership symbol
I L := {Pi | i ∈ ω} with Pi point-sort unary relation symbol
I ¬,∧ (∨,→, ↔ usual abbreviations)
I ∃x , ∀x existential/universal point-sort quantification
I ∃U, ∀U existential/universal open-sort quantification

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I formulas of Lt :
I for every point-sort var.s x , y , open-sort var.s U,V and P ∈ L:

I x = y , U = V , xεU, P(x)

I for every formulas ϕ and ψ and point-sort variable x :
I ¬ϕ, ϕ ∧ ψ, ∃xϕ, ∀xϕ

I open-sort quantification in the form:
I ∀U(xεU → ϕ)

I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are positive (within an even nb. of ¬s)

I ∃U(xεU ∧ ϕ)
I U is an open-sort variable
I x is a point-sort variable
I all free occ.s of U in ϕ are negative (within an odd nb. of ¬s)

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y)))
I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y)))
I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I examples of formulas in Lt :
I ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ P(y))︸ ︷︷ ︸

ϕ

)

I ∀x∀y(¬x = y → ∃U(xεU ∧ ¬yεU︸ ︷︷ ︸
ϕ

))

I if we allow open quantification in the form:
I ∀Uϕ with ϕ an arbitrary formula
I ∃Uϕ with ϕ an arbitrary formula
I then we obtain L2

I Lt ⊆ L2

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
I Lt can express:

I T0,T1,T2,T3

I triviality, discreteness

I Lt cannot express:
I that a space is compact/connected

I Lt is decidable on the class of all T3 spaces
I Lt is not decidable on the classes of all T0, T1, T2 spaces resp.
I Lindström thm.: there is no language on topological models

more expressive than Lt enjoying compactness and
Löwenheim-Skolem thm.

First order language Lt for topology

I properties of Lt :
I Lt , L2 over basoid models: A = (A, β, {PAi })

I β topological base

I ϕ(x ,X) ∈ L2 invariant under changing base if its truth value
on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent

to a formula in Lt

First order language Lt for topology

I properties of Lt :
I Lt , L2 over basoid models: A = (A, β, {PAi })

I β topological base

I ϕ(x ,X) ∈ L2 invariant under changing base if its truth value
on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent

to a formula in Lt

First order language Lt for topology

I properties of Lt :
I Lt , L2 over basoid models: A = (A, β, {PAi })

I β topological base

I ϕ(x ,X) ∈ L2 invariant under changing base if its truth value
on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent

to a formula in Lt

First order language Lt for topology

I properties of Lt :
I Lt , L2 over basoid models: A = (A, β, {PAi })

I β topological base

I ϕ(x ,X) ∈ L2 invariant under changing base if its truth value
on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent

to a formula in Lt

First order language Lt for topology

I properties of Lt :
I Lt , L2 over basoid models: A = (A, β, {PAi })

I β topological base

I ϕ(x ,X) ∈ L2 invariant under changing base if its truth value
on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent

to a formula in Lt

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Modal language Lm for topology

I formulas of Lm:
I for every P ∈ L:

I P

I for every formulas ϕ and ψ:
I ¬ϕ, ϕ ∧ ψ
I 〈d〉ϕ

I for every formula ϕ and graded operator ♦n:
I ♦nϕ

I truth of ♦nϕ,¬♦nϕ is independent from the point of evaluation
I call them sentences of Lm

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 3
There is a computable trans. between sent.s in Lt and sent.s in Lm

Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models

Original results

Theorem 4

1. For every formula α ∈ Lm there is a formula ϕ(x) ∈ Lt such
that for every T3 model A and point a ∈ A we have that
A |= ϕ[a] if and only if A, a |= α

2. For every formula ϕ(x) ∈ Lt there is a formula α ∈ Lm such
that for every T3 model A and point a ∈ A we have that:

I A |= ϕ[a] if and only if A, a |= α
I quantifier depth of ϕ(x) = modal depth of α

3. There is a computable translation between formulas ϕ(x) in
Lt and formulas in Lm

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models

Original results

Theorem 6
The Lm-theory of the classes all T3, T2, T1 models (resp.) is rec.
axiomatizable

I all propositional tautologies

I ♦n+1p → ♦np
I �0(p → q)→ (♦np → ♦nq)

I ♦!0(p ∧ q)→ ((♦!n1p ∧ ♦!n2q)→ ♦!n1+n2(p ∨ q))

I �0p → p

I ♦np → �0♦np

I [d](p → q)→ ([d]p → [d]q)

I [d]p → [d][d]p

I 〈d〉p → ♦np

I
ϕ

ϕ(χ/p)
,

ϕ,ϕ→ ψ

ψ
,

ϕ

�0ϕ
,

ϕ

[d]ϕ

Original results

Theorem 6
The Lm-theory of the classes all T3, T2, T1 models (resp.) is rec.
axiomatizable

I all propositional tautologies

I ♦n+1p → ♦np
I �0(p → q)→ (♦np → ♦nq)

I ♦!0(p ∧ q)→ ((♦!n1p ∧ ♦!n2q)→ ♦!n1+n2(p ∨ q))

I �0p → p

I ♦np → �0♦np

I [d](p → q)→ ([d]p → [d]q)

I [d]p → [d][d]p

I 〈d〉p → ♦np

I
ϕ

ϕ(χ/p)
,

ϕ,ϕ→ ψ

ψ
,

ϕ

�0ϕ
,

ϕ

[d]ϕ

Original results

Theorem 6
The Lm-theory of the classes all T3, T2, T1 models (resp.) is rec.
axiomatizable

I all propositional tautologies

I ♦n+1p → ♦np
I �0(p → q)→ (♦np → ♦nq)

I ♦!0(p ∧ q)→ ((♦!n1p ∧ ♦!n2q)→ ♦!n1+n2(p ∨ q))

I �0p → p

I ♦np → �0♦np

I [d](p → q)→ ([d]p → [d]q)

I [d]p → [d][d]p

I 〈d〉p → ♦np

I
ϕ

ϕ(χ/p)
,

ϕ,ϕ→ ψ

ψ
,

ϕ

�0ϕ
,

ϕ

[d]ϕ

Original results

Theorem 6
The Lm-theory of the classes all T3, T2, T1 models (resp.) is rec.
axiomatizable

I all propositional tautologies

I ♦n+1p → ♦np
I �0(p → q)→ (♦np → ♦nq)

I ♦!0(p ∧ q)→ ((♦!n1p ∧ ♦!n2q)→ ♦!n1+n2(p ∨ q))

I �0p → p

I ♦np → �0♦np

I [d](p → q)→ ([d]p → [d]q)

I [d]p → [d][d]p

I 〈d〉p → ♦np

I
ϕ

ϕ(χ/p)
,

ϕ,ϕ→ ψ

ψ
,

ϕ

�0ϕ
,

ϕ

[d]ϕ

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time

Original results

Theorem 8
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete:

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE-hard:

I the 〈d〉-theory of the classes of all T3, T2, T1 models (resp.) is
K4 which is PSPACE-hard

I the 〈d〉-language ⊆ Lm

Original results

Theorem 8
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete:

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE-hard:

I the 〈d〉-theory of the classes of all T3, T2, T1 models (resp.) is
K4 which is PSPACE-hard

I the 〈d〉-language ⊆ Lm

Original results

Theorem 8
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete:

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE-hard:

I the 〈d〉-theory of the classes of all T3, T2, T1 models (resp.) is
K4 which is PSPACE-hard

I the 〈d〉-language ⊆ Lm

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Open questions

I study of the Lm-theory of particular (classes of) T3 spaces
I metric spaces
I Rn (n ∈ ω)
I over R we can split 〈d〉 and {♦n}n∈ω in their future and past

components

I If we replace 〈d〉 with ♦ in Lm, does the new Lm capture Lt
on T3 spaces?

I What is the fragment of first-order logic that Lm corresponds
to in the standard Kripke semantics?

I How does it relate to the (loosely) guarded fragment?

Modal characterization of a first order language
for topology

Alberto Gatto
Imperial College London

alberto.gatto@imperial.ac.uk

