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Löwenheim-Skolem thm.



First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
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Löwenheim-Skolem thm.



First order language Lt for topology

I properties of Lt :
I Lt enjoys compactness and Löwenheim-Skolem thm.
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on A = (A, β, {PAi }) does not change by replacing β with a
base γ that generates the same topology as β

I Lt is invariant under changing base
I every formula in L2 invariant under changing base is equivalent
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Modal language Lm for topology

I topological models A = (A, σ, {PA
i })

I language Lm:
I L = {Pi} as propositional variables
I ¬,∧ (∨,→, ↔ usual abbreviations)
I derivative operator 〈d〉:

I A, a |= 〈d〉ϕ iff in every nbh of a exists b 6= a st A, b |= ϕ

I graded operators {♦n}n∈ω:
I A, a |= ♦nϕ iff exist more than n points b ∈ A with A, b |= ϕ

I [d ] abbreviates ¬〈d〉¬
I �n abbreviates ¬♦n¬
I ♦!nϕ abbreviates ♦n−1ϕ ∧ ¬♦nϕ:

I A, a |= ♦!nϕ iff exist exactly n points b ∈ A with A, b |= ϕ
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Original results

Theorem 1
For every sentence α ∈ Lm there is a sentence ϕ ∈ Lt such that
for every T3 model A we have that A |= ϕ if and only if A |= α

Proof.

I via usual standard translation

I STx(〈d〉ϕ) := ∀U(xεU → ∃y(¬x = y ∧ yεU ∧ STy (ϕ)))

I STx(♦nϕ) := ∃x0...∃xn(
∧

i 6=j ¬xi = xj ∧
∧

i∈n+1 STxi (ϕ))

I both formulas are in Lt
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Original results

Theorem 2
For every sentence ϕ of Lt there is a sentence α ∈ Lm such that
for every T3 model A we have that:

I A |= ϕ if and only if A |= α

I quantifier depth of ϕ = modal depth of α

Proof.

I Ehrenfeucht-Fräıssé game Gn(A,B)

I if Player II has a winning strategy in Gn(A,B)

I then A and B agree on the sentences of Lt with quant. dep. n

I if T3 mod.s A and B agree on the sent.s of Lm with mod.
dep. n

I than Player II has a winning strategy in Gn(A,B)

I thesis follows
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Proof.

I sentence ϕ ∈ Lt with quant. dep. n

I there is a sentence in Lm with modal depth n equivalent to ϕ
on T3 models

I finitely many candidates α ∈ Lm
I Lt decidable on the class of all T3 models

I for every cand. α, check ϕ↔ α on the class of all T3 models
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Theorem 4

1. For every formula α ∈ Lm there is a formula ϕ(x) ∈ Lt such
that for every T3 model A and point a ∈ A we have that
A |= ϕ[a] if and only if A, a |= α

2. For every formula ϕ(x) ∈ Lt there is a formula α ∈ Lm such
that for every T3 model A and point a ∈ A we have that:

I A |= ϕ[a] if and only if A, a |= α
I quantifier depth of ϕ(x) = modal depth of α

3. There is a computable translation between formulas ϕ(x) in
Lt and formulas in Lm
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Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 5
Lm does not capture Lt on any class including all T2 models

Proof.

I adequate notion of bisimulation for Lm
I there is a model A, T2 but not T3, bisimilar to a T3 model B
I Lt can express that a space is T3

I if Lm were equivalent to Lt on T2 spaces

I A would be T3: contradiction

I corollary: Lm cannot express T3ness on the class of all T2

models



Original results

Theorem 6
The Lm-theory of the classes all T3, T2, T1 models (resp.) is rec.
axiomatizable

I all propositional tautologies

I ♦n+1p → ♦np
I �0(p → q)→ (♦np → ♦nq)

I ♦!0(p ∧ q)→ ((♦!n1p ∧ ♦!n2q)→ ♦!n1+n2(p ∨ q))

I �0p → p

I ♦np → �0♦np

I [d ](p → q)→ ([d ]p → [d ]q)

I [d ]p → [d ][d ]p

I 〈d〉p → ♦np

I
ϕ

ϕ(χ/p)
,

ϕ,ϕ→ ψ

ψ
,

ϕ

�0ϕ
,

ϕ

[d ]ϕ
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Proof.

I soundness on the class of all T1 models:
I axioms are valid on every T1 topological model
I inference rules preserve validities on every T1 topological model

I completeness on the class of all T3 models:
I given a maximal consistent set Γ
I build a Kripke model validating the axioms and satisfying Γ
I turn the Kripke model into a T3 model satisfying Γ

I T1 ⊇T2 ⊇T3
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Theorem 7
The Lm-theory of the classes of all T3, T2, T1 models (resp.) is
PSPACE-complete

Proof.

I the Lm-theory of the classes of all T3, T2, T1 models (resp.)
is PSPACE:

I checking the satisfiability of ϕ ∈ Lm on the classes of all T3,
T2, T1 models (resp.) reduces to:

I checking PTIME properties of a forest of
I polynomially many
I polynomially deep
I rooted trees
I (properties) that regards
I either the set of all root nodes
I or one branch at a time
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is PSPACE-hard:

I the 〈d〉-theory of the classes of all T3, T2, T1 models (resp.) is
K4 which is PSPACE-hard

I the 〈d〉-language ⊆ Lm
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Open questions

I what is the complexity of the trans. between Lt and Lm on
T3 mod.s?

I does Lm capture Lt on classes between all T2 and all T3?

I does Lm capture Lt on other classes?
I can we increase Lm to capture Lt on other classes than all T3

models?
I hybrid logic

I How can we increase Lm without loosing decidability?
I How can we increase Lm beyond first order logic?

I µ-calculus
I is Lm + µ decidable?
I is Lm + µ invariant under changing base?
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I is Lm + µ invariant under changing base?
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