The finite embeddability property for some noncommutative varieties of fully-distributive residuated lattices

Nick Galatos joint work with Riquelmi Cardona University of Denver ngalatos@du.edu

June, 2015

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

FEP and decidability

Residuated latticesFEP for RLFEP for FDRLD via dist. framesDistributive residuatedframesDGNFinitenessConstructing FConstructing FFEP and decidabilityUsing (a)The structure of HThe order per exponent

FEP and decidability

Residuated latticesFEP for RLFEP for FDRLD via dist. framesDistributive residuatedframesDGNFinitenessConstructing FConstructing FFEP and decidabilityUsing (a)The structure of HThe order per exponent

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

If ${\cal K}$ has the FEP, then every invalid universal sentence of ${\cal K}$ fails in a finite algebra of ${\cal K}.$

FEP and decidability

Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN** Finiteness Constructing **F** Constructing **F** FEP and decidability Using (a) The structure of **H** The order per exponent

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

If ${\cal K}$ has the FEP, then every invalid universal sentence of ${\cal K}$ fails in a finite algebra of ${\cal K}.$

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K} .

FEP and decidability

Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN** Finiteness Constructing **F** Constructing **F** FEP and decidability Using (a) The structure of **H** The order per exponent

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

If ${\cal K}$ has the FEP, then every invalid universal sentence of ${\cal K}$ fails in a finite algebra of ${\cal K}.$

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K} .

Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

FEP and decidability

Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN** Finiteness Constructing **F** Constructing **F** FEP and decidability Using (a) The structure of **H** The order per exponent

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

If ${\cal K}$ has the FEP, then every invalid universal sentence of ${\cal K}$ fails in a finite algebra of ${\cal K}.$

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K} .

Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability of the quasi-equational theory, which implies the decidability of the word problem, which implies the decidability of the equational theory.

FEP and decidability

Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F Constructing F FEP and decidability Using (a) The structure of H The order per exponent

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

If ${\cal K}$ has the FEP, then every invalid universal sentence of ${\cal K}$ fails in a finite algebra of ${\cal K}.$

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K} .

Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability of the quasi-equational theory, which implies the decidability of the word problem, which implies the decidability of the equational theory.

Fact. The FEP for a finitiely axiomatizable class \mathcal{K} that forms the algebraic semantics of a finitary logical system \vdash , implies its *strong finite model property*:

if $\Phi \not\vdash \psi$, for finite Φ , then there is a finite counter-model.

A residuated lattice, is an algebra $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

•
$$(L, \wedge, \vee)$$
 is a lattice,

- $\blacksquare (L, \cdot, 1) \text{ is a monoid and}$
- for all $a, b, c \in L$,

$$ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b$$

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
Constructing F
FEP and decidability
Using (a)
The structure of H
The order per exponent

A residuated lattice, is an algebra $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

$$\blacksquare \quad (L, \land, \lor) \text{ is a lattice},$$

- $\blacksquare (L, \cdot, 1) \text{ is a monoid and}$
- for all $a, b, c \in L$,

$$ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b.$$

Equations of the form $x^m \leq x^n$, for natural numbers m and n, are called *knotted equations*.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
Constructing F
FEP and decidability
Using (a)
The structure of H
The order per exponent

A residuated lattice, is an algebra $\mathbf{L}=(L,\wedge,\vee,\cdot,\backslash,/,1)$ such that

- $\ \ \, \blacksquare \ \ \, (L,\wedge,\vee) \ \ \, \text{is a lattice,}$
- $\blacksquare (L, \cdot, 1) \text{ is a monoid and}$
- for all $a, b, c \in L$,

 $ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b.$

Equations of the form $x^m \leq x^n$, for natural numbers m and n, are called *knotted equations*.

They define proper, non-trivial subvarieties for $m \neq n$ and $m \neq 1$, and we will assume these conditions hold.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F Constructing F FEP and decidability Using (a) The structure of H The order per exponent

A residuated lattice, is an algebra $\mathbf{L}=(L,\wedge,\vee,\cdot,\backslash,/,1)$ such that

- $\ \ \, \blacksquare \ \ \, (L,\wedge,\vee) \ \ \, \text{is a lattice,}$
- $\blacksquare (L, \cdot, 1) \text{ is a monoid and}$
- for all $a, b, c \in L$,

 $ab \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c/b.$

Equations of the form $x^m \leq x^n$, for natural numbers m and n, are called *knotted equations*.

They define proper, non-trivial subvarieties for $m \neq n$ and $m \neq 1$, and we will assume these conditions hold. Also, we will not consider the case $x^m \leq 1$, for m > 1, as it is equivalent to the case m = 1(integrality). FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
FEP and decidability
Using (a)
The structure of H
The order per exponent

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames Distributive residuated frames

DGN

Finiteness

Constructing **F**

Constructing **F**

FEP and decidability

Using (a) The structure of **H**

The order per exponent

RL does **not** have the FEP.

RL does **not** have the FEP.

$RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames Distributive residuated frames

DGN

Finiteness Constructing **F**

Constructing **F**

FEP and decidability

Using (a)

The structure of ${f H}$

The order per exponent

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten) $RL + (x \le 1)$ + (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen) FEP and decidability Residuated lattices

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F

Constructing **F**

FEP and decidability

Using (a)

The structure of **H**

The order per exponent

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

Most varieties $RL + (x^m \le x)$, *m*-mingle, do *not* have the FEP/dWP. (Horčík)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL D via dist. frames Distributive residuated frames

DGN

Finiteness

 $\mathsf{Constructing}\ \mathbf{F}$

Constructing \mathbf{F}

FEP and decidability

Using (a)

The structure of **H** The order per exponent

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

Most varieties $RL + (x^m \le x)$, *m*-mingle, do *not* have the FEP/dWP. (Horčík)

 $\mathsf{RL} + (x^m \leq x^n)$, for $n \neq 1$, does **not** have the FEP/dWP. (Horčík)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL D via dist. frames Distributive residuated frames DGN

Finiteness Constructing **F** Constructing **F**

FEP and decidability

Using (a)

The structure of **H** The order per exponent

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

Most varieties $RL + (x^m \le x)$, *m*-mingle, do *not* have the FEP/dWP. (Horčík)

 $\mathsf{RL} + (x^m \leq x^n)$, for $n \neq 1$, does **not** have the FEP/dWP. (Horčík)

The variety RL + (xy = yx) (commutativity) does **not** have the FEP. (Blok and van Alten)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F

Constructing F

Using (a)

FEP and decidability

The structure of **H**

The order per exponent

Nick Galatos, TACL, June 2015

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

Most varieties $RL + (x^m \le x)$, *m*-mingle, do *not* have the FEP/dWP. (Horčík)

 $\mathsf{RL} + (x^m \leq x^n)$, for $n \neq 1$, does **not** have the FEP/dWP. (Horčík)

The variety RL + (xy = yx) (commutativity) does **not** have the FEP. (Blok and van Alten)

The varieties $RL + (x^m \le x^n) + (xy = yx)$ have the FEP. (van Alten)

FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F Constructing F FEP and decidability Using (a)

The structure of **H** The order per exponent

RL does **not** have the FEP.

 $RL + (x \le 1)$ (integrality) has the FEP. (Blok and van Alten)

 $\mathsf{RL} + (x \le 1) + (\text{any equation over } \{\lor, \cdot, 1\})$ has the FEP. (G. and Jipsen)

 $RL + (x^2 \le x)$ (mingle) has the FEP. (Horčík)

Most varieties $RL + (x^m \le x)$, *m*-mingle, do *not* have the FEP/dWP. (Horčík)

 $\mathsf{RL} + (x^m \leq x^n)$, for $n \neq 1$, does **not** have the FEP/dWP. (Horčík)

The variety RL + (xy = yx) (commutativity) does **not** have the FEP. (Blok and van Alten)

The varieties $RL + (x^m \le x^n) + (xy = yx)$ have the FEP. (van Alten)

The varieties $RL + (x^m \le x^n) + (xxy = xyx)^* +$ (any equation over $\{\lor, \cdot, 1\}$) has the FEP. (Cardona and G.) *This is an example. FEP and decidability Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames Distributive residuated frames DGN Finiteness Constructing F Constructing F FEP and decidability

Using (a) The structure of **H** The order per exponent

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames
DGN
Finiteness
Constructing F
Constructing F
FEP and decidability
Using (a)
The structure of H
The order per exponent

In every residuated lattice multiplication distributes over join.

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

(F)DRL + $(x \le 1)$ + (any equation without divisions) has the FEP. (G. and Jipsen)

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

(F)DRL + $(x \le 1)$ + (any equation without divisions) has the FEP. (G. and Jipsen)

(F)DRL + (xy = yx) (commutativity) does **not** have the FEP (Blok and van Alten), or a dWP (G.)

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

(F)DRL + $(x \le 1)$ + (any equation without divisions) has the FEP. (G. and Jipsen)

(F)DRL + (xy = yx) (commutativity) does **not** have the FEP (Blok and van Alten), or a dWP (G.)

 $\mathsf{DRL} + (x^m \le x^n)$, for m < n, does **not** have the FEP/dWP. (Horčík)

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

(F)DRL + $(x \le 1)$ + (any equation without divisions) has the FEP. (G. and Jipsen)

(F)DRL + (xy = yx) (commutativity) does **not** have the FEP (Blok and van Alten), or a dWP (G.)

 $\mathsf{DRL} + (x^m \le x^n)$, for m < n, does **not** have the FEP/dWP. (Horčík)

Theorem (Cardona and G.) $FDRL + (x^m \le x^n) + (a) + (any equation without divisions) has the FEP.$

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

In every residuated lattice multiplication distributes over join. A residuated lattice is called *(fully) distributive* if (multiplication and) join distributes over meet. We write (FDRL) DRL.

(F)DRL does **not** have the FEP. (Blok and van Alten.)

(F)DRL + $(x \le 1)$ + (any equation without divisions) has the FEP. (G. and Jipsen)

(F)DRL + (xy = yx) (commutativity) does **not** have the FEP (Blok and van Alten), or a dWP (G.)

 $\mathsf{DRL} + (x^m \le x^n)$, for m < n, does **not** have the FEP/dWP. (Horčík)

Theorem (Cardona and G.) $FDRL + (x^m \le x^n) + (a) + (any equation without divisions) has the FEP.$

$$xy_1xy_2\cdots y_rx = x^{a_0}y_1x^{a_1}y_2\cdots y_rx^{a_r}.$$
 (a)

Here $a = (a_0, a_1, \dots, a_r)$ is a vector of natural numbers whose sum is r + 1 and product is 0.

Nick Galatos, TACL, June 2015

FEP and decidability Residuated lattices FEP for RL

FEP for FDRL

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid,

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

${f D}$ via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} .

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

${f D}$ via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

D needs to contain residuals $u \to (x \setminus b/y)$, for $b \in B$, $u, x, y \in W$.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

D needs to contain residuals $u \to (x \setminus b/y)$, for $b \in B$, $u, x, y \in W$.

We represent the ideal elements $u \to (x \setminus b/y)$ by (u, x, b, y) and collect them in an index set $W' = W \times W \times B \times W$.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

D needs to contain residuals $u \to (x \setminus b/y)$, for $b \in B$, $u, x, y \in W$.

We represent the ideal elements $u \to (x \setminus b/y)$ by (u, x, b, y) and collect them in an index set $W' = W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$\{w \in W : w \leq^{\mathbf{A}} u \to (x \setminus b/y)\} = \{w \in W : u \otimes (x \circ w \circ y) \leq^{\mathbf{A}} b\}.$$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

D needs to contain residuals $u \to (x \setminus b/y)$, for $b \in B$, $u, x, y \in W$.

We represent the ideal elements $u \to (x \setminus b/y)$ by (u, x, b, y) and collect them in an index set $W' = W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$\{w \in W : w \leq^{\mathbf{A}} u \to (x \setminus b/y)\} = \{w \in W : u \bigotimes (x \circ w \circ y) \leq^{\mathbf{A}} b\}.$$

We extend the order to a relation \sqsubseteq between W and W':

 $w \sqsubseteq (u, x, b, y) \iff u \bigotimes (x \circ w \circ y) \leq^{\mathbf{A}} b.$

For $z = (u, x, b, y) \in W'$. We define $z^{\triangleleft} = \{x \in W : x \sqsubseteq z\}$.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W} = (W, \bigotimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s\ell$ -monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W} . (Further \wedge in \mathbf{D} will be residuated.)

D needs to contain residuals $u \to (x \setminus b/y)$, for $b \in B$, $u, x, y \in W$.

We represent the ideal elements $u \to (x \setminus b/y)$ by (u, x, b, y) and collect them in an index set $W' = W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$\{w \in W : w \leq^{\mathbf{A}} u \to (x \setminus b/y)\} = \{w \in W : u \bigotimes (x \circ w \circ y) \leq^{\mathbf{A}} b\}.$$

We extend the order to a relation \sqsubseteq between W and W':

 $w \sqsubseteq (u, x, b, y) \iff u \bigotimes (x \circ w \circ y) \leq^{\mathbf{A}} b.$

For $z = (u, x, b, y) \in W'$. We define $z^{\triangleleft} = \{x \in W : x \sqsubseteq z\}$. Also,

$$D = \left\{ \bigcap_{z \in Z} \{z\}^{\triangleleft} : Z \subseteq W' \right\} \qquad \mathbf{D} = (D, \cap, \cup_{\sqsubseteq}, \cdot_{\sqsubseteq}, \backslash, /, \varepsilon_{\sqsubseteq}).$$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL

D via dist. frames

Distributive residuated frames DGN Finiteness Constructing F Constructing F FEP and decidability Using (a) The structure of H The order per exponent

Nick Galatos, TACL, June 2015

The FEP for FDRL - 6 / 15

Theorem (G. and Jipsen).

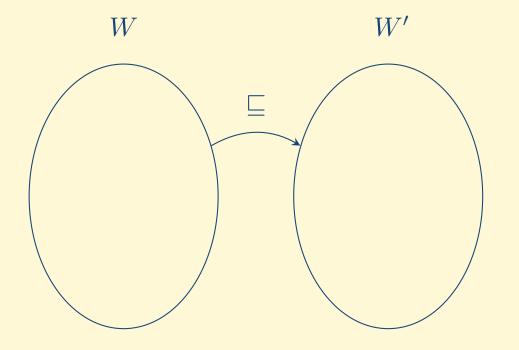
- **D** is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).
- **The map** $b \mapsto (\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra

 \mathbf{B} of \mathbf{A} into \mathbf{D} .

Theorem (G. and Jipsen).

- **D** is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).
- The map $b \mapsto (\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra

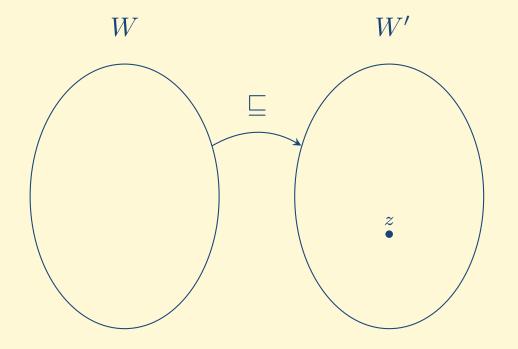
 \mathbf{B} of \mathbf{A} into \mathbf{D} .



Theorem (G. and Jipsen).

- **D** is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).
- The map $b \mapsto (\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra

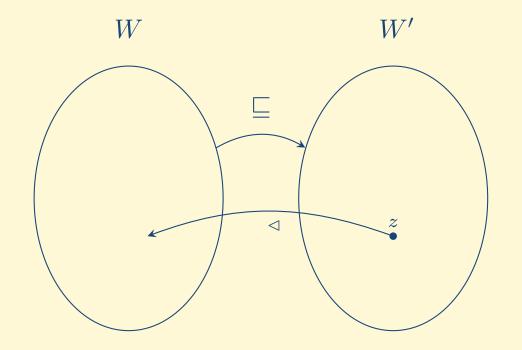
 \mathbf{B} of \mathbf{A} into \mathbf{D} .



Theorem (G. and Jipsen).

- **D** is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).
- The map $b \mapsto (\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra

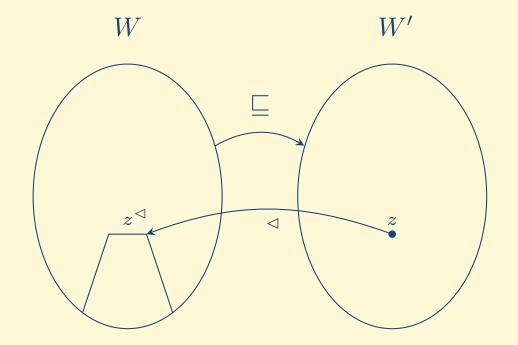
 \mathbf{B} of \mathbf{A} into \mathbf{D} .



Theorem (G. and Jipsen).

- **D** is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).
- The map $b \mapsto (\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra

 \mathbf{B} of \mathbf{A} into \mathbf{D} .



DGN

 $\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubset z}$ (CUT) $\qquad \frac{a \sqsubseteq a}{a \sqsubseteq a}$ (Id) $\frac{x \bigotimes (y \bigotimes w) \sqsubseteq z}{(x \bigotimes y) \bigotimes w \sqsubset z} (\bigotimes a) \qquad \frac{x \bigotimes y \sqsubseteq z}{y \bigotimes x \sqsubset z} (\bigotimes e)$ $\frac{x \sqsubseteq z}{x \bigotimes y \sqsubset z} (\bigotimes i) \qquad \frac{x \bigotimes x \sqsubseteq z}{x \sqsubset z} (\bigotimes c)$ $\frac{x \sqsubseteq a \quad b \sqsubseteq z}{x \circ (a \setminus b) \sqsubset z} (\setminus \mathsf{L}) \qquad \frac{a \circ x \sqsubseteq b}{x \sqsubset a \setminus b} (\setminus \mathsf{R})$ $\frac{x \sqsubseteq a \quad b \sqsubseteq z}{(b/a) \circ x \sqsubset z} (/\mathsf{L}) \qquad \frac{x \circ a \sqsubseteq b}{x \sqsubset b/a} (/\mathsf{R})$ $\frac{a \circ b \sqsubseteq z}{a \cdot b \sqsubset z} (\cdot \mathsf{L}) \qquad \frac{x \sqsubseteq a \quad y \sqsubseteq b}{x \circ y \sqsubset a \cdot b} (\cdot \mathsf{R}) \qquad \frac{\varepsilon \sqsubseteq z}{1 \sqsubset z} (1\mathsf{L}) \qquad \frac{\varepsilon \sqsubset 1}{\varepsilon \sqsubset 1} (1\mathsf{R})$ $\frac{a \bigotimes b \sqsubseteq z}{a \land b \sqsubset z} (\land \mathsf{L}\ell) \qquad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubset a \land b} (\land \mathsf{R})$ $\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubset z} (\lor \mathsf{L}) \qquad \frac{x \sqsubseteq a}{x \sqsubset a \lor b} (\lor \mathsf{R}\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubset a \lor b} (\lor \mathsf{R}r)$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F Constructing F

FEP and decidability

Using (a)

The structure of **H** The order per exponent

Nick Galatos, TACL, June 2015

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$:

FEP and decidability Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN**

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}.$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}$. It suffices to show that each C_b is finite.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains. FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo,

FEP and decidability Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN** Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is *(dually) well partially ordered*, *(d)wpo*, if it has no infinite antichains and no infinite (ascending) descending chains.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are good). FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo. FEP and decidability Residuated lattices FEP for RL FEP for FDRL **D** via dist. frames Distributive residuated frames **DGN**

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is *(dually) well partially ordered*, *(d)wpo*, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are *good*). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n. This proves finiteness of C_b (it has downsets of W): FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is *(dually) well partially ordered*, *(d)wpo*, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are *good*). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n. This proves finiteness of C_b (it has downsets of W): In both cases $\phi : (W^3, \leq) \to (C_b, \subseteq)$, $\phi(u, x, y) = (u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then (C_b, \subseteq) is a dwpo and if W is dwpo then (C_b, \subseteq) . FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

Constructing F

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y) \triangleleft : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n. This proves finiteness of C_b (it has downsets of W):

In both cases $\phi : (W^3, \leq) \to (C_b, \subseteq)$, $\phi(u, x, y) = (u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then (C_b, \subseteq) is a dwpo and if W is dwpo then (C_b, \subseteq) .

Further, If (C_b, \subseteq) has an ascending chain $C_1 \subset C_2 \subset \ldots$ of downsets of W, then we can construct a bad sequence w_1, w_2, \ldots in (W, \leq) by taking $w_i \in C_{i+1} \setminus C_i$.

Finiteness

To prove that **D** is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_b = \{(u, x, b, y)^{\triangleleft} : u, x, y \in W\}$. It suffices to show that each C_b is finite. We will do that indirectly, by showing that (C_b, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is *(dually) well partially ordered*, *(d)wpo*, if it has no infinite antichains and no infinite (ascending) descending chains. Equivalently if every sequence x_1, x_2, \ldots has an increasing step: i < j with $x_i \leq x_j$ (all sequences are *good*). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n. This proves finiteness of C_b (it has downsets of W):

In both cases $\phi : (W^3, \leq) \to (C_b, \subseteq)$, $\phi(u, x, y) = (u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then (C_b, \subseteq) is a dwpo and if W is dwpo then (C_b, \subseteq) .

Further, If (C_b, \subseteq) has an ascending chain $C_1 \subset C_2 \subset \ldots$ of downsets of W, then we can construct a bad sequence w_1, w_2, \ldots in (W, \leq) by taking $w_i \in C_{i+1} \setminus C_i$. For decsending: $w_i \in C_i \setminus C_{i+1}$. FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN

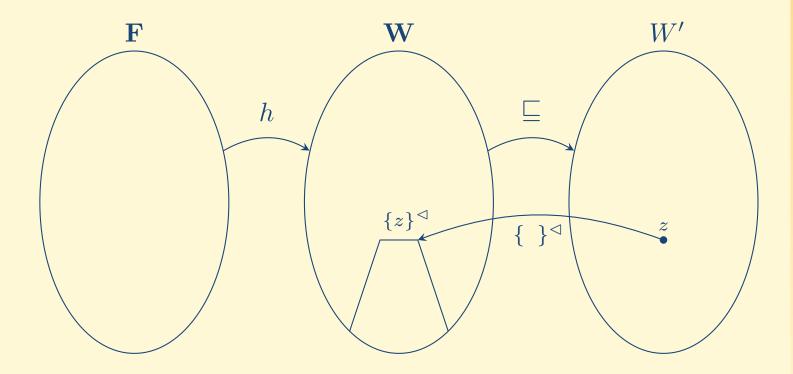
Finiteness

Since the structure of W depends a lot on the specific **A** and B, we consider a more free structure **F**, and prove that it is (d)wpo and maps onto (W, \leq) .

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

Constructing \mathbf{F}

Since the structure of W depends a lot on the specific **A** and B, we consider a more free structure **F**, and prove that it is (d)wpo and maps onto (W, \leq) .



FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness

Constructing \mathbf{F}

For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} .

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
FEP and decidability
Using (a)
The structure of H

The order per exponent

For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} . More concretely, F consists of all *finitely generated* upsets of \mathbf{H} with operations $X \wedge Y = X \cup Y$ and $X \bullet Y = \uparrow (XY)$.

FEP and decidability Residuated lattices FEP for RL FEP for FDRL D via dist. frames Distributive residuated frames DGN Finiteness Constructing F FEP and decidability Using (a) The structure of H The order per exponent

Nick Galatos, TACL, June 2015

The FEP for FDRL – 11 / 15

For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} . More concretely, F consists of all *finitely generated* upsets of \mathbf{H} with operations $X \wedge Y = X \cup Y$ and $X \bullet Y = \uparrow (XY)$.

Lemma. If $f: (H, \cdot, \leq) \to (W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h: (F, \wedge, \cdot) \to (W, \bigotimes, \circ)$, where $h(X) = \bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} . More concretely, F consists of all *finitely generated* upsets of \mathbf{H} with operations $X \wedge Y = X \cup Y$ and $X \bullet Y = \uparrow (XY)$.

Lemma. If $f: (H, \cdot, \leq) \to (W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h: (F, \wedge, \cdot) \to (W, \bigotimes, \circ)$, where $h(X) = \bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If **H** is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.

For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} . More concretely, F consists of all *finitely generated* upsets of \mathbf{H} with operations $X \wedge Y = X \cup Y$ and $X \bullet Y = \uparrow (XY)$.

Lemma. If $f: (H, \cdot, \leq) \to (W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h: (F, \wedge, \cdot) \to (W, \bigotimes, \circ)$, where $h(X) = \bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If **H** is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.

Lemma. If H is a finite unions of finite products of *linear* wpo's, then $\mathcal{M}(\mathbf{H})$ is wpo.

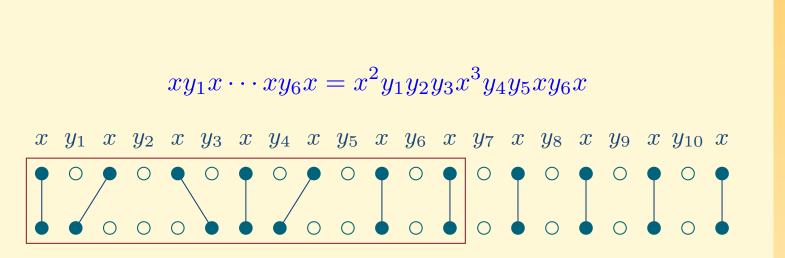
For that we take $\mathbf{F} = \mathcal{M}(\mathbf{H})$, the *free meet semilattice* over a (d)wpo pomonoid \mathbf{H} . More concretely, F consists of all *finitely generated* upsets of \mathbf{H} with operations $X \wedge Y = X \cup Y$ and $X \bullet Y = \uparrow (XY)$.

Lemma. If $f: (H, \cdot, \leq) \to (W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h: (F, \wedge, \cdot) \to (W, \bigotimes, \circ)$, where $h(X) = \bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If **H** is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.

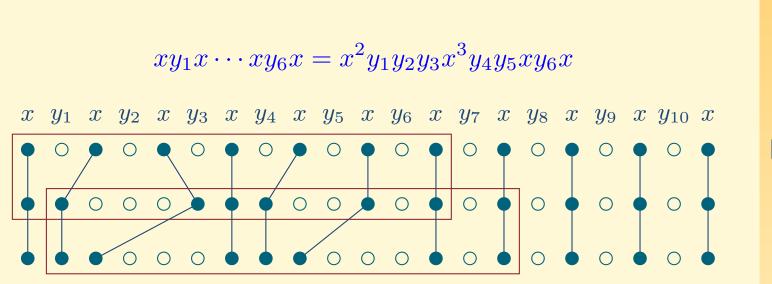
Lemma. If H is a finite unions of finite products of *linear* wpo's, then $\mathcal{M}(\mathbf{H})$ is wpo.

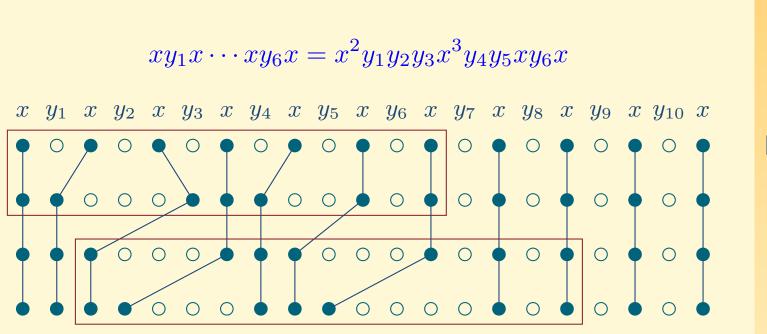
So it is enough to construct a pomonoid \mathbf{H} with nice order properties (dwpo, or $\cup P(wo)$) which maps homomorphically onto W.

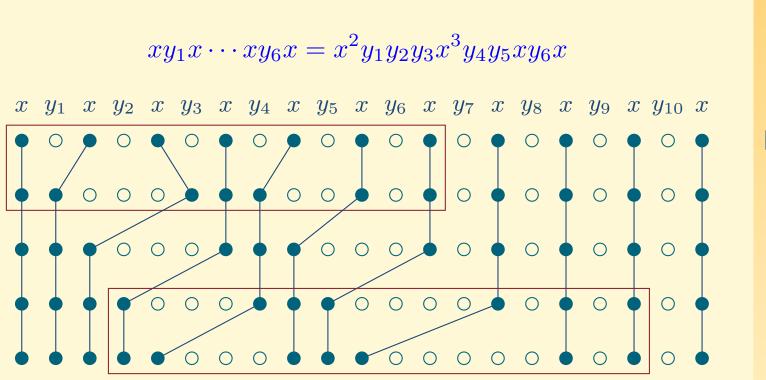


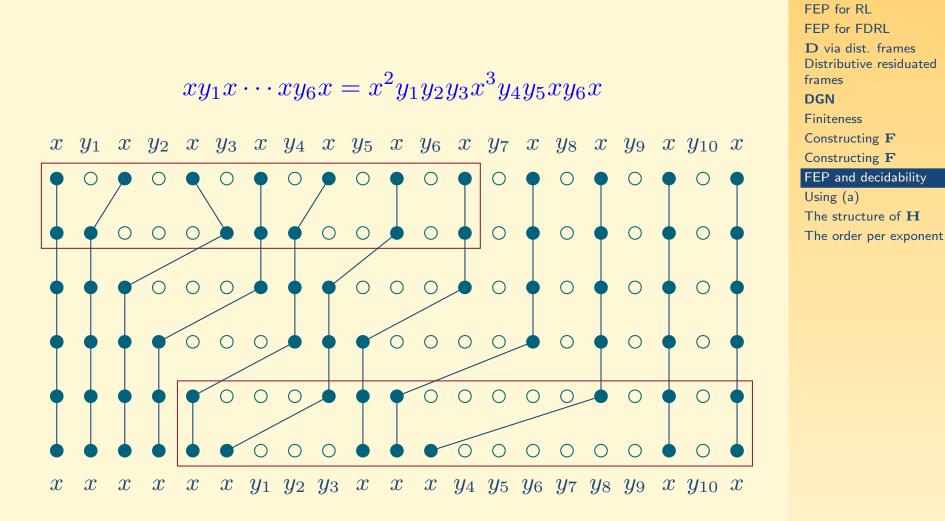
FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
Constructing F
FEP and decidability
Using (a)
The structure of H

The order per exponent

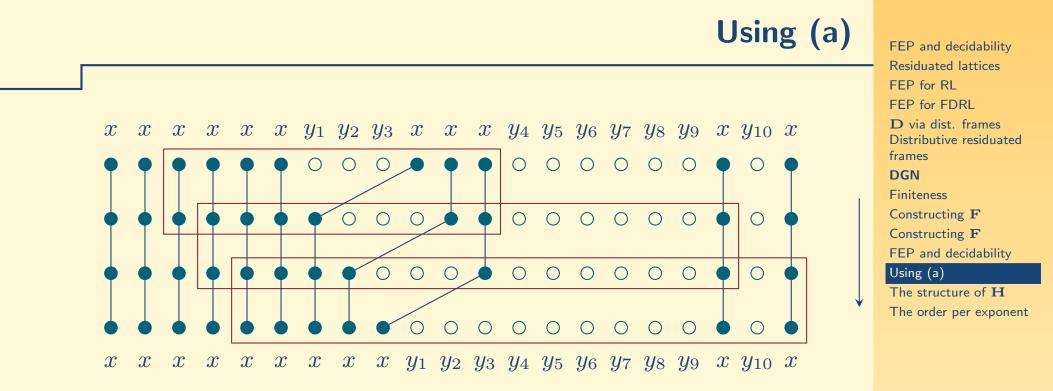


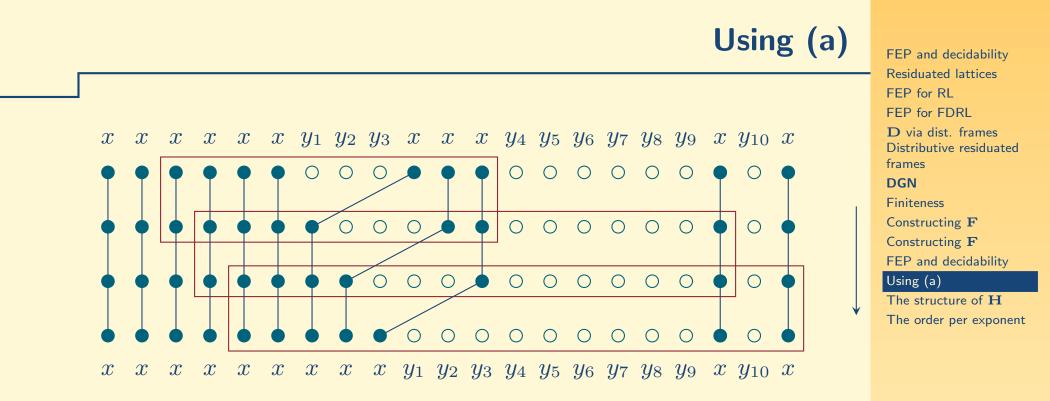




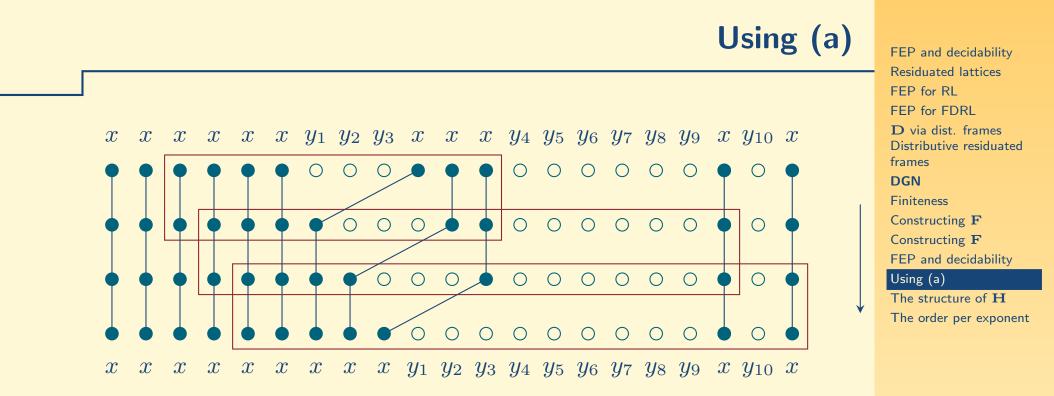


FEP and decidability Residuated lattices

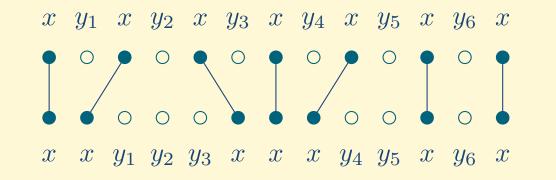




 $\alpha_N(xy_1xy_2xy_3xy_4xy_5xy_6xy_7xy_8xy_9xy_{10}x) = xx^8y_1y_2y_3y_4y_5y_6y_7y_8y_9xy_{10}x$



 $\alpha_N(xy_1xy_2xy_3xy_4xy_5xy_6xy_7xy_8xy_9xy_{10}x) = xx^8y_1y_2y_3y_4y_5y_6y_7y_8y_9xy_{10}x$ In (a) we have $\ell_1 = 1$ many x's in the 'front', $\ell_2 = 2$ in the end.



Let $X_k = \{x_1, \ldots, x_k\}$ be a set of variables. The equation (a)implies (in the theory of monoids) the equation $\alpha_N^{\ell(a)}(s) = s$, for all $s \in X_k^*$, for some $\ell(a)$. FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames
DGN
Finiteness
Constructing F
FEP and decidability
Using (a)
The structure of H

The order per exponent

Let $X_k = \{x_1, \ldots, x_k\}$ be a set of variables. The equation (a) implies (in the theory of monoids) the equation $\alpha_N^{\ell(a)}(s) = s$, for all $s \in X_k^*$, for some $\ell(a)$.

For a given $\ell = (\ell_0, \ell_1, d_\ell)$, with $\ell_1 + d_\ell < \ell_0$, the function $\alpha_N^\ell : X_k * \to X_k^*$ is defined as follows:

Let $X_k = \{x_1, \ldots, x_k\}$ be a set of variables. The equation (a) implies (in the theory of monoids) the equation $\alpha_N^{\ell(a)}(s) = s$, for all $s \in X_k^*$, for some $\ell(a)$.

For a given $\ell = (\ell_0, \ell_1, d_\ell)$, with $\ell_1 + d_\ell < \ell_0$, the function $\alpha_N^\ell : X_k * \to X_k^*$ is defined as follows: $\alpha_N(s)$ is obtained from s by moving next to the (ℓ_1) th occurrence of x_i the $(\ell_1 + 1)$ th, the $(\ell_1 + 2)$ th, and up to the $(\ell_1 + d_\ell)$ th occurrence of x_i , simultaneously for each x_i with more than ℓ_0 -many occurrences in s. Thus by collecting all these consecutive occurrences next to the (ℓ_1) th occurrence of x_i we obtain a power of x_i .

Let $X_k = \{x_1, \ldots, x_k\}$ be a set of variables. The equation (a) implies (in the theory of monoids) the equation $\alpha_N^{\ell(a)}(s) = s$, for all $s \in X_k^*$, for some $\ell(a)$.

For a given $\ell = (\ell_0, \ell_1, d_\ell)$, with $\ell_1 + d_\ell < \ell_0$, the function $\alpha_N^\ell : X_k * \to X_k^*$ is defined as follows: $\alpha_N(s)$ is obtained from s by moving next to the (ℓ_1) th occurrence of x_i the $(\ell_1 + 1)$ th, the $(\ell_1 + 2)$ th, and up to the $(\ell_1 + d_\ell)$ th occurrence of x_i , simultaneously for each x_i with more than ℓ_0 -many occurrences in s. Thus by collecting all these consecutive occurrences next to the (ℓ_1) th occurrence of x_i .

If we further we truncate the exponent of this power to be at most d_{ℓ} , for each x_i , then we obtain the element $\alpha_D(s)$. Clearly $\alpha_D[X_k^*]$ is finite, as we control the length of the words.

We also define $H = \alpha_N[X_k^*]$ with multiplication given by $\alpha_N(xy)$. It turns out that H is bijective with a subset of $\mathbb{N}^k \times \alpha_D[X_k^*]$, under the map $\psi(s) = (|s|_{x_1}, \ldots, |s|_{x_k}, \alpha_D(s))$, where $|s|_x$ denotes the number of occurrences of x in s.

We have reduced the issue to a direct product of finitely many factors (we control the length of the words).

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^m \leq x^n$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_D[X_k^*]$ is discrete while the order \leq_n^m on each component \mathbb{N} is given as follows for the easier case $m > n : u \leq_n^m v$ if and only if u = v, or $n \leq v < u$ and $u \equiv v$ $(\mod m - n)$.

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^m \leq x^n$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_D[X_k^*]$ is discrete while the order \leq_n^m on each component \mathbb{N} is given as follows for the easier case $m > n : u \leq_n^m v$ if and only if u = v, or $n \leq v < u$ and $u \equiv v$ $(\mod m - n)$.

So, **H** is a dwpo.

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^m \leq x^n$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_D[X_k^*]$ is discrete while the order \leq_n^m on each component \mathbb{N} is given as follows for the easier case $m > n : u \leq_n^m v$ if and only if u = v, or $n \leq v < u$ and $u \equiv v$ $(\mod m - n)$.

So, H is a dwpo. For the second case m < n, we prove that H is a isomorphic to a finite union of finite products of well-ordered chains.

Nick Galatos, TACL, June 2015