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Equations of the form ™ < x™, for natural numbers m and n, are
called knotted equations.

They define proper, non-trivial subvarieties for m # n and m # 1,
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the case ™ < 1, for m > 1, as it is equivalent to the case m =1
(integrality).
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Theorem (Cardona and G.) FDRL + (z™ < 2™) + (a)+ (any
equation without divisions) has the FEP.

TP TY2 - Yk = Oy ys - - Yzt (a)

Here a = (ag, a1, ...,a,) is a vector of natural numbers whose sum
is 7 + 1 and product is 0.
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We extend the order to a relation C between W and W’:

wC (u,z,b,y) < u@(zowoy) <™ b.

For z = (u,z,b,y) € W’. We define 29 ={x € W :x C z}. Also,

D = { ({z}9: 2 ¢C W’} D= (D,N,Ug,c,\,/,€0)

ze/
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h(X) = A,cx f(x), is an onto semilattice monoid homomorphism.
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homomorphism, then h : (F,A,-) = (W, ®), o), where The order per exponent

h(X) = A,cx f(x), is an onto semilattice monoid homomorphism.
Lemma. If H is dwpo, then M(H) is dwpo.

Lemma. If H is a finite unions of finite products of linear wpo's,
then M(H) is wpo.

So it is enough to construct a pomonoid H with nice order properties
(dwpo, or UP(wo)) which maps homomorphically onto W.
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oy Xpx — X7 is defined as follows: ay(s) is obtained from s by vaeqa)

moving next to the (£1)th occurrence of x; the (¢; + 1)th, the
(£1 + 2)th, and up to the (¢1 + dy)th occurrence of x;,

simultaneously for each x; with more than £y-many occurrences in s.

Thus by collecting all these consecutive occurrences next to the
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(£1 + 2)th, and up to the (¢1 + dy)th occurrence of x;,

simultaneously for each x; with more than £y-many occurrences in s.

Thus by collecting all these consecutive occurrences next to the

(£1)th occurrence of x; we obtain a power of x;.

If we further we truncate the exponent of this power to be at most
dy, for each x;, then we obtain the element ap(s). Clearly ap|[X}] is
finite, as we control the length of the words.

We also define H = an | X ] with multiplication given by ay(zy). It
turns out that H is bijective with a subset of N¥ x ap[X ], under
the map ¥(s) = (|$|zy, - - -5 |S|ze, @D (8)), where |s|,. denotes the

number of occurrences of x in s.
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We have reduced the issue to a direct product of finitely many D via dist. frames
factors (we control the length of the words). We focus on the frames
DGN

structure of the exponents.

Finiteness
Constructing F

Given a knotted inequality ™ < z", and the above bijection, we can  constructing F
endow H with an order under which it becomes a pomonoid. In PR
particular, the order on the component ap|X/] is discrete while the S
order < on each component N is given as follows for the easier case
m>n:u<Tovifandonlyifu=v,orn<v<wuandu=v

(mod m — n).

0 1 2 n—1 n n+l m—1=n+(m-—mn) -1
[ [ ] [ ] [} [ ] [ ] [ ]
m=n-+(m —mn) ¢ em + 1 en+2(m—n)—1
n+2(m—mn)e e2m —n + 1 en+3(m—n)—1
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Constructing F

Given a knotted inequality ™ < z", and the above bijection, we can  constructing F
endow H with an order under which it becomes a pomonoid. In PR
particular, the order on the component ap|X/] is discrete while the S
order < on each component N is given as follows for the easier case
m>n:u<Tovifandonlyifu=v,orn<v<wuandu=v

(mod m — n).

0 1 2 n—1 n n+l m—1=n+(m-—mn) -1
[ [ ] [ ] [} [ ] [ ] [ ]
m=n-+(m —mn) ¢ em + 1 en+2(m—n)—1
n+2(m—mn)e e2m —n + 1 en+3(m—n)—1

So, H is a dwpo. For the second case m < n, we prove that H is a
isomorphic to a finite union of finite products of well-ordered chains.
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