The finite embeddability property for some noncommutative varieties of fully-distributive residuated lattices

Nick Galatos
joint work with Riquelmi Cardona
University of Denver
ngalatos@du.edu

June, 2015

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
If \mathcal{K} has the FEP, then every invalid universal sentence of \mathcal{K} fails in a finite algebra of \mathcal{K}.

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
If \mathcal{K} has the FEP, then every invalid universal sentence of \mathcal{K} fails in a finite algebra of \mathcal{K}.
The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K}.

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
If \mathcal{K} has the FEP, then every invalid universal sentence of \mathcal{K} fails in a finite algebra of \mathcal{K}.

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K}.
Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
If \mathcal{K} has the FEP, then every invalid universal sentence of \mathcal{K} fails in a finite algebra of \mathcal{K}.

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K}.

Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability of the quasi-equational theory, which implies the decidability of the word problem, which implies the decidability of the equational theory.

FEP and decidability

A class of algebras \mathcal{K} has the finite embeddability property (FEP) if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.
If \mathcal{K} has the FEP, then every invalid universal sentence of \mathcal{K} fails in a finite algebra of \mathcal{K}.

The FEP implies the FMP (finite model property), namely that every invalid equation of \mathcal{K} fails in a finite algebra of \mathcal{K}.

Fact. If \mathcal{K} has the FEP and is finitely axiomatizable, then it's universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability of the quasi-equational theory, which implies the decidability of the word problem, which implies the decidability of the equational theory.

Fact. The FEP for a finitiely axiomatizable class \mathcal{K} that forms the algebraic semantics of a finitary logical system \vdash, implies its strong finite model property:
if $\Phi \nvdash \psi$, for finite Φ, then there is a finite counter-model.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Residuated lattices

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

Residuated lattices

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

The structure of \mathbf{H}
The order per exponent
Equations of the form $x^{m} \leq x^{n}$, for natural numbers m and n, are called knotted equations.

Residuated lattices

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

Equations of the form $x^{m} \leq x^{n}$, for natural numbers m and n, are called knotted equations.

They define proper, non-trivial subvarieties for $m \neq n$ and $m \neq 1$, and we will assume these conditions hold.

Residuated lattices

$$
a b \leq c \Leftrightarrow b \leq a \backslash c \Leftrightarrow a \leq c / b
$$

Equations of the form $x^{m} \leq x^{n}$, for natural numbers m and n, are called knotted equations.

They define proper, non-trivial subvarieties for $m \neq n$ and $m \neq 1$, and we will assume these conditions hold. Also, we will not consider the case $x^{m} \leq 1$, for $m>1$, as it is equivalent to the case $m=1$ (integrality).

RL does not have the FEP.

RL does not have the FEP.
$\mathrm{RL}+(x \leq 1)$ (integrality) has the FEP. (Blok and van Alten)

D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing \mathbf{F}
Constructing F
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Most varieties $\mathrm{RL}+\left(x^{m} \leq x\right)$, m-mingle, do not have the FEP/dWP. (Horčík) Jipsen)
$\mathrm{RL}+\left(x^{2} \leq x\right)$ (mingle) has the FEP. (Horčík)
Most varieties $\mathrm{RL}+\left(x^{m} \leq x\right)$, m-mingle, do not have the FEP/dWP. (Horčík)
$\mathrm{RL}+\left(x^{m} \leq x^{n}\right)$, for $n \neq 1$, does not have the FEP/dWP. (Horčík)
$\mathrm{RL}+\left(x^{2} \leq x\right)$ (mingle) has the FEP. (Horčík)
Most varieties $\mathrm{RL}+\left(x^{m} \leq x\right)$, m-mingle, do not have the FEP/dWP. (Horčík)
$\mathrm{RL}+\left(x^{m} \leq x^{n}\right)$, for $n \neq 1$, does not have the FEP/dWP. (Horčík)
The variety $\mathrm{RL}+(x y=y x)$ (commutativity) does not have the FEP. (Blok and van Alten)
$\mathrm{RL}+(x \leq 1)+$ (any equation over $\{\vee, \cdot, 1\}$) has the FEP. (G. and Jipsen)
$\mathrm{RL}+\left(x^{2} \leq x\right)$ (mingle) has the FEP. (Horčík)
Most varieties $\mathrm{RL}+\left(x^{m} \leq x\right)$, m-mingle, do not have the FEP/dWP. (Horčík)
$\mathrm{RL}+\left(x^{m} \leq x^{n}\right)$, for $n \neq 1$, does not have the FEP/dWP. (Horčík)
The variety $\mathrm{RL}+(x y=y x)$ (commutativity) does not have the FEP. (Blok and van Alten)

The varieties $\mathrm{RL}+\left(x^{m} \leq x^{n}\right)+(x y=y x)$ have the FEP. (van Alten)
$\mathrm{RL}+\left(x^{2} \leq x\right)$ (mingle) has the FEP. (Horčík)
Most varieties $\mathrm{RL}+\left(x^{m} \leq x\right)$, m-mingle, do not have the FEP/dWP. (Horčík)
$\mathrm{RL}+\left(x^{m} \leq x^{n}\right)$, for $n \neq 1$, does not have the FEP/dWP. (Horčík)
The variety $\mathrm{RL}+(x y=y x)$ (commutativity) does not have the FEP. (Blok and van Alten)

The varieties $\mathrm{RL}+\left(x^{m} \leq x^{n}\right)+(x y=y x)$ have the FEP. (van Alten)
The varieties $\mathrm{RL}+\left(x^{m} \leq x^{n}\right)+(x x y=x y x)^{*}+$ (any equation over $\{\vee, \cdot, 1\}$) has the FEP. (Cardona and G.)
*This is an example.

FEP for FDRL

FEP and decidability
Residuated lattices
FEP for RL

FEP for FDRL

D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)
(F)DRL $+(x \leq 1)+$ (any equation without divisions) has the FEP.
(G. and Jipsen)

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)
(F)DRL $+(x \leq 1)+$ (any equation without divisions) has the FEP. (G. and Jipsen)
(F)DRL $+(x y=y x)$ (commutativity) does not have the FEP (Blok and van Alten), or a dWP (G.)

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)
(F)DRL $+(x \leq 1)+$ (any equation without divisions) has the FEP. (G. and Jipsen)
(F)DRL $+(x y=y x)$ (commutativity) does not have the FEP (Blok and van Alten), or a dWP (G.)

DRL $+\left(x^{m} \leq x^{n}\right)$, for $m<n$, does not have the FEP/dWP. (Horčík)

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)
(F)DRL $+(x \leq 1)+$ (any equation without divisions) has the FEP. (G. and Jipsen)
(F)DRL $+(x y=y x)$ (commutativity) does not have the FEP (Blok and van Alten), or a dWP (G.)

DRL $+\left(x^{m} \leq x^{n}\right)$, for $m<n$, does not have the FEP/dWP. (Horčík)

Theorem (Cardona and G.) FDRL $+\left(x^{m} \leq x^{n}\right)+(a)+$ (any equation without divisions) has the FEP.

In every residuated lattice multiplication distributes over join. A residuated lattice is called (fully) distributive if (multiplication and) join distributes over meet. We write (FDRL) DRL.
(F)DRL does not have the FEP. (Blok and van Alten.)
(F)DRL $+(x \leq 1)+$ (any equation without divisions) has the FEP. (G. and Jipsen)
(F)DRL $+(x y=y x)$ (commutativity) does not have the FEP (Blok and van Alten), or a dWP (G.)

DRL $+\left(x^{m} \leq x^{n}\right)$, for $m<n$, does not have the FEP/dWP. (Horčík)

Theorem (Cardona and G.) FDRL $+\left(x^{m} \leq x^{n}\right)+(a)+$ (any equation without divisions) has the FEP.

$$
\begin{equation*}
x y_{1} x y_{2} \cdots y_{r} x=x^{a_{0}} y_{1} x^{a_{1}} y_{2} \cdots y_{r} x^{a_{r}} . \tag{a}
\end{equation*}
$$

Here $a=\left(a_{0}, a_{1}, \ldots, a_{r}\right)$ is a vector of natural numbers whose sum is $r+1$ and product is 0 .

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \otimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s \ell$-monoid,

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated
frames
DGN
Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \otimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s \ell$-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL

D via dist. frames

Distributive residuated
frames
DGN
Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \otimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s \ell$-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL

D via dist. frames

Distributive residuated
frames
DGN
Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \mathbb{\otimes}, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) st-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)
D needs to contain residuals $u \rightarrow(x \backslash b / y)$, for $b \in B, u, x, y \in W$.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL

D via dist. frames

Distributive residuated
frames
DGN
Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \otimes, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) st-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)
D needs to contain residuals $u \rightarrow(x \backslash b / y)$, for $b \in B, u, x, y \in W$.
We represent the ideal elements $u \rightarrow(x \backslash b / y)$ by (u, x, b, y) and

FEP and decidability
Residuated lattices FEP for RL
FEP for FDRL

D via dist. frames

Distributive residuated frames

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent collect them in an index set $W^{\prime}=W \times W \times B \times W$.

D via dist. frames

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \mathbb{\otimes}, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) $s \ell$-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)
D needs to contain residuals $u \rightarrow(x \backslash b / y)$, for $b \in B, u, x, y \in W$.
We represent the ideal elements $u \rightarrow(x \backslash b / y)$ by (u, x, b, y) and collect them in an index set $W^{\prime}=W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$
\left\{w \in W: w \leq^{\mathbf{A}} u \rightarrow(x \backslash b / y)\right\}=\left\{w \in W: u \bowtie(x \circ w \circ y) \leq^{\mathbf{A}} b\right\}
$$

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames
Distributive residuated frames

Finiteness

Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \mathbb{\otimes}, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) st-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)
D needs to contain residuals $u \rightarrow(x \backslash b / y)$, for $b \in B, u, x, y \in W$.
We represent the ideal elements $u \rightarrow(x \backslash b / y)$ by (u, x, b, y) and collect them in an index set $W^{\prime}=W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$
\left\{w \in W: w \leq^{\mathbf{A}} u \rightarrow(x \backslash b / y)\right\}=\left\{w \in W: u ®(x \circ w \circ y) \leq^{\mathbf{A}} b\right\}
$$

We extend the order to a relation \sqsubseteq between W and W^{\prime} :

$$
w \sqsubseteq(u, x, b, y) \Leftrightarrow u \bowtie(x \circ w \circ y) \leq^{\mathbf{A}} b
$$

For $z=(u, x, b, y) \in W^{\prime}$. We define $z^{\triangleleft}=\{x \in W: x \sqsubseteq z\}$.

Let $\mathbf{A} \in \mathcal{V}$, the above variety, and B be a finite subset of A. The algebra $\mathbf{W}=(W, \mathbb{\otimes}, \circ, \varepsilon)$ generated by B over $\{\wedge, \cdot, 1\}$ in \mathbf{A} is a (potentially infinite) st-monoid, and \mathbf{D} will end up consisting of downsets of \mathbf{W}. (Further \wedge in \mathbf{D} will be residuated.)
D needs to contain residuals $u \rightarrow(x \backslash b / y)$, for $b \in B, u, x, y \in W$.
We represent the ideal elements $u \rightarrow(x \backslash b / y)$ by (u, x, b, y) and collect them in an index set $W^{\prime}=W \times W \times B \times W$. We identify these ideal elements via their downsets in W.

$$
\left\{w \in W: w \leq^{\mathbf{A}} u \rightarrow(x \backslash b / y)\right\}=\left\{w \in W: u \boxtimes(x \circ w \circ y) \leq^{\mathbf{A}} b\right\}
$$

We extend the order to a relation \sqsubseteq between W and W^{\prime} :

$$
w \sqsubseteq(u, x, b, y) \Leftrightarrow u \bowtie(x \circ w \circ y) \leq^{\mathbf{A}} b
$$

For $z=(u, x, b, y) \in W^{\prime}$. We define $z^{\triangleleft}=\{x \in W: x \sqsubseteq z\}$. Also,

$$
D=\left\{\bigcap_{z \in Z}\{z\}^{\triangleleft}: Z \subseteq W^{\prime}\right\} \quad \mathbf{D}=\left(D, \cap, \cup_{\sqsubseteq}, \bullet_{\sqsubseteq}, \backslash, /, \varepsilon_{\sqsubseteq}\right)
$$

Distributive residuated frames

Theorem (G. and Jipsen).

- \mathbf{D} is a distributive residuated lattice.
- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).

■ The map $b \mapsto(T, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra
\mathbf{B} of \mathbf{A} into \mathbf{D}.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated

frames

DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Distributive residuated frames

Theorem (G. and Jipsen).
■ \mathbf{D} is a distributive residuated lattice.

- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).

■ The map $b \mapsto(\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra \mathbf{B} of \mathbf{A} into \mathbf{D}.

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated

frames

DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Distributive residuated frames

Theorem (G. and Jipsen).
■ \mathbf{D} is a distributive residuated lattice.

- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).

■ The map $b \mapsto(\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra \mathbf{B} of \mathbf{A} into \mathbf{D}.

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated

frames

DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Distributive residuated frames

Theorem (G. and Jipsen).
■ \mathbf{D} is a distributive residuated lattice.

- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).

■ The map $b \mapsto(\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra \mathbf{B} of \mathbf{A} into \mathbf{D}.

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated

frames

DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Distributive residuated frames

Theorem (G. and Jipsen).
■ \mathbf{D} is a distributive residuated lattice.

- All equations without divisions are preserved (\mathbf{D} is in \mathcal{V}).

■ The map $b \mapsto(\top, \varepsilon, b, \varepsilon)^{\triangleleft}$ is an embedding of the partial algebra \mathbf{B} of \mathbf{A} into \mathbf{D}.

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated

frames

DGN

Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

$$
\begin{aligned}
& \frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z}(\mathrm{CUT}) \quad \overline{a \sqsubseteq a}(\mathrm{Id})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x \sqsubseteq z}{x \bowtie y \sqsubseteq z}(\otimes i) \quad \frac{x \boxtimes x \sqsubseteq z}{x \sqsubseteq z}(\boxtimes c) \\
& \frac{x \sqsubseteq a \quad b \sqsubseteq z}{x \circ(a \backslash b) \sqsubseteq z}(\backslash \mathrm{~L}) \quad \frac{a \circ x \sqsubseteq b}{x \sqsubseteq a \backslash b}(\backslash \mathrm{R}) \\
& \frac{x \sqsubseteq a \quad b \sqsubseteq z}{(b / a) \circ x \sqsubseteq z}(/ \mathrm{L}) \quad \frac{x \circ a \sqsubseteq b}{x \sqsubseteq b / a}(/ \mathrm{R}) \\
& \frac{a \circ b \sqsubseteq z}{a \cdot b \sqsubseteq z}(\cdot \mathrm{~L}) \quad \frac{x \sqsubseteq a \quad y \sqsubseteq b}{x \circ y \sqsubseteq a \cdot b}(\cdot \mathrm{R}) \quad \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z}(1 \mathrm{~L}) \quad \overline{\varepsilon \sqsubseteq 1}(1 \mathrm{R}) \\
& \frac{a \boxtimes b \sqsubseteq z}{a \wedge b \sqsubseteq z}(\wedge \mathrm{~L} \ell) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \wedge b}(\wedge \mathrm{R}) \\
& \frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \vee b \sqsubseteq z}(\mathrm{VL}) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \vee b}(\vee \mathrm{R} \ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \vee b}(\vee \mathrm{R} r)
\end{aligned}
$$

FEP and decidability Residuated lattices FEP for RL

DGN

Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Finiteness

A poset is (dually) well partially ordered, (d)wpo,

The structure of \mathbf{H}
The order per exponent

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.
A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good).

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.
A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.
A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.

We will prove that W is wpo for $m<n$, and W is dwpo for $m>n$. This proves finiteness of C_{b} (it has downsets of W):

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames
DGN

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.
A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.
We will prove that W is wpo for $m<n$, and W is dwpo for $m>n$. This proves finiteness of C_{b} (it has downsets of W):
In both cases $\phi:\left(W^{3}, \leq\right) \rightarrow\left(C_{b}, \subseteq\right), \phi(u, x, y)=(u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then $\left(C_{b}, \subseteq\right)$ is a dwpo and if W is dwpo then $\left(C_{b}, \subseteq\right)$.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames
DGN

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.
We will prove that W is wpo for $m<n$, and W is dwpo for $m>n$. This proves finiteness of C_{b} (it has downsets of W):
In both cases $\phi:\left(W^{3}, \leq\right) \rightarrow\left(C_{b}, \subseteq\right), \phi(u, x, y)=(u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then $\left(C_{b}, \subseteq\right)$ is a dwpo and if W is dwpo then $\left(C_{b}, \subseteq\right)$.
Further, If $\left(C_{b}, \subseteq\right)$ has an ascending chain $C_{1} \subset C_{2} \subset \ldots$ of downsets of W, then we can construct a bad sequence w_{1}, w_{2}, \ldots in (W, \leq) by taking $w_{i} \in C_{i+1} \backslash C_{i}$.

To prove that \mathbf{D} is finite, it suffices to show that there are finitely many closed sets, which we organize by the $b \in B$: we define $C_{b}=\left\{(u, x, b, y)^{\triangleleft}: u, x, y \in W\right\}$. It suffices to show that each C_{b} is finite. We will do that indirectly, by showing that (C_{b}, \subseteq) has no infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x_{1}, x_{2}, \ldots has an increasing step: $i<j$ with $x_{i} \leq x_{j}$ (all sequences are good). Disjoint unions, products, subsets and order-preserving images of wpo's are wpo.
We will prove that W is wpo for $m<n$, and W is dwpo for $m>n$. This proves finiteness of C_{b} (it has downsets of W):
In both cases $\phi:\left(W^{3}, \leq\right) \rightarrow\left(C_{b}, \subseteq\right), \phi(u, x, y)=(u, x, b, y)^{\triangleleft}$ is a surjective order-reversing map. So, if W is wpo then $\left(C_{b}, \subseteq\right)$ is a dwpo and if W is dwpo then $\left(C_{b}, \subseteq\right)$.
Further, If $\left(C_{b}, \subseteq\right)$ has an ascending chain $C_{1} \subset C_{2} \subset \ldots$ of downsets of W, then we can construct a bad sequence w_{1}, w_{2}, \ldots in (W, \leq) by taking $w_{i} \in C_{i+1} \backslash C_{i}$. For decsending: $w_{i} \in C_{i} \backslash C_{i+1}$.

Constructing F

Since the structure of W depends a lot on the specific \mathbf{A} and B, we consider a more free structure \mathbf{F}, and prove that it is (d)wpo and maps onto (W, \leq).

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Constructing F

Since the structure of W depends a lot on the specific \mathbf{A} and B, we consider a more free structure \mathbf{F}, and prove that it is (d)wpo and maps onto (W, \leq).

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness

The structure of \mathbf{H}
The order per exponent

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid \mathbf{H}.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing \mathbf{F}
Constructing F
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid H. More concretely, F consists of all finitely generated upsets of \mathbf{H} with operations $X \wedge Y=X \cup Y$ and $X \bullet Y=\uparrow(X Y)$.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid H. More concretely, F consists of all finitely generated upsets of \mathbf{H} with operations $X \wedge Y=X \cup Y$ and $X \bullet Y=\uparrow(X Y)$.

Lemma. If $f:(H, \cdot, \leq) \rightarrow(W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h:(F, \wedge, \cdot) \rightarrow(W, \mathbb{Q}, \circ)$, where $h(X)=\bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid H. More concretely, F consists of all finitely generated upsets of \mathbf{H} with operations $X \wedge Y=X \cup Y$ and $X \bullet Y=\uparrow(X Y)$.

Lemma. If $f:(H, \cdot, \leq) \rightarrow(W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h:(F, \wedge, \cdot) \rightarrow(W, \boxtimes, \circ)$, where $h(X)=\bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If \mathbf{H} is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid H. More concretely, F consists of all finitely generated upsets of \mathbf{H} with operations $X \wedge Y=X \cup Y$ and $X \bullet Y=\uparrow(X Y)$.

Lemma. If $f:(H, \cdot, \leq) \rightarrow(W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h:(F, \wedge, \cdot) \rightarrow(W, \boxtimes, \circ)$, where $h(X)=\bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If \mathbf{H} is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.
Lemma. If \mathbf{H} is a finite unions of finite products of linear wpo's, then $\mathcal{M}(\mathbf{H})$ is wpo.

Constructing F

For that we take $\mathbf{F}=\mathcal{M}(\mathbf{H})$, the free meet semilattice over a (d)wpo pomonoid H. More concretely, F consists of all finitely generated upsets of \mathbf{H} with operations $X \wedge Y=X \cup Y$ and $X \bullet Y=\uparrow(X Y)$.

Lemma. If $f:(H, \cdot, \leq) \rightarrow(W, \cdot \leq)$ is an onto pomonoid homomorphism, then $h:(F, \wedge, \cdot) \rightarrow(W, \boxtimes, \circ)$, where

FEP and decidability
Residuated lattices $h(X)=\bigwedge_{x \in X} f(x)$, is an onto semilattice monoid homomorphism.

Lemma. If \mathbf{H} is dwpo, then $\mathcal{M}(\mathbf{H})$ is dwpo.
Lemma. If \mathbf{H} is a finite unions of finite products of linear wpo's, then $\mathcal{M}(\mathbf{H})$ is wpo.

So it is enough to construct a pomonoid \mathbf{H} with nice order properties (dwpo, or $\cup P(w o))$ which maps homomorphically onto W.

FEP and decidability

$$
x y_{1} x \cdots x y_{6} x=x^{2} y_{1} y_{2} y_{3} x^{3} y_{4} y_{5} x y_{6} x
$$

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

FEP and decidability

$$
x y_{1} x \cdots x y_{6} x=x^{2} y_{1} y_{2} y_{3} x^{3} y_{4} y_{5} x y_{6} x
$$

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

FEP and decidability

$$
x y_{1} x \cdots x y_{6} x=x^{2} y_{1} y_{2} y_{3} x^{3} y_{4} y_{5} x y_{6} x
$$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

FEP and decidability

$$
x y_{1} x \cdots x y_{6} x=x^{2} y_{1} y_{2} y_{3} x^{3} y_{4} y_{5} x y_{6} x
$$

FEP and decidability Residuated lattices FEP for RL FEP for FDRL
D via dist. frames Distributive residuated frames DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

FEP and decidability

$$
x y_{1} x \cdots x y_{6} x=x^{2} y_{1} y_{2} y_{3} x^{3} y_{4} y_{5} x y_{6} x
$$

FEP and decidability Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames
DGN
Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

Using (a)

FEP and decidability Residuated lattices FEP for RL FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability

Using (a)

The structure of \mathbf{H}
The order per exponent

Using (a)

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent
$\alpha_{N}\left(x y_{1} x y_{2} x y_{3} x y_{4} x y_{5} x y_{6} x y_{7} x y_{8} x y_{9} x y_{10} x\right)=x x^{8} y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{8} y_{9} x y_{10} x$

Using (a)

FEP and decidability Residuated lattices FEP for RL FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability

Using (a)

The structure of \mathbf{H}
The order per exponent
$\alpha_{N}\left(x y_{1} x y_{2} x y_{3} x y_{4} x y_{5} x y_{6} x y_{7} x y_{8} x y_{9} x y_{10} x\right)=x x^{8} y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{8} y_{9} x y_{10} x$
In (a) we have $\ell_{1}=1$ many x 's in the 'front', $\ell_{2}=2$ in the end.

The structure of H

Let $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of variables. The equation (a) implies (in the theory of monoids) the equation $\alpha_{N}^{\ell(a)}(s)=s$, for all $s \in X_{k}^{*}$, for some $\ell(a)$.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a) $\left(\ell_{1}+2\right)$ th, and up to the $\left(\ell_{1}+d_{\ell}\right)$ th occurrence of x_{i}, simultaneously for each x_{i} with more than ℓ_{0}-many occurrences in s. Thus by collecting all these consecutive occurrences next to the $\left(\ell_{1}\right)$ th occurrence of x_{i} we obtain a power of x_{i}.

Let $X_{k}=\left\{x_{1}, \ldots, x_{k}\right\}$ be a set of variables. The equation (a) implies (in the theory of monoids) the equation $\alpha_{N}^{\ell(a)}(s)=s$, for all $s \in X_{k}^{*}$, for some $\ell(a)$.
For a given $\ell=\left(\ell_{0}, \ell_{1}, d_{\ell}\right)$, with $\ell_{1}+d_{\ell}<\ell_{0}$, the function
$\alpha_{N}^{\ell}: X_{k} * \rightarrow X_{k}^{*}$ is defined as follows: $\alpha_{N}(s)$ is obtained from s by moving next to the $\left(\ell_{1}\right)$ th occurrence of x_{i} the $\left(\ell_{1}+1\right)$ th, the $\left(\ell_{1}+2\right)$ th, and up to the $\left(\ell_{1}+d_{\ell}\right)$ th occurrence of x_{i}, simultaneously for each x_{i} with more than ℓ_{0}-many occurrences in s. Thus by collecting all these consecutive occurrences next to the $\left(\ell_{1}\right)$ th occurrence of x_{i} we obtain a power of x_{i}.
If we further we truncate the exponent of this power to be at most d_{ℓ}, for each x_{i}, then we obtain the element $\alpha_{D}(s)$. Clearly $\alpha_{D}\left[X_{k}^{*}\right]$ is finite, as we control the length of the words.
We also define $H=\alpha_{N}\left[X_{k}^{*}\right]$ with multiplication given by $\alpha_{N}(x y)$. It turns out that H is bijective with a subset of $\mathbb{N}^{k} \times \alpha_{D}\left[X_{k}^{*}\right]$, under the map $\psi(s)=\left(|s|_{x_{1}}, \ldots,|s|_{x_{k}}, \alpha_{D}(s)\right)$, where $|s|_{x}$ denotes the number of occurrences of x in s.

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames
DGN

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)

The order per exponent

We have reduced the issue to a direct product of finitely many factors (we control the length of the words).

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames DGN

Finiteness
Constructing F
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H}
The order per exponent

The order per exponent

The order per exponent

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^{m} \leq x^{n}$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_{D}\left[X_{k}^{*}\right]$ is discrete while the

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H} order \leq_{n}^{m} on each component \mathbb{N} is given as follows for the easier case $m>n: u \leq_{n}^{m} v$ if and only if $u=v$, or $n \leq v<u$ and $u \equiv v$ $(\bmod m-n)$.

The order per exponent

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^{m} \leq x^{n}$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_{D}\left[X_{k}^{*}\right]$ is discrete while the

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H} order \leq_{n}^{m} on each component \mathbb{N} is given as follows for the easier case $m>n: u \leq_{n}^{m} v$ if and only if $u=v$, or $n \leq v<u$ and $u \equiv v$ $(\bmod m-n)$.

So, \mathbf{H} is a dwpo.

The order per exponent

We have reduced the issue to a direct product of finitely many factors (we control the length of the words). We focus on the structure of the exponents.

Given a knotted inequality $x^{m} \leq x^{n}$, and the above bijection, we can endow H with an order under which it becomes a pomonoid. In particular, the order on the component $\alpha_{D}\left[X_{k}^{*}\right]$ is discrete while the

FEP and decidability
Residuated lattices
FEP for RL
FEP for FDRL
D via dist. frames Distributive residuated frames

Finiteness

Constructing \mathbf{F}
Constructing \mathbf{F}
FEP and decidability
Using (a)
The structure of \mathbf{H} order \leq_{n}^{m} on each component \mathbb{N} is given as follows for the easier case $m>n: u \leq_{n}^{m} v$ if and only if $u=v$, or $n \leq v<u$ and $u \equiv v$ $(\bmod m-n)$.

So, \mathbf{H} is a dwpo. For the second case $m<n$, we prove that \mathbf{H} is a isomorphic to a finite union of finite products of well-ordered chains.

