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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.



FEP and decidability
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 2 / 15

A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

If K has the FEP, then every invalid universal sentence of K fails in a
finite algebra of K.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

If K has the FEP, then every invalid universal sentence of K fails in a
finite algebra of K.

The FEP implies the FMP (finite model property), namely that every
invalid equation of K fails in a finite algebra of K.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

If K has the FEP, then every invalid universal sentence of K fails in a
finite algebra of K.

The FEP implies the FMP (finite model property), namely that every
invalid equation of K fails in a finite algebra of K.

Fact. If K has the FEP and is finitely axiomatizable, then it’s
universal theory is decidable.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

If K has the FEP, then every invalid universal sentence of K fails in a
finite algebra of K.

The FEP implies the FMP (finite model property), namely that every
invalid equation of K fails in a finite algebra of K.

Fact. If K has the FEP and is finitely axiomatizable, then it’s
universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability
of the quasi-equational theory, which implies the decidability of the
word problem, which implies the decidability of the equational theory.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

If K has the FEP, then every invalid universal sentence of K fails in a
finite algebra of K.

The FEP implies the FMP (finite model property), namely that every
invalid equation of K fails in a finite algebra of K.

Fact. If K has the FEP and is finitely axiomatizable, then it’s
universal theory is decidable.

Fact. The decidability of the universal theory implies the decidability
of the quasi-equational theory, which implies the decidability of the
word problem, which implies the decidability of the equational theory.

Fact. The FEP for a finitiely axiomatizable class K that forms the
algebraic semantics of a finitary logical system ⊢, implies its strong
finite model property:
if Φ 6⊢ ψ, for finite Φ, then there is a finite counter-model.



Residuated lattices
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 3 / 15

A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.



Residuated lattices
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 3 / 15

A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Equations of the form xm ≤ xn, for natural numbers m and n, are
called knotted equations.
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A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Equations of the form xm ≤ xn, for natural numbers m and n, are
called knotted equations.

They define proper, non-trivial subvarieties for m 6= n and m 6= 1,
and we will assume these conditions hold.



Residuated lattices
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 3 / 15

A residuated lattice, is an algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Equations of the form xm ≤ xn, for natural numbers m and n, are
called knotted equations.

They define proper, non-trivial subvarieties for m 6= n and m 6= 1,
and we will assume these conditions hold. Also, we will not consider
the case xm ≤ 1, for m > 1, as it is equivalent to the case m = 1
(integrality).
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RL does not have the FEP.
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RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)
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RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)

RL+ (x ≤ 1)+ (any equation over {∨, ·, 1}) has the FEP. (G. and
Jipsen)
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Jipsen)

RL+ (x2 ≤ x) (mingle) has the FEP. (Horč́ık)
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RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)

RL+ (x ≤ 1)+ (any equation over {∨, ·, 1}) has the FEP. (G. and
Jipsen)

RL+ (x2 ≤ x) (mingle) has the FEP. (Horč́ık)

Most varieties RL+ (xm ≤ x), m-mingle, do not have the
FEP/dWP. (Horč́ık)
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FEP for RL
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 4 / 15

RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)

RL+ (x ≤ 1)+ (any equation over {∨, ·, 1}) has the FEP. (G. and
Jipsen)

RL+ (x2 ≤ x) (mingle) has the FEP. (Horč́ık)

Most varieties RL+ (xm ≤ x), m-mingle, do not have the
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The variety RL+ (xy = yx) (commutativity) does not have the FEP.
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RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)

RL+ (x ≤ 1)+ (any equation over {∨, ·, 1}) has the FEP. (G. and
Jipsen)

RL+ (x2 ≤ x) (mingle) has the FEP. (Horč́ık)

Most varieties RL+ (xm ≤ x), m-mingle, do not have the
FEP/dWP. (Horč́ık)

RL+ (xm ≤ xn), for n 6= 1, does not have the FEP/dWP. (Horč́ık)

The variety RL+ (xy = yx) (commutativity) does not have the FEP.
(Blok and van Alten)

The varieties RL+(xm ≤ xn)+ (xy = yx) have the FEP. (van Alten)
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RL does not have the FEP.

RL+ (x ≤ 1) (integrality) has the FEP. (Blok and van Alten)

RL+ (x ≤ 1)+ (any equation over {∨, ·, 1}) has the FEP. (G. and
Jipsen)

RL+ (x2 ≤ x) (mingle) has the FEP. (Horč́ık)

Most varieties RL+ (xm ≤ x), m-mingle, do not have the
FEP/dWP. (Horč́ık)

RL+ (xm ≤ xn), for n 6= 1, does not have the FEP/dWP. (Horč́ık)

The variety RL+ (xy = yx) (commutativity) does not have the FEP.
(Blok and van Alten)

The varieties RL+(xm ≤ xn)+ (xy = yx) have the FEP. (van Alten)

The varieties RL+ (xm ≤ xn) + (xxy = xyx)∗+ (any equation over
{∨, ·, 1}) has the FEP. (Cardona and G.)
∗This is an example.
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In every residuated lattice multiplication distributes over join.
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)

(F)DRL+ (x ≤ 1)+ (any equation without divisions) has the FEP.
(G. and Jipsen)
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)

(F)DRL+ (x ≤ 1)+ (any equation without divisions) has the FEP.
(G. and Jipsen)

(F)DRL+ (xy = yx) (commutativity) does not have the FEP (Blok
and van Alten), or a dWP (G.)
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)

(F)DRL+ (x ≤ 1)+ (any equation without divisions) has the FEP.
(G. and Jipsen)

(F)DRL+ (xy = yx) (commutativity) does not have the FEP (Blok
and van Alten), or a dWP (G.)

DRL+ (xm ≤ xn), for m < n, does not have the FEP/dWP.
(Horč́ık)
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)

(F)DRL+ (x ≤ 1)+ (any equation without divisions) has the FEP.
(G. and Jipsen)

(F)DRL+ (xy = yx) (commutativity) does not have the FEP (Blok
and van Alten), or a dWP (G.)

DRL+ (xm ≤ xn), for m < n, does not have the FEP/dWP.
(Horč́ık)

Theorem (Cardona and G.) FDRL+ (xm ≤ xn) + (a)+ (any
equation without divisions) has the FEP.
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In every residuated lattice multiplication distributes over join. A
residuated lattice is called (fully) distributive if (multiplication and)
join distributes over meet. We write (FDRL) DRL.

(F)DRL does not have the FEP. (Blok and van Alten.)

(F)DRL+ (x ≤ 1)+ (any equation without divisions) has the FEP.
(G. and Jipsen)

(F)DRL+ (xy = yx) (commutativity) does not have the FEP (Blok
and van Alten), or a dWP (G.)

DRL+ (xm ≤ xn), for m < n, does not have the FEP/dWP.
(Horč́ık)

Theorem (Cardona and G.) FDRL+ (xm ≤ xn) + (a)+ (any
equation without divisions) has the FEP.

xy1xy2 · · · yrx = xa0y1x
a1y2 · · · yrx

ar . (a)

Here a = (a0, a1, . . . , ar) is a vector of natural numbers whose sum
is r + 1 and product is 0.



D via dist. frames
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 6 / 15

Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid,
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W.
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)

D needs to contain residuals u→ (x\b/y), for b ∈ B, u, x, y ∈W .
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)

D needs to contain residuals u→ (x\b/y), for b ∈ B, u, x, y ∈W .

We represent the ideal elements u→ (x\b/y) by (u, x, b, y) and
collect them in an index set W ′ =W ×W ×B ×W .
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)

D needs to contain residuals u→ (x\b/y), for b ∈ B, u, x, y ∈W .

We represent the ideal elements u→ (x\b/y) by (u, x, b, y) and
collect them in an index set W ′ =W ×W ×B ×W . We identify
these ideal elements via their downsets in W .

{w ∈W : w ≤A u→ (x\b/y)} = {w ∈W : u©∧ (x ◦ w ◦ y) ≤A b}.
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)

D needs to contain residuals u→ (x\b/y), for b ∈ B, u, x, y ∈W .

We represent the ideal elements u→ (x\b/y) by (u, x, b, y) and
collect them in an index set W ′ =W ×W ×B ×W . We identify
these ideal elements via their downsets in W .

{w ∈W : w ≤A u→ (x\b/y)} = {w ∈W : u©∧ (x ◦ w ◦ y) ≤A b}.

We extend the order to a relation ⊑ between W and W ′:

w ⊑ (u, x, b, y) ⇔ u©∧ (x ◦ w ◦ y) ≤A b.

For z = (u, x, b, y) ∈W ′. We define z⊳ = {x ∈W : x ⊑ z}.
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Let A ∈ V , the above variety, and B be a finite subset of A. The
algebra W = (W,©∧ , ◦, ε) generated by B over {∧, ·, 1} in A is a
(potentially infinite) sℓ-monoid, and D will end up consisting of
downsets of W. (Further ∧ in D will be residuated.)

D needs to contain residuals u→ (x\b/y), for b ∈ B, u, x, y ∈W .

We represent the ideal elements u→ (x\b/y) by (u, x, b, y) and
collect them in an index set W ′ =W ×W ×B ×W . We identify
these ideal elements via their downsets in W .

{w ∈W : w ≤A u→ (x\b/y)} = {w ∈W : u©∧ (x ◦ w ◦ y) ≤A b}.

We extend the order to a relation ⊑ between W and W ′:

w ⊑ (u, x, b, y) ⇔ u©∧ (x ◦ w ◦ y) ≤A b.

For z = (u, x, b, y) ∈W ′. We define z⊳ = {x ∈W : x ⊑ z}. Also,

D =

{

⋂

z∈Z

{z}⊳ : Z ⊆W ′

}

D = (D,∩,∪
⊑
, ·

⊑
, \, /, ε

⊑
).
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Theorem (G. and Jipsen).

■ D is a distributive residuated lattice.
■ All equations without divisions are preserved (D is in V).
■ The map b 7→ (⊤, ε, b, ε)⊳ is an embedding of the partial algebra
B of A into D.
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Theorem (G. and Jipsen).

■ D is a distributive residuated lattice.
■ All equations without divisions are preserved (D is in V).
■ The map b 7→ (⊤, ε, b, ε)⊳ is an embedding of the partial algebra
B of A into D.

W W ′

⊑
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Theorem (G. and Jipsen).

■ D is a distributive residuated lattice.
■ All equations without divisions are preserved (D is in V).
■ The map b 7→ (⊤, ε, b, ε)⊳ is an embedding of the partial algebra
B of A into D.
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■ D is a distributive residuated lattice.
■ All equations without divisions are preserved (D is in V).
■ The map b 7→ (⊤, ε, b, ε)⊳ is an embedding of the partial algebra
B of A into D.
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Theorem (G. and Jipsen).

■ D is a distributive residuated lattice.
■ All equations without divisions are preserved (D is in V).
■ The map b 7→ (⊤, ε, b, ε)⊳ is an embedding of the partial algebra
B of A into D.

W W ′

zz⊳

⊑
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x⊑a a⊑z
x⊑z

(CUT)
a⊑a

(Id)

x©∧ (y©∧ w)⊑z

(x©∧ y)©∧ w⊑z
(©∧ a)

x©∧ y⊑z

y©∧ x⊑z
(©∧ e)

x⊑z

x©∧ y⊑z
(©∧ i)

x©∧ x⊑z

x⊑z
(©∧ c)

x⊑a b⊑z

x ◦ (a\b)⊑z
(\L)

a ◦ x⊑b

x⊑a\b
(\R)

x⊑a b⊑z

(b/a) ◦ x⊑z
(/L)

x ◦ a⊑b

x⊑b/a
(/R)

a ◦ b⊑z

a · b⊑z
(·L)

x⊑a y⊑b

x ◦ y⊑a · b
(·R)

ε⊑z
1⊑z

(1L)
ε⊑1

(1R)

a©∧ b⊑z

a ∧ b⊑z
(∧Lℓ)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B:



Finiteness
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 9 / 15

To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains,
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo,
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good).
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good). Disjoint unions,
products, subsets and order-preserving images of wpo’s are wpo.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good). Disjoint unions,
products, subsets and order-preserving images of wpo’s are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n.
This proves finiteness of Cb (it has downsets of W ):
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good). Disjoint unions,
products, subsets and order-preserving images of wpo’s are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n.
This proves finiteness of Cb (it has downsets of W ):

In both cases φ : (W 3,≤) → (Cb,⊆), φ(u, x, y) = (u, x, b, y)⊳ is a
surjective order-reversing map. So, if W is wpo then (Cb,⊆) is a
dwpo and if W is dwpo then (Cb,⊆).
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good). Disjoint unions,
products, subsets and order-preserving images of wpo’s are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n.
This proves finiteness of Cb (it has downsets of W ):

In both cases φ : (W 3,≤) → (Cb,⊆), φ(u, x, y) = (u, x, b, y)⊳ is a
surjective order-reversing map. So, if W is wpo then (Cb,⊆) is a
dwpo and if W is dwpo then (Cb,⊆).

Further, If (Cb,⊆) has an ascending chain C1 ⊂ C2 ⊂ . . . of
downsets of W , then we can construct a bad sequence w1, w2, . . . in
(W,≤) by taking wi ∈ Ci+1 \ Ci.
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To prove that D is finite, it suffices to show that there are finitely
many closed sets, which we organize by the b ∈ B: we define
Cb = {(u, x, b, y)⊳ : u, x, y ∈W}. It suffices to show that each Cb is
finite. We will do that indirectly, by showing that (Cb,⊆) has no
infinite: ascending chains, descending chains, or antichains.

A poset is (dually) well partially ordered, (d)wpo, if it has no infinite
antichains and no infinite (ascending) descending chains.
Equivalently if every sequence x1, x2, . . . has an increasing step:
i < j with xi ≤ xj (all sequences are good). Disjoint unions,
products, subsets and order-preserving images of wpo’s are wpo.

We will prove that W is wpo for m < n, and W is dwpo for m > n.
This proves finiteness of Cb (it has downsets of W ):

In both cases φ : (W 3,≤) → (Cb,⊆), φ(u, x, y) = (u, x, b, y)⊳ is a
surjective order-reversing map. So, if W is wpo then (Cb,⊆) is a
dwpo and if W is dwpo then (Cb,⊆).

Further, If (Cb,⊆) has an ascending chain C1 ⊂ C2 ⊂ . . . of
downsets of W , then we can construct a bad sequence w1, w2, . . . in
(W,≤) by taking wi ∈ Ci+1 \ Ci. For decsending: wi ∈ Ci \ Ci+1.
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Since the structure of W depends a lot on the specific A and B, we
consider a more free structure F, and prove that it is (d)wpo and
maps onto (W,≤).
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Since the structure of W depends a lot on the specific A and B, we
consider a more free structure F, and prove that it is (d)wpo and
maps onto (W,≤).

F W W ′

z{z}⊳

h ⊑

{ }⊳
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For that we take F = M(H), the free meet semilattice over a
(d)wpo pomonoid H.
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For that we take F = M(H), the free meet semilattice over a
(d)wpo pomonoid H. More concretely, F consists of all finitely
generated upsets of H with operations X ∧ Y = X ∪ Y and
X • Y =↑ (XY ).
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For that we take F = M(H), the free meet semilattice over a
(d)wpo pomonoid H. More concretely, F consists of all finitely
generated upsets of H with operations X ∧ Y = X ∪ Y and
X • Y =↑ (XY ).

Lemma. If f : (H, ·,≤) → (W, · ≤) is an onto pomonoid
homomorphism, then h : (F,∧, ·) → (W,©∧ , ◦), where
h(X) =

∧

x∈X f(x), is an onto semilattice monoid homomorphism.
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For that we take F = M(H), the free meet semilattice over a
(d)wpo pomonoid H. More concretely, F consists of all finitely
generated upsets of H with operations X ∧ Y = X ∪ Y and
X • Y =↑ (XY ).

Lemma. If f : (H, ·,≤) → (W, · ≤) is an onto pomonoid
homomorphism, then h : (F,∧, ·) → (W,©∧ , ◦), where
h(X) =

∧

x∈X f(x), is an onto semilattice monoid homomorphism.

Lemma. If H is dwpo, then M(H) is dwpo.
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For that we take F = M(H), the free meet semilattice over a
(d)wpo pomonoid H. More concretely, F consists of all finitely
generated upsets of H with operations X ∧ Y = X ∪ Y and
X • Y =↑ (XY ).

Lemma. If f : (H, ·,≤) → (W, · ≤) is an onto pomonoid
homomorphism, then h : (F,∧, ·) → (W,©∧ , ◦), where
h(X) =

∧

x∈X f(x), is an onto semilattice monoid homomorphism.

Lemma. If H is dwpo, then M(H) is dwpo.

Lemma. If H is a finite unions of finite products of linear wpo’s,
then M(H) is wpo.

So it is enough to construct a pomonoid H with nice order properties
(dwpo, or ∪P (wo)) which maps homomorphically onto W .
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xy1x · · ·xy6x = x2y1y2y3x
3y4y5xy6x

x x x x x x x x x x xy1 y2 y3 y4 y5 y6 y7 y8 y9 y10
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αN (xy1xy2xy3xy4xy5xy6xy7xy8xy9xy10x) = xx8y1y2y3y4y5y6y7y8y9xy10x
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x x x x x x x x x x xy1 y2 y3 y4 y5 y6 y7 y8 y9 y10

x x x x x x x x x x xy1 y2 y3 y4 y5 y6 y7 y8 y9 y10

αN (xy1xy2xy3xy4xy5xy6xy7xy8xy9xy10x) = xx8y1y2y3y4y5y6y7y8y9xy10x

In (a) we have ℓ1 = 1 many x’s in the ‘front’, ℓ2 = 2 in the end.

x x x x x x xy1 y2 y3 y4 y5 y6

x x x x x x xy1 y2 y3 y4 y5 y6
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Let Xk = {x1, . . . , xk} be a set of variables. The equation (a)

implies (in the theory of monoids) the equation α
ℓ(a)
N (s) = s, for all

s ∈ X∗
k , for some ℓ(a).



The structure of H
FEP and decidability

Residuated lattices

FEP for RL

FEP for FDRL

D via dist. frames
Distributive residuated
frames

DGN

Finiteness

Constructing F

Constructing F

FEP and decidability

Using (a)

The structure of H

The order per exponent

Nick Galatos, TACL, June 2015 The FEP for FDRL – 14 / 15

Let Xk = {x1, . . . , xk} be a set of variables. The equation (a)

implies (in the theory of monoids) the equation α
ℓ(a)
N (s) = s, for all

s ∈ X∗
k , for some ℓ(a).

For a given ℓ = (ℓ0, ℓ1, dℓ), with ℓ1 + dℓ < ℓ0, the function
αℓ
N : Xk∗ → X∗

k is defined as follows:
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Let Xk = {x1, . . . , xk} be a set of variables. The equation (a)

implies (in the theory of monoids) the equation α
ℓ(a)
N (s) = s, for all

s ∈ X∗
k , for some ℓ(a).

For a given ℓ = (ℓ0, ℓ1, dℓ), with ℓ1 + dℓ < ℓ0, the function
αℓ
N : Xk∗ → X∗

k is defined as follows: αN (s) is obtained from s by
moving next to the (ℓ1)th occurrence of xi the (ℓ1 + 1)th, the
(ℓ1 + 2)th, and up to the (ℓ1 + dℓ)th occurrence of xi,
simultaneously for each xi with more than ℓ0-many occurrences in s.
Thus by collecting all these consecutive occurrences next to the
(ℓ1)th occurrence of xi we obtain a power of xi.
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Let Xk = {x1, . . . , xk} be a set of variables. The equation (a)

implies (in the theory of monoids) the equation α
ℓ(a)
N (s) = s, for all

s ∈ X∗
k , for some ℓ(a).

For a given ℓ = (ℓ0, ℓ1, dℓ), with ℓ1 + dℓ < ℓ0, the function
αℓ
N : Xk∗ → X∗

k is defined as follows: αN (s) is obtained from s by
moving next to the (ℓ1)th occurrence of xi the (ℓ1 + 1)th, the
(ℓ1 + 2)th, and up to the (ℓ1 + dℓ)th occurrence of xi,
simultaneously for each xi with more than ℓ0-many occurrences in s.
Thus by collecting all these consecutive occurrences next to the
(ℓ1)th occurrence of xi we obtain a power of xi.

If we further we truncate the exponent of this power to be at most
dℓ, for each xi, then we obtain the element αD(s). Clearly αD[X∗

k ] is
finite, as we control the length of the words.
We also define H = αN [X∗

k ] with multiplication given by αN (xy). It
turns out that H is bijective with a subset of Nk × αD[X∗

k ], under
the map ψ(s) = (|s|x1

, . . . , |s|xk
, αD(s)), where |s|x denotes the

number of occurrences of x in s.
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We have reduced the issue to a direct product of finitely many
factors (we control the length of the words).
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We have reduced the issue to a direct product of finitely many
factors (we control the length of the words). We focus on the
structure of the exponents.
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We have reduced the issue to a direct product of finitely many
factors (we control the length of the words). We focus on the
structure of the exponents.

Given a knotted inequality xm ≤ xn, and the above bijection, we can
endow H with an order under which it becomes a pomonoid. In
particular, the order on the component αD[X∗

k ] is discrete while the
order ≤m

n on each component N is given as follows for the easier case
m > n : u ≤m

n v if and only if u = v, or n ≤ v < u and u ≡ v
(mod m− n).

0 1 2
· · · · · · · · ·

n − 1 n n + 1
· · · · · ·

m − 1 = n + (m − n) − 1

n + 2(m − n) − 1

n + 3(m − n) − 1

m + 1

2m − n + 1

m = n + (m − n)

n + 2(m − n) ...
...

...
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We have reduced the issue to a direct product of finitely many
factors (we control the length of the words). We focus on the
structure of the exponents.

Given a knotted inequality xm ≤ xn, and the above bijection, we can
endow H with an order under which it becomes a pomonoid. In
particular, the order on the component αD[X∗

k ] is discrete while the
order ≤m

n on each component N is given as follows for the easier case
m > n : u ≤m

n v if and only if u = v, or n ≤ v < u and u ≡ v
(mod m− n).

0 1 2
· · · · · · · · ·

n − 1 n n + 1
· · · · · ·

m − 1 = n + (m − n) − 1

n + 2(m − n) − 1

n + 3(m − n) − 1

m + 1

2m − n + 1

m = n + (m − n)

n + 2(m − n) ...
...

...

So, H is a dwpo.
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We have reduced the issue to a direct product of finitely many
factors (we control the length of the words). We focus on the
structure of the exponents.

Given a knotted inequality xm ≤ xn, and the above bijection, we can
endow H with an order under which it becomes a pomonoid. In
particular, the order on the component αD[X∗

k ] is discrete while the
order ≤m

n on each component N is given as follows for the easier case
m > n : u ≤m

n v if and only if u = v, or n ≤ v < u and u ≡ v
(mod m− n).

0 1 2
· · · · · · · · ·

n − 1 n n + 1
· · · · · ·

m − 1 = n + (m − n) − 1

n + 2(m − n) − 1

n + 3(m − n) − 1

m + 1

2m − n + 1

m = n + (m − n)

n + 2(m − n) ...
...

...

So, H is a dwpo. For the second case m < n, we prove that H is a
isomorphic to a finite union of finite products of well-ordered chains.
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