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Overview

• Unification, unifiers and projective unifiers in logic

• The scope of projective unification in propositional logics

• Applications to (Almost) Structural Completeness and
Admissible Rules

• The scope of projective unification in predicate logics:
• An intermediate predicate logic L enjoys projective unification

iff L extends IP.QLC - Gödel-Dummett predicate logic with
Independence of Premises

• A modal predicate logic L extending QS4= enjoys projective
unification iff L extends �IP.QS4.3= - modal predicate logic
QS4.3= with Modal Independence of Premises
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Projective unifiers

A substitution ε is called a unifier for a formula A in a logic L if

`L ε(A) (or equivalently if ε(A) ∈ L)

Unifiers ε : Fm→ {⊥,>} are called ground unifiers.

A substitution ε is said to be projective for A in L if

A `L B ↔ ε(B), for each B

S.Ghilardi: projective - formula, -unifier, Fn/[A) projective alg.

We say that the logic L has projective unification if each unifiable
formula has a projective unifier.

Ex. Classical PC, Modal S5, NExt S4.3
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Applications: (A)SC, Admissible rules.

A schematic (structural) rule r : α1, . . . , αn, /β is admissible in L,
if adding r does not change L, i.e. for every substitution τ :

{τ(α1), . . . , τ(αn)} ⊆ L ⇒ τ(β) ∈ L

r is derivable in L, if α1, . . . , αn `L β.

A logic L is Structurally Complete, SC, if every admissible rule in L
is also derivable in L; (Class PC, LC, Int→, Medvedev L.)

r : α1, . . . α1/β is passive in L, if for every substitution τ :
{τ(α1), . . . τ(αn)} 6⊆ L, i.e. the premises are not unifiable in L.

EX. P2 : ♦p ∧ ♦¬p/⊥ is passive in S4 and its extensions,

L is Almost Structurally Complete, ASC, if every admissible rule
which is not passive in L is also derivable in L; (NExt S4.3,  Ln)

FACT: L has projective unification ⇒ L is (Almost) Structurally
Complete,
A description of admissible rules
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The scope of projective unification

Theorem (Wronski 1995 - 2008)

An intermediate logic L ⊇ Int enjoys projective unification iff
.(y ⇒ z) ∨ (z ⇒ y) ∈ L, iff LC ⊆ L iff ∨ L definable (∧,→).

Corollary

Every logic L ⊇ LC is SC.

———————————————————————-

Theorem (WD, P. Wojtylak 2011)

A modal logic L ⊇ S4 enjoys projective unification iff
.�(�y → �z) ∨�(�z → �y) ∈ L, iff S4.3 ⊆ L.

Corollary

Every logic L ⊇ S4.3 is ASC.

Difference: in LC - the method of ground unifiers works, in S4.3 it
does not: projective unifiers - compositions of Löwenheim subst.’s
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1-st order modal language

We consider a first-order modal language without function letters.

free individual variables: a1, a2, a3, . . .
bound individual variables: x1, x2, x3, . . .
predicate variables: P1,P2,P3, . . .

Basic logical symbols are ∧,∨,∼,>, ∀,� (and =). →,↔,⊥,♦,∃
is defined as usually.

The intuitionistic predicate language {⇒,∧,∨,⊥,
∧
,
∨
}, it will

also be seen as a definitional fragment of the initial modal
predicate language.

Let Fm ( or q-Fm) denote the set of all formulas (or
quasi-formulas). ϕ ∈ Fm iff ϕ ∈ q-Fm and bounded variables in ϕ
do not occur free.
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Substitutions for predicate variables

Substitutions ε : q-Fm→ q-Fm are mappings:
ε(P(t1, . . . , tk)) = ε(P(x1, . . . , xk))[x1/t1, . . . , xk/tk ]

ε(¬A) = ¬ε(A); ε(A ∧ B) = ε(A) ∧ ε(B);
ε(�A) = �ε(A); ε(A ∨ B) = ε(A) ∨ ε(B);
ε(∀xA) = ∀xε(A) ε(∃xA) = ∃xε(A)

Warning: = is defined up to a correct renaming of bound variables
in the substituted formulas.
• Pogorzelski, W.A., Prucnal, T., Structural completeness of the
first-order predicate calculus, Zeitschrift für, Mathematische Logik
und Grundlagen der Mathematik, 21 (1975), 315-320.

vf (ε(A)) ⊆ vf (A)

•Church, A., Introduction to Mathematical Logic I, Princeton
University Press , Princeton, New Jersey (1956)
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vf (ε(A)) ⊆ vf (A)

•Church, A., Introduction to Mathematical Logic I, Princeton
University Press , Princeton, New Jersey (1956)



predicate modal logic

A predicate modal logic is any set L ⊆Fm containing (all classical
propositional tautologies, and) the predicate and modal axioms:

∀x(A→ B(x))→ (A→ ∀xB(x))
∀xA(x)→ A[x/t]
�(A→ B)→ (�A→ �B),

closed under the following inferential rules

MP :
A→ B,A

B
and RN :

A

�A
and RG :

A(a)

∀xA(x)

and closed under substitutions.



Löwenheim substitutions

Theorem

Each unifiable formula A has a projective unifier in S5:

ε(B) =

{
�A→ B if v(B) = >
�A ∧ B if v(B) = ⊥

where v is a ground unifier for A.

Such substitutions are called Löwenheim substitutions for A.

Theorem

Each unifiable formula A has a projective unifier in Q-S5:

ε(B) =

{
�∀xA(x)→ B if v(B) = >
�∀xA(x) ∧ B if v(B) = ⊥ .

where v is a ground unifier for A.

• Dzik, W. On Structural completeness of some nonclassical
predicate calculi, RML 5, 1975, pp.19-26.,
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S.Ghilardi

For logics weaker than S5 the above ‘ground unifier’ method must
be modified.

Following S.Ghilardi,
• Ghilardi S.,Best solving modal equations, Annals of Pure and
Applied Logic 102 (2000), 183–198.
one can define a sequence ε1, . . . , εn of Löwenheim substitutions
for A and take their composition ε = ε1 ◦ · · · ◦ εn as a unifier for A.
It is not quite clear how many substitutions have to be taken there
and in which order they should be arranged in the composition.

Theorem

Each unifiable formula has a projective unifier in S4.3 which is a
composition of Löwenheim substitutions.
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Intermediate propositional logics

• Minari P. , Wroński A., The property (HD) in intuitionistic
Logic. A Partial Solution of a Problem of H. Ono, Reports on
mathematical logic 22 (1988), 21–25.

Theorem

Each unifiable formula A has a projective unifier in LC

ε(B) =

{
A⇒ B if v(B) = >
¬¬A ∧ (A⇒ B) if v(B) = ⊥ ,

where v is a ground unifier for A.

Note: This is not a Löwenheim substitution.



Intermediate predicate logics

Theorem

Each unifiable formula A has a projective unifier in IP.Q-LC

ε(B) =

{ ∧
x A⇒ B if v(B) = >
¬¬
∧

x A(x) ∧ (
∧

x A(x)⇒ B) if v(B) = ⊥ ;

where (IP) (A⇒
∨

xB(x))⇒
∨

x(A⇒ B(x)),
(Independence of Premises) and v is a ground unifier for A.

• Dzik, W. Chains of Structurally Complete Predicate Logics with
the Application of Prucnal’s Substitution, RML 38(2004), (¬-less)

Theorem

An intermediate predicate logic L enjoys projective unification iff
IP.Q − LC ⊆ L iff ∃ is L definable by (∀,→).
There is a chain of the type ωω + 1 of ASC logics over IP.Q − LC
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Example 1

Let A(a) = (�P(a) ∨�Q(a)) ∧ (∼P(a) ∨ ∼Q(a)), where P,Q
are monadic predicate symbols.

There are four generalized
Löwenheim substitutions for A:
ε1(P(a)) = �∀xA(x)→ P(a) and ε1(Q(a)) = �∀xA(x)∧Q(a);
ε2(P(a)) = �∀xA(x)∧P(a) and ε2(Q(a)) = �∀xA(x)→ Q(a);
ε3(P(a)) = �∀xA(x) ∧ P(a) and ε3(Q(a)) = �∀xA(x) ∧ Q(a);
ε4(P(a)) = �∀xA(x)→ P(a) and ε4(Q(a)) = �∀xA(x)→ Q(a)
No composition εj1 ◦ · · · ◦ εjn of ε1, ε2, ε3, ε4 is a unifier for A. On
the other hand, since A is quantifier-free, it must have a projective
unifier in Q-S4.3.
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Example 2

Let A(a1, a2) = �Q(a1, a2) ∨ P(a1)∧∼P(a2) and let

ε(P(ai )) = (�∀yA(y) ∧ P(ai ) ∨ B(ai )) ∧ (�∀yA(y)→ P(a1))

ε(Q(a1, a2)) = �∀yA(y)→ Q(a1, a2)

where the formula B(x1) will be specified later on. Note that the
substitution ε is projective for A regardless of what B(x1) is.
One can check that ε(A) is valid if one takes x1=a1 as B(x1).
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Main result

Note that some of the ideas are violated in the above Example.
First, the unifier ε does not fulfill the condition vf (ε(B)) ⊆vf (B)
as we allow ε(P(x1)) to contain the variable a1. Second, ε is not a
composition of generalized Löwenheim substitutions for A. Third,
to define ε one needs the equality symbol and it is not clear if our
argument can be carried out without it, in Q-S4.3.

Theorem

�IP.Q-S4.3= enjoys projective unification.

where

(�IP) �(A→ ∃x�B(x))→ ∃x�(A→ B(x))
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Let us consider ∃x�P(x) and let ε be its projective unifier in L:

∃x�P(x) `L P(a)↔ ε(P(a)) and `L ∃x�ε(P(x)).

Hence `L ε(P(a))→ (∃x�P(x)→ P(a)) and consequently

`L ∃x�(∃x�P(x)→ P(x))

which is equivalent (regarded as an axiom schema) to

(�IP) `L �(A→ ∃x�P(x))→ ∃x�(A→ P(x)).

Theorem

Any modal predicate logic L (over Q-S4) which enjoys projective
unification extends �IP.Q-S4.3.

Corollary

Any modal predicate logic L= with equality (over Q-S4=) enjoys
projective unification iff L= extends �IP.Q-S4.3=.
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