On maps between Stone-Čech compactifications induced by lattice homomorphisms

Themba Dube

Department of Mathematical Sciences University of South Africa (Unisa)

Topology, Algebra, and Categories in Logic: TACL 2015 Ischia

(21-26 June 2015)

On maps $\beta X \rightarrow \beta Y$

< ロ > < 同 > < 回 > < 回 > .

All spaces in this talk are Tychonoff (i.e., completely regular and Hausdorff), and all frames are completely regular.

In the article

S. Broverman Homomorphisms between lattices of zero-sets Canad. Math. Bull. **21** (1978), 1–5.

Broverman shows that any lattice homomorphism $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ induces a continuous map $\tau: \beta X \to \beta Y$. This is how he does it. For any $p \in \beta X$, \mathbf{A}^p is the *z*-ultrafilter on *X* given by

$$Z \in \mathbf{A}^{p} \quad \iff \quad p \in \operatorname{cl}_{\beta X} Z.$$

Now $t \in [\mathbf{A}^p]$ is a prime *z*-filter in *Y*, and is therefore contained in some unique *z*-ultrafilter \mathbf{A}^q on *Y*. Broverman shows that the function $\tau : \beta X \to \beta Y$ defined by $\tau(p) = q$ is a continuous map.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Let **DLat** denote the category of bounded distributive lattices and their homomorphisms. Recall that the ideal-lattice functor $\mathfrak{J}: \mathbf{DLat} \to \mathbf{Frm}$ sends $A \in \mathbf{DLat}$ to the frame $\mathfrak{J}A$ of ideals of A, and sends a lattice homomorphism $\phi: A \to B$ to the frame homomorphism $\mathfrak{J}\phi: \mathfrak{J}A \to \mathfrak{J}B$ given by

 $\mathfrak{J}\phi(I) = \{ b \in B \mid b \leq \phi(a) \text{ for some } a \in I \}.$

Now let L and M be completely regular frames and ϕ : Coz L \rightarrow Coz M be a lattice homomorphism. Then

- ϕ preserves the completely below relation, $\prec\!\!\prec$.
- As a consequence, $\Im \phi(I) \in \beta M$ whenever $I \in \beta L$.

Since βL and βM are subframes of $\mathfrak{J}(\text{Coz } L)$ and $\mathfrak{J}(\text{Coz } M)$ respectively, it follows that the restriction of $\mathfrak{J}\phi$ to βL is a frame homomorphism into βM . We denote it by $\overline{\phi}$.

Let **DLat** denote the category of bounded distributive lattices and their homomorphisms. Recall that the ideal-lattice functor $\mathfrak{J}: \mathbf{DLat} \to \mathbf{Frm}$ sends $A \in \mathbf{DLat}$ to the frame $\mathfrak{J}A$ of ideals of A, and sends a lattice homomorphism $\phi: A \to B$ to the frame homomorphism $\mathfrak{J}\phi: \mathfrak{J}A \to \mathfrak{J}B$ given by

 $\mathfrak{J}\phi(I) = \{ b \in B \mid b \leq \phi(a) \text{ for some } a \in I \}.$

Now let *L* and *M* be completely regular frames and ϕ : Coz $L \rightarrow$ Coz *M* be a lattice homomorphism. Then

- ϕ preserves the completely below relation, $\prec\!\!\prec$.
- As a consequence, $\Im \phi(I) \in \beta M$ whenever $I \in \beta L$.

Since βL and βM are subframes of $\mathfrak{J}(\text{Coz } L)$ and $\mathfrak{J}(\text{Coz } M)$ respectively, it follows that the restriction of $\mathfrak{J}\phi$ to βL is a frame homomorphism into βM . We denote it by $\overline{\phi}$.

< ロ > < 同 > < 回 > < 回 >

Let **DLat** denote the category of bounded distributive lattices and their homomorphisms. Recall that the ideal-lattice functor $\mathfrak{J}: \mathbf{DLat} \to \mathbf{Frm}$ sends $A \in \mathbf{DLat}$ to the frame $\mathfrak{J}A$ of ideals of A, and sends a lattice homomorphism $\phi: A \to B$ to the frame homomorphism $\mathfrak{J}\phi: \mathfrak{J}A \to \mathfrak{J}B$ given by

 $\mathfrak{J}\phi(I) = \{ b \in B \mid b \leq \phi(a) \text{ for some } a \in I \}.$

Now let *L* and *M* be completely regular frames and ϕ : Coz $L \rightarrow$ Coz *M* be a lattice homomorphism. Then

- ϕ preserves the completely below relation, $\prec\!\!\prec$.
- As a consequence, $\mathfrak{J}\phi(I) \in \beta M$ whenever $I \in \beta L$.

Since βL and βM are subframes of $\mathfrak{J}(\operatorname{Coz} L)$ and $\mathfrak{J}(\operatorname{Coz} M)$ respectively, it follows that the restriction of $\mathfrak{J}\phi$ to βL is a frame homomorphism into βM . We denote it by $\overline{\phi}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

That is

$\bar{\phi} \colon \beta L \to \beta M$

is the frame homomorphism given by

$\bar{\phi}(I) = \{ d \in \operatorname{Coz} M \mid d \leq h(c) \text{ for some } c \in \operatorname{Coz} L \}.$

A lattice homomorphism $t \colon Z(Y) \to Z(X)$ induces a lattice homomorphism

$\widehat{\mathfrak{t}}\colon \operatorname{Coz}(\mathfrak{O}Y)\to\operatorname{Coz}(\mathfrak{O}X)\quad \text{by}\quad U\mapsto X\smallsetminus t(Y\smallsetminus U);$

and a lattice homomorphism $s \colon \operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ induces a lattice homomorphism

$i: Z(Y) \to Z(X)$ by $F \mapsto X \smallsetminus s(Y \smallsetminus F)$.

The correspondences $t\mapsto \hat{t}$ and $s\mapsto \hat{s}$ are one-one onto, and are inverses to each other.

That is

 $\bar{\phi} \colon \beta L \to \beta M$

is the frame homomorphism given by

 $\bar{\phi}(I) = \{ d \in \operatorname{Coz} M \mid d \leq h(c) \text{ for some } c \in \operatorname{Coz} L \}.$

A lattice homomorphism $t: Z(Y) \rightarrow Z(X)$ induces a lattice homomorphism

 \hat{t} : $\operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ by $U \mapsto X \smallsetminus t(Y \smallsetminus U)$;

and a lattice homomorphism $s: \operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ induces a lattice homomorphism

 $\tilde{s}: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ by $F \mapsto X \smallsetminus s(Y \smallsetminus F)$.

The correspondences $t \mapsto \hat{t}$ and $s \mapsto \tilde{s}$ are one-one onto, and are inverses to each other.

T. Dube (Unisa)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

NOTATION

We denote by $r_L \colon L \to \beta L$ the right adjoint of $\beta L \to L$.

Lemma

Let ϕ : Coz L \rightarrow Coz M be a lattice homomorphism, and $\overline{\phi}$: β L $\rightarrow \beta$ M be the frame homomorphism as above. The right adjoint of $\overline{\phi}$ is given by

$$= \bigvee \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}$$
$$= \bigcup \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}.$$

Let us view βX (and also βY) as the space $\Sigma \beta(\mathfrak{O} X)$, where the spectrum is taken as the set of prime elements of $\beta(\mathfrak{O} X)$, that is, the maximal regular ideals of $\operatorname{Coz}(\mathfrak{O} X)$.

э

NOTATION

We denote by $r_L \colon L \to \beta L$ the right adjoint of $\beta L \to L$.

Lemma

Let ϕ : Coz $L \to$ Coz M be a lattice homomorphism, and $\overline{\phi}$: $\beta L \to \beta M$ be the frame homomorphism as above. The right adjoint of $\overline{\phi}$ is given by

$$\bar{\phi}_*(J) = \bigvee \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}$$

$$= \bigcup \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}.$$

Let us view βX (and also βY) as the space $\Sigma \beta(\mathfrak{O} X)$, where the spectrum is taken as the set of prime elements of $\beta(\mathfrak{O} X)$, that is, the maximal regular ideals of $Coz(\mathfrak{O} X)$.

< ロ > < 同 > < 回 > < 回 >

NOTATION

We denote by $r_L \colon L \to \beta L$ the right adjoint of $\beta L \to L$.

Lemma

Let ϕ : Coz $L \to$ Coz M be a lattice homomorphism, and $\overline{\phi}$: $\beta L \to \beta M$ be the frame homomorphism as above. The right adjoint of $\overline{\phi}$ is given by

$$\bar{\phi}_*(J) = \bigvee \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}$$

$$= \bigcup \{ r_L(c) \mid c \in \operatorname{Coz} L \text{ and } \phi(c) \in J \}.$$

Let us view βX (and also βY) as the space $\Sigma \beta(\mathfrak{O}X)$, where the spectrum is taken as the set of prime elements of $\beta(\mathfrak{O}X)$, that is, the maximal regular ideals of $Coz(\mathfrak{O}X)$.

Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a lattice homomorphism. Write h for the map $\overline{\tilde{t}}: \beta(\mathfrak{O}Y) \to \beta(\mathfrak{O}X)$. Then $\tau = \Sigma h$.

Theorem

Let $s: \operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ be a lattice homomorphism. Denote by $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ the lattice homomorphism it induces. Consider the commutative square

Then $\mathfrak{O}\tau = \bar{s}$.

T. Dube (Unisa)

э

ヘロン 人間 とくほ とくほう

Proposition

The homomorphism $\overline{\phi} \colon \beta L \to \beta M$ is one-one iff ϕ is dense.

We say a lattice homomorphism $t: Z(Y) \rightarrow Z(X)$ is codense if, for any $K \in Z(Y)$, t(K) = X implies K = Y. Clearly, t is codense if and only if the associated $\hat{t}: \operatorname{Coz}(\mathfrak{O}Y) \rightarrow \operatorname{Coz}(\mathfrak{O}X)$ is dense.

Corollary

Let $t: Z(Y) \rightarrow Z(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \rightarrow \beta Y$ is surjective iff t is codense.

э

Proposition

The homomorphism $\overline{\phi} \colon \beta L \to \beta M$ is one-one iff ϕ is dense.

We say a lattice homomorphism $t \colon Z(Y) \to Z(X)$ is codense if, for any $K \in Z(Y)$, t(K) = X implies K = Y. Clearly, t is codense if and only if the associated $\hat{t} \colon \text{Coz}(\mathfrak{O}Y) \to \text{Coz}(\mathfrak{O}X)$ is dense.

Corollary

Let $t: Z(Y) \rightarrow Z(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \rightarrow \beta Y$ is surjective iff t is codense.

< ロ > < 同 > < 回 > < 回 > .

Proposition

The homomorphism $\overline{\phi} \colon \beta L \to \beta M$ is one-one iff ϕ is dense.

We say a lattice homomorphism $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ is codense if, for any $K \in \mathbf{Z}(Y), t(K) = X$ implies K = Y. Clearly, t is codense if and only if the associated $\hat{t}: \operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ is dense.

Let $t: Z(Y) \rightarrow Z(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \rightarrow \beta Y$ is surjective iff t is codense.

Proposition

The homomorphism $\overline{\phi} \colon \beta L \to \beta M$ is one-one iff ϕ is dense.

We say a lattice homomorphism $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ is codense if, for any $K \in \mathbf{Z}(Y), t(K) = X$ implies K = Y. Clearly, t is codense if and only if the associated $\hat{t}: \operatorname{Coz}(\mathfrak{O}Y) \to \operatorname{Coz}(\mathfrak{O}X)$ is dense.

Corollary

Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is surjective iff t is codense.

э

< ロ > < 同 > < 回 > < 回 > .

Borrowing terminology from

R.N. Ball, A.W. Hager and J. Walters-Wayland An intrinsic characterization of monomorphisms in regular Lindelöf locales Appl. Categor. Struct. **15** (2007), 109–118.

we formulate the following definition:

Definition

- (a) A lattice homomorphism ϕ : Coz $L \rightarrow$ Coz M is uplifting if whenever $u \lor v = 1$ in Coz M, then there exist $a, b \in$ Coz L such that $a \lor b = 1$, $\phi(a) \le u$ and $\phi(b) \le v$.
- (b) We say a lattice homomorphism $t: \mathbb{Z}(Y) \to \mathbb{Z}(X)$ is deflating if, for any disjoint zero-sets *E* and *F* of *X*, there are disjoint zero-sets *G* and *H* of *Y* such that $E \subseteq t(G)$ and $F \subseteq t(H)$.

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

The following conditions are equivalent for a lattice homomorphism ϕ : Coz $L \rightarrow$ Coz M.

- $\overline{\phi}$: $\beta L \rightarrow \beta M$ is onto.
- **2** ϕ is uplifting.
- Whenever u → v in Coz M, there are elements a → b in Coz L such that u ≤ φ(a) and φ(b) ≤ v.

Recall that if $f: X \to Y$ is a continuous map between Tychonoff spaces, then $\mathfrak{D}f: \mathfrak{D}Y \to \mathfrak{D}X$ is one-one if and only if f is the inclusion of a subspace.

Corollary

Let $t: Z(Y) \to Z(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is the inclusion of a subspace iff t is deflating.

< ロ > < 同 > < 回 > < 回 > .

The following conditions are equivalent for a lattice homomorphism ϕ : Coz L \rightarrow Coz M.

- $\overline{\phi}$: $\beta L \rightarrow \beta M$ is onto.
- **2** ϕ is uplifting.
- Whenever u → v in Coz M, there are elements a → b in Coz L such that u ≤ φ(a) and φ(b) ≤ v.

Recall that if $f: X \to Y$ is a continuous map between Tychonoff spaces, then $\mathfrak{O}f: \mathfrak{O}Y \to \mathfrak{O}X$ is one-one if and only if f is the inclusion of a subspace.

Corollary

Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is the inclusion of a subspace iff t is deflating.

э

In their study of patch-generated frames,

A.W. Hager and J. Martínez *Patch-generated frames and projectable hulls* Appl. Categor. Struct. **15** (2007), 49–80.

Hager and Martínez call a frame homomorphism $h: L \rightarrow M *$ -dense if, for any $b \in M$,

$$h_*(b)=0 \implies b=0.$$

Continuous maps $f: X \to Y$ for which $\mathfrak{O}f: \mathfrak{O}Y \to \mathfrak{O}X$ is *-dense occur quite naturally. Indeed, recall that a surjective continuous map is called irreducible if it sends no proper closed subset of its domain onto its codomain. Since, for any continuous map $f: X \to Y$ and any $U \in \mathfrak{O}X$,

$$(\mathfrak{O}f)_*(U) = Y \smallsetminus \overline{f[X \smallsetminus U]},$$

it follows that

a closed continuous surjection $f: X \to Y$ is irreducible iff the frame homomorphism $\mathfrak{D}f: \mathfrak{D}Y \to \mathfrak{D}X$ is *-dense.

Definition

A lattice homomorphism $\psi : A \to B$ inverse-dense if, for any ideal *J* of *B*, $\psi^{\leftarrow}[J] = \{0\}$ implies $J = \{0\}$.

Theorem

The map $\overline{\phi}$: $\beta L \rightarrow \beta M$ is *-dense iff ϕ is inverse-dense.

Corollary

Let $t: Z(Y) \to Z(X)$ be a codense lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is irreducible iff for every nontrivial z-filter \mathcal{F} in X, there is a zero-set $Z \neq Y$ of Y such that $t(Z) \in \mathcal{F}$.

Definition

A lattice homomorphism $\psi : A \to B$ inverse-dense if, for any ideal *J* of *B*, $\psi^{\leftarrow}[J] = \{0\}$ implies $J = \{0\}$.

Theorem

The map $\overline{\phi}$: $\beta L \rightarrow \beta M$ is *-dense iff ϕ is inverse-dense.

Corollary

Let $t: \mathbf{Z}(Y) \to \mathbf{Z}(X)$ be a codense lattice homomorphism. The induced map $\tau: \beta X \to \beta Y$ is irreducible iff for every nontrivial *z*-filter \mathcal{F} in *X*, there is a zero-set $Z \neq Y$ of *Y* such that $t(Z) \in \mathcal{F}$.

3

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

A lattice homomorphism between cozero parts of pseudocompact frames contracts maximal ideals to maximal ideals iff it is a σ -frame homomorphism.

Pseudocompactness is a "conservative" notion. That is, a Tychonoff space is pseudocompact if and only if the frame of its open sets is pseudocompact. Therefore we have the following corollary.

Corollary

Let X and Y be pseudocompact Tychonoff spaces. The following conditions are equivalent for a lattice homomorphism $t: Z(Y) \rightarrow Z(X)$. • $t^{--}[A^p] = A^{\tau(p)}$ for every $p \in \beta X$. • $cl_{\beta X} t(Z) = \tau^{--}[cl_{\beta Y} Z]$ for every $Z \in Z(Y)$. • t is a α -bomomorphism

A lattice homomorphism between cozero parts of pseudocompact frames contracts maximal ideals to maximal ideals iff it is a σ -frame homomorphism.

Pseudocompactness is a "conservative" notion. That is, a Tychonoff space is pseudocompact if and only if the frame of its open sets is pseudocompact. Therefore we have the following corollary.

Corollary

Let X and Y be pseudocompact Tychonoff spaces. The following conditions are equivalent for a lattice homomorphism $t: Z(Y) \rightarrow Z(X)$. • $t^{--}[A^p] = A^{r(p)}$ for every $p \in \beta X$. • $cl_{\beta X} t(Z) = \tau^{--}[cl_{\beta Y} Z]$ for every $Z \in Z(Y)$. • t is a σ -bomomorphism

A lattice homomorphism between cozero parts of pseudocompact frames contracts maximal ideals to maximal ideals iff it is a σ -frame homomorphism.

Pseudocompactness is a "conservative" notion. That is, a Tychonoff space is pseudocompact if and only if the frame of its open sets is pseudocompact. Therefore we have the following corollary.

Corollary

Let X and Y be pseudocompact Tychonoff spaces. The following conditions are equivalent for a lattice homomorphism $t: \mathbf{Z}(Y) \rightarrow \mathbf{Z}(X)$.

•
$$t^{\leftarrow}[\mathbf{A}^p] = \mathbf{A}^{\tau(p)}$$
 for every $p \in \beta X$.

- 2 $\operatorname{cl}_{\beta X} t(Z) = \tau^{\leftarrow} [\operatorname{cl}_{\beta Y} Z]$ for every $Z \in Z(Y)$.
- **3** *t* is a σ -homomorphism.

THANK YOU

T. Dube (Unisa)

On maps $\beta X \rightarrow \beta Y$

æ

・ロン ・聞と ・ ヨン・ モン・