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All spaces in this talk are Tychonoff (i.e., completely regular and
Hausdorff), and all frames are completely regular.

In the article

S. Broverman
Homomorphisms between lattices of zero-sets

Canad. Math. Bull. 21 (1978), 1–5.

Broverman shows that any lattice homomorphism t : Z(Y ) → Z(X )
induces a continuous map τ : βX → βY . This is how he does it. For
any p ∈ βX , Ap is the z-ultrafilter on X given by

Z ∈ Ap ⇐⇒ p ∈ clβX Z .

Now t←[Ap] is a prime z-filter in Y , and is therefore contained in some
unique z-ultrafilter Aq on Y . Broverman shows that the function
τ : βX → βY defined by τ(p) = q is a continuous map.
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Let DLat denote the category of bounded distributive lattices and their
homomorphisms. Recall that the ideal-lattice functor J : DLat → Frm
sends A ∈ DLat to the frame JA of ideals of A, and sends a lattice
homomorphism φ : A → B to the frame homomorphism Jφ : JA → JB
given by

Jφ(I) = {b ∈ B | b ≤ φ(a) for some a ∈ I}.

Now let L and M be completely regular frames and φ : Coz L → Coz M
be a lattice homomorphism. Then

φ preserves the completely below relation, ≺≺.

As a consequence, Jφ(I) ∈ βM whenever I ∈ βL.

Since βL and βM are subframes of J(Coz L) and J(Coz M)
respectively, it follows that the restriction of Jφ to βL is a frame
homomorphism into βM. We denote it by φ̄.
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That is
φ̄ : βL → βM

is the frame homomorphism given by

φ̄(I) = {d ∈ Coz M | d ≤ h(c) for some c ∈ Coz L}.

A lattice homomorphism t : Z(Y ) → Z(X ) induces a lattice

homomorphism

t̂ : Coz(OY ) → Coz(OX ) by U 7→ X r t(Y r U);

and a lattice homomorphism s : Coz(OY ) → Coz(OX ) induces a
lattice homomorphism

s̃ : Z(Y ) → Z(X ) by F 7→ X r s(Y r F ).

The correspondences t 7→ t̂ and s 7→ s̃ are one-one onto, and are
inverses to each other.
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NOTATION

We denote by rL : L → βL the right adjoint of βL → L.

Lemma
Let φ : Coz L → Coz M be a lattice homomorphism, and φ̄ : βL → βM
be the frame homomorphism as above. The right adjoint of φ̄ is given
by

φ̄∗(J) =
∨
{rL(c) | c ∈ Coz L and φ(c) ∈ J}

=
⋃
{rL(c) | c ∈ Coz L and φ(c) ∈ J}.

Let us view βX (and also βY ) as the space Σβ(OX ), where the
spectrum is taken as the set of prime elements of β(OX ), that is, the
maximal regular ideals of Coz(OX ).
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Theorem

Let t : Z(Y ) → Z(X ) be a lattice homomorphism. Write h for the map
¯̂t : β(OY ) → β(OX ). Then τ = Σh.

Theorem
Let s : Coz(OY ) → Coz(OX ) be a lattice homomorphism. Denote by
t : Z(Y ) → Z(X ) the lattice homomorphism it induces. Consider the
commutative square

β(OY )

∼=

��

s̄ // β(OX )

∼=

��

O(βY )
s̄ // O(βX )

Then Oτ = s̄.
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We extend the meaning of the term “dense" by defining a lattice
homomorphism to be dense if the zero of its domain is the only
element mapped to zero. Be reminded that a frame homomorphism
between compact regular frames is dense precisely when it is
one-one.

Proposition

The homomorphism φ̄ : βL → βM is one-one iff φ is dense.

We say a lattice homomorphism t : Z(Y ) → Z(X ) is codense if, for any
K ∈ Z(Y ), t(K ) = X implies K = Y . Clearly, t is codense if and only if
the associated t̂ : Coz(OY ) → Coz(OX ) is dense.

Corollary

Let t : Z(Y ) → Z(X ) be a lattice homomorphism. The induced map
τ : βX → βY is surjective iff t is codense.
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Borrowing terminology from

R.N. Ball, A.W. Hager and J. Walters-Wayland
An intrinsic characterization of monomorphisms in regular Lindelöf locales

Appl. Categor. Struct. 15 (2007), 109–118.

we formulate the following definition:

Definition

(a) A lattice homomorphism φ : Coz L → Coz M is uplifting if
whenever u ∨ v = 1 in Coz M, then there exist a,b ∈ Coz L such
that a ∨ b = 1, φ(a) ≤ u and φ(b) ≤ v .

(b) We say a lattice homomorphism t : Z(Y ) → Z(X ) is deflating if, for
any disjoint zero-sets E and F of X , there are disjoint zero-sets G
and H of Y such that E ⊆ t(G) and F ⊆ t(H).
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Theorem

The following conditions are equivalent for a lattice homomorphism
φ : Coz L → Coz M.

1 φ̄ : βL → βM is onto.

2 φ is uplifting.

3 Whenever u ≺≺ v in Coz M, there are elements a ≺≺ b in Coz L
such that u ≤ φ(a) and φ(b) ≤ v.

Recall that if f : X → Y is a continuous map between Tychonoff
spaces, then Of : OY → OX is one-one if and only if f is the inclusion
of a subspace.

Corollary

Let t : Z(Y ) → Z(X ) be a lattice homomorphism. The induced map
τ : βX → βY is the inclusion of a subspace iff t is deflating.
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In their study of patch-generated frames,

A.W. Hager and J. Martínez
Patch-generated frames and projectable hulls

Appl. Categor. Struct. 15 (2007), 49–80.

Hager and Martínez call a frame homomorphism h : L → M ∗-dense if,
for any b ∈ M,

h∗(b) = 0 =⇒ b = 0.

Continuous maps f : X → Y for which Of : OY → OX is ∗-dense occur
quite naturally. Indeed, recall that a surjective continuous map is called
irreducible if it sends no proper closed subset of its domain onto its
codomain. Since, for any continuous map f : X → Y and any U ∈ OX ,

(Of )∗(U) = Y r f [X r U],

it follows that
a closed continuous surjection f : X → Y is irreducible iff the
frame homomorphism Of : OY → OX is ∗-dense.
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Definition
A lattice homomorphism ψ : A → B inverse-dense if, for any ideal J of
B, ψ←[J] = {0} implies J = {0}.

Theorem
The map φ̄ : βL → βM is ∗-dense iff φ is inverse-dense.

Corollary
Let t : Z(Y ) → Z(X ) be a codense lattice homomorphism. The induced
map τ : βX → βY is irreducible iff for every nontrivial z-filter F in X ,
there is a zero-set Z 6= Y of Y such that t(Z ) ∈ F .
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Theorem

A lattice homomorphism between cozero parts of pseudocompact
frames contracts maximal ideals to maximal ideals iff it is a σ-frame
homomorphism.

Pseudocompactness is a “conservative" notion. That is, a Tychonoff
space is pseudocompact if and only if the frame of its open sets is
pseudocompact. Therefore we have the following corollary.

Corollary

Let X and Y be pseudocompact Tychonoff spaces. The following
conditions are equivalent for a lattice homomorphism t : Z(Y ) → Z(X ).

1 t←[Ap] = Aτ(p) for every p ∈ βX.
2 clβX t(Z ) = τ←[clβY Z ] for every Z ∈ Z(Y ).
3 t is a σ-homomorphism.
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THANK YOU
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