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Quasi-primal algebras
Definition
A finite algebra A is called quasi-primal if (any of) the following
equivalent conditions hold:

(1) the ternary discriminator operation t: A% — A, given by
{x, it x # y,

x,y,z) = .
(x.y.2) z, ifx=y,
is a term function of A;

(2) the variety Var(A) generated by A is congruence
distributive and congruence permutable and

» every non-trivial subalgebra of A is simple;
(3) A has a majority term and every subuniverse of A2 is
» a product B x C of two subuniverses of A, or
» the graph of a partial automorphism of A, i.e., the graph of
an isomorphism u: B — C where B < A and C < A.
Every lattice-based algebra has a majority term:
m(x,y.2) = (X A\Y)V (y A Z) V (2 A ).
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4. A finite simple relation algebra
Let A= (A Vv,A,0,1,71,7;) be a finite simple relation algebra.
Then A is quasi-primal. (Via 2. with f(x) :== (1;x;1)".)



Quasi-primal algebras and decidable theories

» In the late 1940s, A. Tarski proved that the first-order
theory of Boolean algebras is decidable. This can be
restated as the

the first-order theory of the variety generated by
the two-element Boolean algebra is decidable.

» In the late 1970s, H. Werner extended Tarski’s result by
showing that every variety generated by a quasi-primal
algebra has a decidable first-order theory.

» Ten years later, this result played an important role in
R. McKenzie and M. Valeriote’s characterisation of
locally finite varieties with a decidable theory.
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Ockham algebras
Definition
An algebra A = (A; vV, A, g”,0,1) is an Ockham algebra if
(a) A”:= (A;V,A,0,1) is a bounded distributive lattice,
(b) A satisfies the De Morgan laws

alxvy)=g(x)Angly) and g(xAy)=g(x)Va(y),
(c) A satisfies g(0) ~ 1 and g(1) = 0.

Note that (b) and (c) say that g is a dual endomorphism of A”.
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Ockham algebras
Why are they called Ockham algebras rather than De Morgan

algebras?
» De Morgan algebras were studied and named before

Ockham algebras, so the name was already taken.
» A De Morgan algebra is defined to be an Ockham algebra
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Ockham algebras
Why are they called Ockham algebras rather than De Morgan
algebras?
» De Morgan algebras were studied and named before
Ockham algebras, so the name was already taken.
» A De Morgan algebra is defined to be an Ockham algebra
satisfying the double negation law, that is,

9(9(v)) = v.

» In 1979, Urquhart named Ockham algebras after William of
Ockham who, in 1323, wrote down De Morgan’s Laws,
some 500 years before De Morgan did, in 1847.

» ... the contradictory opposite of a copulative proposition is
a disjunctive proposition composed of the contradictory
opposites of its parts.

» ... the contradictory opposite of a disjunctive proposition is
a copulative proposition composed of the contradictories of
the parts of the disjunctive proposition.

Summa totius logicae c. 1323 (transl. P. Boehner 1955)
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From Ockham to Cornish
Definition
Let F = F U F_ be a set of unary operation symbols. An
algebra A = (A; v, A, FA,0,1) is a Cornish algebra (of type F) if
» A= (A; v, A,0,1) is a bounded distributive lattice, and

» FA={fA|fe F}isasetof unary operations on A such
that

» fAis an endomorphism of A”, for each f € F,, and
» g” is a dual endomorphism of A”, for each g € F_.
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Let F = F U F_ be a set of unary operation symbols. An
algebra A = (A; v, A, FA,0,1) is a Cornish algebra (of type F) if
» A’ := (A;Vv,A,0,1) is a bounded distributive lattice, and
» FA={fA|fe F}isasetof unary operations on A such
that

» fAis an endomorphism of A”, for each f € F,, and
» g” is a dual endomorphism of A”, for each g € F_.

» When f € F_, the operation f* models a negation that
satisfies De Morgan’s laws.

» The operations A, for f € F.., model strong modal
operators which preserve A as well as V;
the next operator of linear temporal logic is an example.

Ockham algebras are the special case of Cornish algebras in
which F = F_ = {g}.
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Why are they called Cornish algebras?

» Cornish algebras are named in honour of the Australian
mathematician William H. (“Bill") Cornish who died seven
years ago.

» He introduced them in an invited lecture entitled Monoids
acting on distributive lattices at the annual meeting of the
Australian Mathematical Society at La Trobe University in
May 1977.

» The notes from that lecture were never published but were
distributed privately.
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» Cornish algebras are named in honour of the Australian
mathematician William H. (“Bill") Cornish who died seven
years ago.

» He introduced them in an invited lecture entitled Monoids
acting on distributive lattices at the annual meeting of the
Australian Mathematical Society at La Trobe University in
May 1977.

» The notes from that lecture were never published but were
distributed privately.

» The notes first appeared in print as part of Cornish’s
far-reaching monograph published nine years later:

» Cornish, W.H., Antimorphic Action: Categories of Algebraic
Structures with Involutions or Anti-endomorphisms,
Research and Exposition in Mathematics, Heldermann,
Berlin (1986)
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Priestley duality for Cornish algebras
W = (W; FV, <) is a finite Cornish space (of type F) if
» W’ := (W; <) is a finite ordered set, and

» FV ={fV| fe F}is aset of unary operations on W such
that

» W W — W is order-preserving, for each f ¢ F,, and
» g% W — W is order-reversing, for each g € F_.

Ockham spaces arise in the special case when F = F_ = {g}.
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Priestley duality for Cornish algebras

» Given a finite Cornish algebra A, there is a natural way to
obtain a Cornish space H(A) from it.

» Given a finite Cornish space W, there is a natural way to
obtain a Cornish algebra K(W) from it.
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Priestley duality for Cornish algebras

» Given a finite Cornish algebra A, there is a natural way to
obtain a Cornish space H(A) from it.

» Given a finite Cornish space W, there is a natural way to
obtain a Cornish algebra K(W) from it.

Theorem

Let Cq, and Y4, be, respectively, the categories of finite Cornish
algebras and finite Cornish spaces (of some fixed type F).

(1) Then H: Cxn — Y4n and K: Yan — Ogy are well-defined
functors that yield a dual category equivalence between Cg,
and Ys,.

(2) In particular, A = KH(A), for every finite Cornish algebra A,
and W = HK(W), for every finite Cornish space W.
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Warning: colour is important!
Some maps on W are both order-preserving and
order-reversing. So we need to be told whether they are
encoding endomorphisms or dual endomorphisms of
A = H(W).
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Quasi-primal Ockham and Cornish algebras
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Quasi-primal Ockham algebras

Theorem (BAD, Nguyen and Pitkethly: AU 2015)

A finite Ockham algebra A = (A; Vv, A, gh,0, 1) is quasi-primal if
and only if its Priestley dual H(A) is an anti-chain of odd size
and gH™®) js a cycle.

o e o (m odd)
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Our results

Theorem 1: Necessary Conditions.

Let A be a quasi-primal Cornish algebra of type F, say
A =K(W), withw = (W; FV ).

(1) W has no proper non-empty substructures.

(2) F_ is nonempty (i.e., at least one of the unary maps in F"Y
must be coloured red).
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Our results

We can extend the +/— labelling to the set T of unary terms of
type F in the natural way. Let t(v) be a unary term.

» We declare that #(v) € T_ if and only if {(v) contains an
odd number of operation symbols from F_.

» For example, we would have f2(g(v)) € T_ and
f(g(v)) € T—, but g(f(g(v))) € T.
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Our results

We can extend the +/— labelling to the set T of unary terms of
type F in the natural way. Let t(v) be a unary term.

» We declare that #(v) € T_ if and only if {(v) contains an
odd number of operation symbols from F_.

» For example, we would have f2(g(v)) € T_ and
f(g(v)) € T—, but g(f(g(v))) € T.

Theorem 2: Sufficient Conditions.
Let A be a finite Cornish algebra, say A = K(W), with
W = (W; FW,<). Assume that W has the following properties:

(a) W has no proper non-empty substructures,

(b) there exists a unary termt € T_ such that, for alla e W,
the orbit of a under tV eventually reaches an odd cycle.

Then A is quasi-primal.
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Some quasi-primal Cornish algebras
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An infinite family of quasi-primal Cornish algeb(r}as
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Proofs of our results
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A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)

Let X = (X; g,<) be an Ockham space. Then the union Y of
the odd cycles of g is an antichain in X.
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A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)

Let X = (X; g,<) be an Ockham space. Then the union Y of
the odd cycles of g is an antichain in X.

Proof.
Let ¢,d € Y with ¢ in an m-cycle of g and d in an n-cycle of g,
for some odd m and n. Assume that ¢ < d in X.

» As mand n are odd and g is order-reversing, we have
d=g"(d)<g"(c) and g"(d)<g"(c)=c.

» As m+ nis even, it now follows that
d < g"(c) =9™"(c)< g™ "(d) = g"(d) < c.

» Thus ¢ = d. Hence Y is an antichain. a
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An external characterisation of quasi-primality

Theorem 3: Necessary and Sufficient Conditions.

Let A be a finite Cornish algebra, say A = K(W), for some finite
Cornish space W. Then the following are equivalent:

(1) A is quasi-primal;

(2) W has no proper non-empty substructures and, for every
pair of jointly surfective morphisms ¢q, p1: W — P,
if po(a) < ¢1(b) or po(a) = p1(b), forsome a,b € W,
then po(W) N1 (W) # .

P
SDV Y1
W W

24/26



An external characterisation of quasi-primality

Theorem 3: Necessary and Sufficient Conditions.

Let A be a finite Cornish algebra, say A = K(W), for some finite

Cornish space W. Then the following are equivalent:

(1) A is quasi-primal;

(2) W has no proper non-empty substructures and, for every
pair of jointly surfective morphisms ¢q, p1: W — P,

if po(@) < p1(b) orpo(a) = p1(b), for some a,b € W,
then oo(W) N o1(W) # 2.

P
SDV Y1
W W

Once this result is proved, it is straightforward to prove
our necessary and our sufficient conditions.
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Necessary/sufficient internal conditions

Theorem 1: Necessary Conditions.

Let A be a quasi-primal Cornish algebra of type F, say
A = K(W), withwW = (W; FV, ).

(1) W has no proper non-empty substructures.

(2) F_ is nonempty (i.e., at least one of the unary maps in F*
must be coloured red).

Theorem 2: Sufficient Conditions.
Let A be a finite Cornish algebra, say A = K(W), with
W = (W; FW,<). Assume that W has the following properties:

(a) W has no proper non-empty substructures,

(b) there exists a unary termt € T_ such that, foralla e W,
the orbit of a under tV eventually reaches an odd cycle.

Then A is quasi-primal.
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A proof

Theorem (Part of Theorem 1)

Let A be a Cornish algebra of type F, say A = K(W), with
W= (W;FV <). If F = F,, then A is not quasi-primal.

Proof.
Assume that F = F. Let P = W x 2, where
¥((a,0)) := (f"(a),0) and fF((a,1)):=(f"(a),1),

for each f € F = F,.. Then each ¥ is order-preserving and the
maps p;: W — P, given by g;(a) := (a, i), fori € {0,1}, are
jointly surjective morphisms.

Let ac W. Since
po(a) = (a,0) < (a,1) = ¢1(a)
and po(W) N1 (W) = g, it follows from Theorem 3 that
A = K(W) is not quasi-primal. O
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