Quasi-primal Cornish algebras

Brian A. Davey and Asha Gair La Trobe University Australia

> TACL, 24 June 2015 Ischia

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

Outline

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

Quasi-primal algebras

Definition

A finite algebra **A** is called quasi-primal if (any of) the following equivalent conditions hold:

(1) the ternary discriminator operation $t: A^3 \rightarrow A$, given by

$$t(x, y, z) := \begin{cases} x, & \text{if } x \neq y, \\ z, & \text{if } x = y, \end{cases}$$

is a term function of A;

- (2) the variety Var(A) generated by A is congruence distributive and congruence permutable and
 - every non-trivial subalgebra of A is simple;
- (3) **A** has a majority term and every subuniverse of A^2 is
 - a product $B \times C$ of two subuniverses of **A**, or
 - the graph of a partial automorphism of A, i.e., the graph of an isomorphism u: B → C where B ≤ A and C ≤ A.

Every lattice-based algebra has a majority term:

$$m(x, y, z) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x).$$

Quasi-primal algebras

Definition

A finite algebra **A** is called quasi-primal if (any of) the following equivalent conditions hold:

(1) the ternary discriminator operation $t: A^3 \rightarrow A$, given by

$$t(x, y, z) := \begin{cases} x, & \text{if } x \neq y, \\ z, & \text{if } x = y, \end{cases}$$

is a term function of A;

- (2) the variety Var(A) generated by A is congruence distributive and congruence permutable and
 - every non-trivial subalgebra of A is simple;
- (3) **A** has a majority term and every subuniverse of A^2 is
 - a product $B \times C$ of two subuniverses of **A**, or
 - the graph of a partial automorphism of A, i.e., the graph of an isomorphism u: B → C where B ≤ A and C ≤ A.

Every lattice-based algebra has a majority term:

$$m(x, y, z) = (x \wedge y) \vee (y \wedge z) \vee (z \wedge x).$$

1. The two-element Boolean algebra

is quasi-primal with $t(x, y, z) := ((x \land z) \lor \neg y) \land (x \lor z)$.

1. The two-element Boolean algebra

is quasi-primal with $t(x, y, z) := ((x \land z) \lor \neg y) \land (x \lor z)$.

2. A finite Heyting algebra with 1 as a predicate Let $\mathbf{A} = \langle A; \lor, \land, \rightarrow, f, 0, 1 \rangle$ be a finite algebra such that $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and $f: A \rightarrow A$ is the characteristic function of {1}. Then **A** is quasi-primal.

1. The two-element Boolean algebra

is quasi-primal with $t(x, y, z) := ((x \land z) \lor \neg y) \land (x \lor z)$.

2. A finite Heyting algebra with 1 as a predicate Let $\mathbf{A} = \langle A; \lor, \land, \rightarrow, f, 0, 1 \rangle$ be a finite algebra such that $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and $f: A \rightarrow A$ is the characteristic function of {1}. Then **A** is quasi-primal.

3. A finite Heyting algebra with dual pseudocomplement Let $\mathbf{A} = \langle A; \lor, \land, \rightarrow, ^+, 0, 1 \rangle$ be a finite algebra such that $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra with \lor -irreducible 1 with dual pseudocomplement ⁺. Then **A** is quasi-primal. (Via 2. with $f(x) := x^{++}$.)

1. The two-element Boolean algebra

is quasi-primal with $t(x, y, z) := ((x \land z) \lor \neg y) \land (x \lor z)$.

2. A finite Heyting algebra with 1 as a predicate Let $\mathbf{A} = \langle A; \lor, \land, \rightarrow, f, 0, 1 \rangle$ be a finite algebra such that $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra and $f: A \rightarrow A$ is the characteristic function of {1}. Then **A** is quasi-primal.

3. A finite Heyting algebra with dual pseudocomplement Let $\mathbf{A} = \langle A; \lor, \land, \rightarrow,^+, 0, 1 \rangle$ be a finite algebra such that $\langle A; \lor, \land, \rightarrow, 0, 1 \rangle$ is a Heyting algebra with \lor -irreducible 1 with dual pseudocomplement ⁺. Then **A** is quasi-primal. (Via 2. with $f(x) := x^{++}$.)

4. A finite simple relation algebra

Let $\mathbf{A} = \langle A; \lor, \land, ', 0, 1, 1', \check{}, ; \rangle$ be a finite simple relation algebra. Then \mathbf{A} is quasi-primal. (Via 2. with f(x) := (1; x; 1)'.) Quasi-primal algebras and decidable theories

In the late 1940s, A. Tarski proved that the first-order theory of Boolean algebras is decidable. This can be restated as the

> the first-order theory of the variety generated by the two-element Boolean algebra is decidable.

- In the late 1970s, H. Werner extended Tarski's result by showing that every variety generated by a quasi-primal algebra has a decidable first-order theory.
- Ten years later, this result played an important role in R. McKenzie and M. Valeriote's characterisation of locally finite varieties with a decidable theory.

Outline

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

Ockham algebras

Definition

An algebra $\mathbf{A} = \langle \mathbf{A}; \vee, \wedge, \mathbf{g}^{\mathbf{A}}, \mathbf{0}, \mathbf{1} \rangle$ is an Ockham algebra if

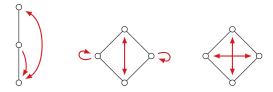
(a) $\mathbf{A}^{\flat} := \langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice,

(b) A satisfies the De Morgan laws

 $g(x \lor y) \approx g(x) \land g(y)$ and $g(x \land y) \approx g(x) \lor g(y)$,

(c) A satisfies $g(0) \approx 1$ and $g(1) \approx 0$.

Note that (b) and (c) say that g^{A} is a dual endomorphism of A^{\flat} .

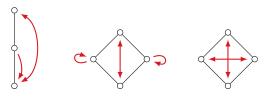


Ockham algebras

Why are they called Ockham algebras rather than De Morgan algebras?

- De Morgan algebras were studied and named before Ockham algebras, so the name was already taken.
- A De Morgan algebra is defined to be an Ockham algebra satisfying the double negation law, that is,

 $g(g(v)) \approx v.$



Ockham algebras

Why are they called Ockham algebras rather than De Morgan algebras?

- De Morgan algebras were studied and named before Ockham algebras, so the name was already taken.
- A De Morgan algebra is defined to be an Ockham algebra satisfying the double negation law, that is,

 $g(g(v)) \approx v.$

- In 1979, Urquhart named Ockham algebras after William of Ockham who, in 1323, wrote down De Morgan's Laws, some 500 years before De Morgan did, in 1847.
 - ... the contradictory opposite of a copulative proposition is a disjunctive proposition composed of the contradictory opposites of its parts.
 - ... the contradictory opposite of a disjunctive proposition is a copulative proposition composed of the contradictories of the parts of the disjunctive proposition.
 Summa totius logicae c. 1323 (transl. P. Boehner 1955)

From Ockham to Cornish

Definition

Let $F = F_+ \cup F_-$ be a set of unary operation symbols. An algebra $\mathbf{A} = \langle A; \lor, \land, F^{\mathbf{A}}, 0, 1 \rangle$ is a Cornish algebra (of type *F*) if

- $\mathbf{A}^{\flat} := \langle \mathbf{A}; \lor, \land, \mathbf{0}, \mathbf{1} \rangle$ is a bounded distributive lattice, and
- F^A = { f^A | f ∈ F } is a set of unary operations on A such that
 - ▶ f^{A} is an endomorphism of A^{\flat} , for each $f \in F_{+}$, and
 - ▶ g^{A} is a dual endomorphism of A^{\flat} , for each $g \in F_{-}$.

From Ockham to Cornish

Definition

Let $F = F_+ \cup F_-$ be a set of unary operation symbols. An algebra $\mathbf{A} = \langle A; \lor, \land, F^{\mathbf{A}}, 0, 1 \rangle$ is a Cornish algebra (of type *F*) if

- $\mathbf{A}^{\flat} := \langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, and
- F^A = { f^A | f ∈ F } is a set of unary operations on A such that
 - ▶ f^{A} is an endomorphism of A^{\flat} , for each $f \in F_{+}$, and

▶ g^{A} is a dual endomorphism of A^{\flat} , for each $g \in F_{-}$.

- When *f* ∈ *F*_−, the operation *f*^A models a negation that satisfies De Morgan's laws.
- ► The operations f^A, for f ∈ F₊, model strong modal operators which preserve ∧ as well as ∨; the next operator of linear temporal logic is an example.

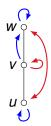
Ockham algebras are the special case of Cornish algebras in which $F = F_{-} = \{g\}$.

From Ockham to Cornish

Definition

Let $F = F_+ \cup F_-$ be a set of unary operation symbols. An algebra $\mathbf{A} = \langle A; \lor, \land, F^{\mathbf{A}}, 0, 1 \rangle$ is a Cornish algebra (of type *F*) if

- $\mathbf{A}^{\flat} := \langle A; \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice, and
- F^A = { f^A | f ∈ F } is a set of unary operations on A such that
 - ▶ f^{A} is an endomorphism of A^{\flat} , for each $f \in F_{+}$, and
 - ▶ g^{A} is a dual endomorphism of A^{\flat} , for each $g \in F_{-}$.



Why are they called Cornish algebras?

- Cornish algebras are named in honour of the Australian mathematician William H. ("Bill") Cornish who died seven years ago.
- He introduced them in an invited lecture entitled Monoids acting on distributive lattices at the annual meeting of the Australian Mathematical Society at La Trobe University in May 1977.
- The notes from that lecture were never published but were distributed privately.

Why are they called Cornish algebras?

- Cornish algebras are named in honour of the Australian mathematician William H. ("Bill") Cornish who died seven years ago.
- He introduced them in an invited lecture entitled Monoids acting on distributive lattices at the annual meeting of the Australian Mathematical Society at La Trobe University in May 1977.
- The notes from that lecture were never published but were distributed privately.
- The notes first appeared in print as part of Cornish's far-reaching monograph published nine years later:
 - Cornish, W.H., Antimorphic Action: Categories of Algebraic Structures with Involutions or Anti-endomorphisms, Research and Exposition in Mathematics, Heldermann, Berlin (1986)

Outline

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

 $\mathbb{W} := \langle W; F^{\mathbb{W}}, \leqslant \rangle$ is a finite Cornish space (of type *F*) if

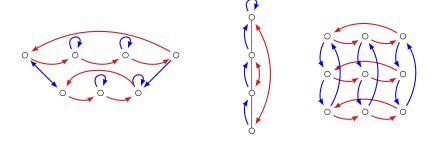
- $\mathbb{W}^{\flat} := \langle \boldsymbol{W}; \leqslant \rangle$ is a finite ordered set, and
- *F*^W = { *f*^W | *f* ∈ *F* } is a set of unary operations on *W* such that
 - $f^{\mathbb{W}}: W \to W$ is order-preserving, for each $f \in F_+$, and
 - $g^{\mathbb{W}}: W \to W$ is order-reversing, for each $g \in F_-$.

Ockham spaces arise in the special case when $F = F_{-} = \{g\}$.

 $\mathbb{W} := \langle W; F^{\mathbb{W}}, \leqslant \rangle$ is a finite Cornish space (of type *F*) if

- $\mathbb{W}^{\flat} := \langle W; \leqslant \rangle$ is a finite ordered set, and
- *F*^W = { *f*^W | *f* ∈ *F* } is a set of unary operations on *W* such that
 - $f^{\mathbb{W}}: W \to W$ is order-preserving, for each $f \in F_+$, and
 - $g^{\mathbb{W}}: W \to W$ is order-reversing, for each $g \in F_-$.

Ockham spaces arise in the special case when $F = F_{-} = \{g\}$.



- Given a finite Cornish algebra A, there is a natural way to obtain a Cornish space H(A) from it.
- ► Given a finite Cornish space W, there is a natural way to obtain a Cornish algebra K(W) from it.

- Given a finite Cornish algebra A, there is a natural way to obtain a Cornish space H(A) from it.
- ► Given a finite Cornish space W, there is a natural way to obtain a Cornish algebra K(W) from it.

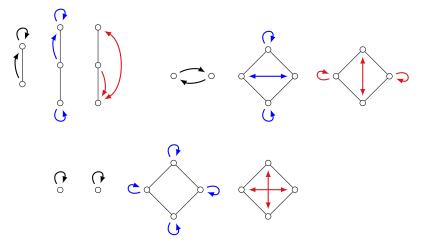
Theorem

Let $\mathfrak{C}_{\mathrm{fin}}$ and $\mathfrak{Y}_{\mathrm{fin}}$ be, respectively, the categories of finite Cornish algebras and finite Cornish spaces (of some fixed type F).

- (1) Then $H: \mathfrak{C}_{\operatorname{fin}} \to \mathfrak{Y}_{\operatorname{fin}}$ and $K: \mathfrak{Y}_{\operatorname{fin}} \to \mathfrak{O}_{\operatorname{fin}}$ are well-defined functors that yield a dual category equivalence between $\mathfrak{C}_{\operatorname{fin}}$ and $\mathfrak{Y}_{\operatorname{fin}}$.
- (2) In particular, A ≅ KH(A), for every finite Cornish algebra A, and W ≅ HK(W), for every finite Cornish space W.

Warning: colour is important!

Some maps on \mathbb{W} are both order-preserving and order-reversing. So we need to be told whether they are encoding endomorphisms or dual endomorphisms of $\mathbf{A} = H(\mathbb{W}).$



Outline

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

Quasi-primal Ockham algebras

Theorem (BAD, Nguyen and Pitkethly: AU 2015) A finite Ockham algebra $\mathbf{A} = \langle A; \lor, \land, g^{\mathbf{A}}, 0, 1 \rangle$ is quasi-primal if and only if its Priestley dual $H(\mathbf{A})$ is an anti-chain of odd size and $g^{H(\mathbf{A})}$ is a cycle.

Our results

Theorem 1: Necessary Conditions. Let **A** be a quasi-primal Cornish algebra of type *F*, say $\mathbf{A} = K(\mathbb{W})$, with $\mathbb{W} = \langle W; F^{\mathbb{W}}, \leqslant \rangle$.

- (1) \mathbb{W} has no proper non-empty substructures.
- (2) F_− is nonempty (i.e., at least one of the unary maps in F^W must be coloured red).

Our results

We can extend the +/- labelling to the set *T* of unary terms of type *F* in the natural way. Let t(v) be a unary term.

- We declare that t(v) ∈ T_ if and only if t(v) contains an odd number of operation symbols from F_.
- ► For example, we would have $f^2(g(v)) \in T_-$ and $f^3(g(v)) \in T_-$, but $g(f^3(g(v))) \in T_+$.

Our results

We can extend the +/- labelling to the set *T* of unary terms of type *F* in the natural way. Let t(v) be a unary term.

- We declare that t(v) ∈ T_ if and only if t(v) contains an odd number of operation symbols from F_.
- ► For example, we would have $f^2(g(v)) \in T_-$ and $f^3(g(v)) \in T_-$, but $g(f^3(g(v))) \in T_+$.

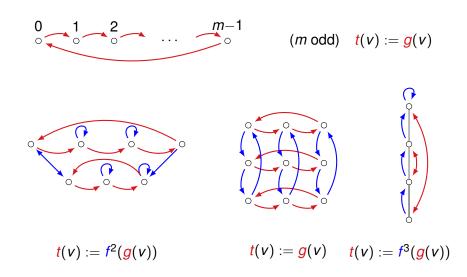
Theorem 2: Sufficient Conditions.

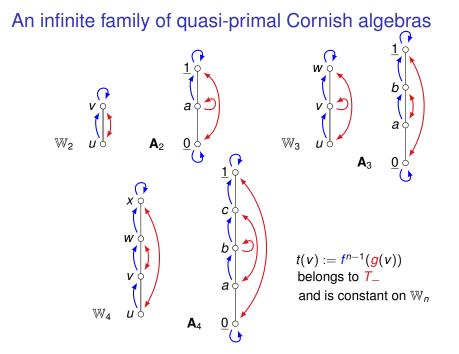
Let **A** be a finite Cornish algebra, say $\mathbf{A} = K(\mathbb{W})$, with $\mathbb{W} = \langle W; F^{\mathbb{W}}, \leq \rangle$. Assume that \mathbb{W} has the following properties:

- (a) W has no proper non-empty substructures,
- (b) there exists a unary term t ∈ T_ such that, for all a ∈ W, the orbit of a under t^W eventually reaches an odd cycle.

Then **A** is quasi-primal.

Some quasi-primal Cornish algebras





Outline

Why quasi-primal algebras?

Why Cornish algebras?

Priestley duality for Cornish algebras

Quasi-primal Ockham and Cornish algebras

Proofs of our results

A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)

Let $X = \langle X; g, \leq \rangle$ be an Ockham space. Then the union Y of the odd cycles of g is an antichain in X.

A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)

Let $X = \langle X; g, \leq \rangle$ be an Ockham space. Then the union Y of the odd cycles of g is an antichain in X.

Proof.

Let $c, d \in Y$ with c in an m-cycle of g and d in an n-cycle of g, for some odd m and n. Assume that $c \leq d$ in \mathbb{X} .

As m and n are odd and g is order-reversing, we have

 $d = g^n(d) \leq g^n(c)$ and $g^m(d) \leq g^m(c) = c$.

• As m + n is even, it now follows that

$$d \leqslant \boldsymbol{g}^n(\boldsymbol{c}) = \boldsymbol{g}^{m+n}(\boldsymbol{c}) \leqslant \boldsymbol{g}^{m+n}(\boldsymbol{d}) = \boldsymbol{g}^m(\boldsymbol{d}) \leqslant \boldsymbol{c}.$$

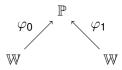
• Thus c = d. Hence Y is an antichain.

An external characterisation of quasi-primality

Theorem 3: Necessary and Sufficient Conditions.

Let **A** be a finite Cornish algebra, say $\mathbf{A} = K(\mathbb{W})$, for some finite Cornish space \mathbb{W} . Then the following are equivalent:

- (1) **A** is quasi-primal;
- (2) W has no proper non-empty substructures and, for every pair of jointly surjective morphisms φ₀, φ₁: W → P, if φ₀(a) ≤ φ₁(b) or φ₀(a) ≥ φ₁(b), for some a, b ∈ W, then φ₀(W) ∩ φ₁(W) ≠ Ø.

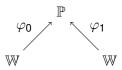


An external characterisation of quasi-primality

Theorem 3: Necessary and Sufficient Conditions.

Let **A** be a finite Cornish algebra, say $\mathbf{A} = K(\mathbb{W})$, for some finite Cornish space \mathbb{W} . Then the following are equivalent:

- (1) **A** is quasi-primal;
- (2) W has no proper non-empty substructures and, for every pair of jointly surjective morphisms φ₀, φ₁: W → P, if φ₀(a) ≤ φ₁(b) or φ₀(a) ≥ φ₁(b), for some a, b ∈ W, then φ₀(W) ∩ φ₁(W) ≠ Ø.



Once this result is proved, it is straightforward to prove our necessary and our sufficient conditions.

Necessary/sufficient internal conditions

Theorem 1: Necessary Conditions.

Let **A** be a quasi-primal Cornish algebra of type *F*, say $\mathbf{A} = K(\mathbb{W})$, with $\mathbb{W} = \langle W; F^{\mathbb{W}}, \leq \rangle$.

- (1) \mathbb{W} has no proper non-empty substructures.
- (2) F_− is nonempty (i.e., at least one of the unary maps in F^W must be coloured red).

Theorem 2: Sufficient Conditions.

Let **A** be a finite Cornish algebra, say $\mathbf{A} = K(\mathbb{W})$, with $\mathbb{W} = \langle W; F^{\mathbb{W}}, \leq \rangle$. Assume that \mathbb{W} has the following properties:

- (a) W has no proper non-empty substructures,
- (b) there exists a unary term t ∈ T_ such that, for all a ∈ W, the orbit of a under t^W eventually reaches an odd cycle.

Then **A** is quasi-primal.

A proof

Theorem (Part of Theorem 1)

Let **A** be a Cornish algebra of type *F*, say $\mathbf{A} = K(\mathbb{W})$, with $\mathbb{W} = \langle W; F^{\mathbb{W}}, \leq \rangle$. If $F = F_+$, then **A** is not quasi-primal.

Proof.

Assume that $F = F_+$. Let $\mathbb{P} = \mathbb{W} \times \mathbb{2}$, where

$$f^{\mathbb{P}}ig((a,0)ig):=ig(f^{\mathbb{W}}(a),0ig) \quad ext{and} \quad f^{\mathbb{P}}ig((a,1)ig):=ig(f^{\mathbb{W}}(a),1ig),$$

for each $f \in F = F_+$. Then each $f^{\mathbb{P}}$ is order-preserving and the maps $\varphi_i \colon \mathbb{W} \to \mathbb{P}$, given by $\varphi_i(a) := (a, i)$, for $i \in \{0, 1\}$, are jointly surjective morphisms.

Let $a \in W$. Since

$$\varphi_0(a) = (a, 0) \leqslant (a, 1) = \varphi_1(a)$$

and $\varphi_0(W) \cap \varphi_1(W) = \emptyset$, it follows from Theorem 3 that $\mathbf{A} = K(\mathbb{W})$ is not quasi-primal.