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Quasi-primal algebras
Definition
A finite algebra A is called quasi-primal if (any of) the following
equivalent conditions hold:
(1) the ternary discriminator operation t : A3 → A, given by

t(x , y , z) :=

{
x , if x 6= y ,
z, if x = y ,

is a term function of A;
(2) the variety Var(A) generated by A is congruence

distributive and congruence permutable and
I every non-trivial subalgebra of A is simple;

(3) A has a majority term and every subuniverse of A2 is
I a product B × C of two subuniverses of A, or
I the graph of a partial automorphism of A, i.e., the graph of

an isomorphism u : B→ C where B 6 A and C 6 A.

Every lattice-based algebra has a majority term:
m(x , y , z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).
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Some quasi-primal algebras from logic
1. The two-element Boolean algebra
is quasi-primal with t(x , y , z) := ((x ∧ z) ∨ ¬y) ∧ (x ∨ z).

2. A finite Heyting algebra with 1 as a predicate
Let A = 〈A;∨,∧,→, f ,0,1〉 be a finite algebra such that
〈A;∨,∧,→,0,1〉 is a Heyting algebra and f : A→ A is the
characteristic function of {1}. Then A is quasi-primal.

3. A finite Heyting algebra with dual pseudocomplement
Let A = 〈A;∨,∧,→,+ ,0,1〉 be a finite algebra such that
〈A;∨,∧,→,0,1〉 is a Heyting algebra with ∨-irreducible 1 with
dual pseudocomplement +. Then A is quasi-primal.(
Via 2. with f (x) := x++.

)
4. A finite simple relation algebra
Let A = 〈A;∨,∧,′ ,0,1,1’, ,̆ ; 〉 be a finite simple relation algebra.
Then A is quasi-primal.

(
Via 2. with f (x) := (1 ; x ; 1)′.

)
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Quasi-primal algebras and decidable theories

I In the late 1940s, A. Tarski proved that the first-order
theory of Boolean algebras is decidable. This can be
restated as the

the first-order theory of the variety generated by
the two-element Boolean algebra is decidable.

I In the late 1970s, H. Werner extended Tarski’s result by
showing that every variety generated by a quasi-primal
algebra has a decidable first-order theory.

I Ten years later, this result played an important role in
R. McKenzie and M. Valeriote’s characterisation of
locally finite varieties with a decidable theory.
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Ockham algebras
Definition
An algebra A = 〈A;∨,∧,gA,0,1〉 is an Ockham algebra if
(a) A[ := 〈A;∨,∧,0,1〉 is a bounded distributive lattice,
(b) A satisfies the De Morgan laws

g(x ∨ y) ≈ g(x) ∧ g(y) and g(x ∧ y) ≈ g(x) ∨ g(y),

(c) A satisfies g(0) ≈ 1 and g(1) ≈ 0.

Note that (b) and (c) say that gA is a dual endomorphism of A[.
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Ockham algebras
Why are they called Ockham algebras rather than De Morgan
algebras?

I De Morgan algebras were studied and named before
Ockham algebras, so the name was already taken.

I A De Morgan algebra is defined to be an Ockham algebra
satisfying the double negation law, that is,

g(g(v)) ≈ v .

I In 1979, Urquhart named Ockham algebras after William of
Ockham who, in 1323, wrote down De Morgan’s Laws,
some 500 years before De Morgan did, in 1847.

I . . . the contradictory opposite of a copulative proposition is
a disjunctive proposition composed of the contradictory
opposites of its parts.

I . . . the contradictory opposite of a disjunctive proposition is
a copulative proposition composed of the contradictories of
the parts of the disjunctive proposition.
Summa totius logicae c. 1323 (transl. P. Boehner 1955)
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From Ockham to Cornish
Definition
Let F = F+ ∪̇ F− be a set of unary operation symbols. An
algebra A = 〈A;∨,∧,F A,0,1〉 is a Cornish algebra (of type F ) if

I A[ := 〈A;∨,∧,0,1〉 is a bounded distributive lattice, and
I F A = { f A | f ∈ F } is a set of unary operations on A such

that
I f A is an endomorphism of A[, for each f ∈ F+, and
I gA is a dual endomorphism of A[, for each g ∈ F−.

w

v

u
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that
I f A is an endomorphism of A[, for each f ∈ F+, and
I gA is a dual endomorphism of A[, for each g ∈ F−.

I When f ∈ F−, the operation f A models a negation that
satisfies De Morgan’s laws.

I The operations f A, for f ∈ F+, model strong modal
operators which preserve ∧ as well as ∨;
the next operator of linear temporal logic is an example.

Ockham algebras are the special case of Cornish algebras in
which F = F− = {g}.
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Why are they called Cornish algebras?

I Cornish algebras are named in honour of the Australian
mathematician William H. (“Bill") Cornish who died seven
years ago.

I He introduced them in an invited lecture entitled Monoids
acting on distributive lattices at the annual meeting of the
Australian Mathematical Society at La Trobe University in
May 1977.

I The notes from that lecture were never published but were
distributed privately.

I The notes first appeared in print as part of Cornish’s
far-reaching monograph published nine years later:

I Cornish, W.H., Antimorphic Action: Categories of Algebraic
Structures with Involutions or Anti-endomorphisms,
Research and Exposition in Mathematics, Heldermann,
Berlin (1986)
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Priestley duality for Cornish algebras
W := 〈W ; FW,6〉 is a finite Cornish space (of type F ) if

I W[ := 〈W ;6〉 is a finite ordered set, and
I FW = { fW | f ∈ F } is a set of unary operations on W such

that
I fW : W →W is order-preserving, for each f ∈ F+, and
I gW : W →W is order-reversing, for each g ∈ F−.

Ockham spaces arise in the special case when F = F− = {g}.
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Priestley duality for Cornish algebras

I Given a finite Cornish algebra A, there is a natural way to
obtain a Cornish space H(A) from it.

I Given a finite Cornish space W, there is a natural way to
obtain a Cornish algebra K (W) from it.

Theorem
Let Cfin and Yfin be, respectively, the categories of finite Cornish
algebras and finite Cornish spaces (of some fixed type F ).

(1) Then H : Cfin → Yfin and K : Yfin → Ofin are well-defined
functors that yield a dual category equivalence between Cfin
and Yfin.

(2) In particular, A ∼= KH(A), for every finite Cornish algebra A,
and W ∼= HK (W), for every finite Cornish space W.
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Warning: colour is important!
Some maps on W are both order-preserving and
order-reversing. So we need to be told whether they are
encoding endomorphisms or dual endomorphisms of
A = H(W).
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Quasi-primal Ockham algebras

Theorem (BAD, Nguyen and Pitkethly: AU 2015)
A finite Ockham algebra A = 〈A;∨,∧,gA,0,1〉 is quasi-primal if
and only if its Priestley dual H(A) is an anti-chain of odd size
and gH(A) is a cycle.

(m odd)
0 1 2

· · ·
m−1
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Our results

Theorem 1: Necessary Conditions.
Let A be a quasi-primal Cornish algebra of type F, say
A = K (W), with W = 〈W ; FW,6〉.

(1) W has no proper non-empty substructures.
(2) F− is nonempty (i.e., at least one of the unary maps in FW

must be coloured red).
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Our results
We can extend the +/− labelling to the set T of unary terms of
type F in the natural way. Let t(v) be a unary term.

I We declare that t(v) ∈ T− if and only if t(v) contains an
odd number of operation symbols from F−.

I For example, we would have f 2(g(v)) ∈ T− and
f 3(g(v)) ∈ T−, but g(f 3(g(v))) ∈ T+.

Theorem 2: Sufficient Conditions.
Let A be a finite Cornish algebra, say A = K (W), with
W = 〈W ; FW,6〉. Assume that W has the following properties:

(a) W has no proper non-empty substructures,
(b) there exists a unary term t ∈ T− such that, for all a ∈W,

the orbit of a under tW eventually reaches an odd cycle.

Then A is quasi-primal.
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Some quasi-primal Cornish algebras

(m odd) t(v) := g(v)
0 1 2

· · ·
m−1

t(v) := f 2(g(v)) t(v) := f 3(g(v))t(v) := g(v)
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An infinite family of quasi-primal Cornish algebras

W2 u

v

A2 0

a

1

W3 u

v

w

A3 0

a

b

1

W4 u

v

w

x

A4 0

a

b

c

1

t(v) := f n−1(g(v))

belongs to T−

and is constant on Wn
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A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)
Let X = 〈X ; g,6〉 be an Ockham space. Then the union Y of
the odd cycles of g is an antichain in X. Skip proof

Proof.
Let c,d ∈ Y with c in an m-cycle of g and d in an n-cycle of g,
for some odd m and n. Assume that c 666 d in X.

I As m and n are odd and g is order-reversing, we have

d = gn(d)666gn(c) and gm(d)666gm(c) = c.

I As m + n is even, it now follows that

d 6 gn(c) = gm+n(c)666gm+n(d) = gm(d) 6 c.

I Thus c = d . Hence Y is an antichain.

23 / 26



A useful fact

Lemma (BAD, Nguyen and Pitkethly: AU 2015)
Let X = 〈X ; g,6〉 be an Ockham space. Then the union Y of
the odd cycles of g is an antichain in X.

Proof.
Let c,d ∈ Y with c in an m-cycle of g and d in an n-cycle of g,
for some odd m and n. Assume that c 666 d in X.

I As m and n are odd and g is order-reversing, we have

d = gn(d)666gn(c) and gm(d)666gm(c) = c.

I As m + n is even, it now follows that

d 6 gn(c) = gm+n(c)666gm+n(d) = gm(d) 6 c.

I Thus c = d . Hence Y is an antichain.

23 / 26



An external characterisation of quasi-primality

Theorem 3: Necessary and Sufficient Conditions.
Let A be a finite Cornish algebra, say A = K (W), for some finite
Cornish space W. Then the following are equivalent:

(1) A is quasi-primal;
(2) W has no proper non-empty substructures and, for every

pair of jointly surjective morphisms ϕ0, ϕ1 : W→ P,
if ϕ0(a) 6 ϕ1(b) or ϕ0(a) > ϕ1(b), for some a,b ∈W,
then ϕ0(W ) ∩ ϕ1(W ) 6= ∅.

P

W W

ϕ0 ϕ1

Once this result is proved, it is straightforward to prove
our necessary and our sufficient conditions.
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Necessary/sufficient internal conditions

Theorem 1: Necessary Conditions.
Let A be a quasi-primal Cornish algebra of type F, say
A = K (W), with W = 〈W ; FW,6〉.

(1) W has no proper non-empty substructures.
(2) F− is nonempty (i.e., at least one of the unary maps in FW

must be coloured red).

Theorem 2: Sufficient Conditions.
Let A be a finite Cornish algebra, say A = K (W), with
W = 〈W ; FW,6〉. Assume that W has the following properties:

(a) W has no proper non-empty substructures,
(b) there exists a unary term t ∈ T− such that, for all a ∈W,

the orbit of a under tW eventually reaches an odd cycle.

Then A is quasi-primal.
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A proof

Theorem (Part of Theorem 1)
Let A be a Cornish algebra of type F, say A = K (W), with
W = 〈W ; FW,6〉. If F = F+, then A is not quasi-primal.

Proof.
Assume that F = F+. Let P = W× 2, where

f P
(
(a,0)

)
:=
(
fW(a),0

)
and f P

(
(a,1)

)
:=
(
fW(a),1

)
,

for each f ∈ F = F+. Then each f P is order-preserving and the
maps ϕi : W→ P, given by ϕi(a) := (a, i), for i ∈ {0,1}, are
jointly surjective morphisms.

Let a ∈W . Since

ϕ0(a) = (a,0) 6 (a,1) = ϕ1(a)

and ϕ0(W ) ∩ ϕ1(W ) = ∅, it follows from Theorem 3 that
A = K (W) is not quasi-primal.
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