Canonicity results for mu-calculi (Unified Correspondence III)

Willem Conradie¹ Andrew Craig¹

¹Department of Mathematics University of Johannesburg South Africa

TACL, Ischia (Italy) 21 - 26 June 2015

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Unified correspondence

Substructural logics

[CP15]

Jónsson-style vs

Sambin-style canonicity

[PSZ15b]

Display calculi

[GMPTZ]

Hybrid logics [CR15]

DLE-logics [CP12, CPS]

Mu-calculi [CFPS15, CGP14, CC15]

> Regular DLE-logics Kripke frames with impossible worlds [PSZ15a]

Finite lattices and monotone ML [FPS15]

Canonicity via pseudo-correspondence [CPSZ]

・ロト・西ト・田・・田・ ひゃつ

Fixed points on complete lattices

Theorem (Knaster-Tarski)

Let *L* be a complete lattice and $f : L \rightarrow L$ an order preserving map. Then the least fixed-point of *f* exists and is given by

$$\mathsf{LFP}x.f(x) = \bigwedge \{a \in L \mid f(a) \leq a\}.$$

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Fixed points on complete lattices

Theorem (Knaster-Tarski)

Let *L* be a complete lattice and $f : L \to L$ an order preserving map. Then the least fixed-point of *f* exists and is given by

$$\mathsf{LFP}x.f(x) = \bigwedge \{a \in L \mid f(a) \leq a\}.$$

Or by ordinal unfolding:

$$\mathsf{LFP} x.f(x) = \bigvee_{0 \le \alpha} f^{\alpha}(\bot).$$

where

$$f^{0}(\bot) = \bot$$
$$f^{\alpha+1}(\bot) = f(f^{\alpha}(\bot))$$
$$f^{\lambda}(\bot) = \bigvee_{\alpha < \lambda} f^{\alpha}(\bot)$$

・ロト・(個)ト・(目)ト・(目)・(ロ)ト

Fixed points on general (incomplete) modal bi-Heyting algebras (1)

Language \mathcal{L} of modal bi-Heyting algebras defined by:

 $\varphi ::= \bot | \top | p | X | \varphi \land \psi | \varphi \lor \psi | \varphi \rightarrow \psi | \varphi - \psi | \Diamond \varphi | \Box \varphi$ where $p \in PROP$ and $X \in FVAR$.

$$\mathcal{L}_1 := \mathcal{L} + \mu_1 X.\varphi \mid v_1 X.\varphi$$

$$\mu x.t(x, a_1, \ldots, a_{n-1}) := \bigwedge \{ a \in A \mid t(a, a_1, \ldots, a_{n-1}) \le a \}$$

if this meet exists, otherwise $\mu x.t(x, a_1, ..., a_{n-1})$ is undefined.

$$vx.t(x, a_1, \ldots, a_{n-1}) := \bigvee \{ a \in A \mid a \le t(a, a_1, \ldots, a_{n-1}) \}$$

if this join exists, otherwise $vx.t(x, a_1, ..., a_{n-1})$ is undefined. Definition [Ambler, Kwiatkowska, Measor, '95] A modal bi-Heyting algebra **A** is of the first kind if $t^{\mathbf{A}}(a_1, ..., a_n)$ is defined for all $a_1, ..., a_n \in \mathbf{A}$ and all $t \in \mathcal{L}_1$. Fixed points on general (incomplete) modal bi-Heyting algebras (2)

Language \mathcal{L} of modal bi-Heyting algebras are defined recursively by:

For $t(x_1, \ldots, x_n) \in \mathcal{L}_2$ we then define

$$\mu_2 x.t(x,a_1,\ldots,a_{n-1}) := \bigvee_{\alpha \ge 0} t^{\alpha}(\bot,a_1,\ldots,a_{n-1})$$

and

$$\nu_2 x.t(x,a_1,\ldots,a_{n-1}) := \bigwedge_{\alpha \ge 0} t_{\alpha}(\top,a_1,\ldots,a_{n-1})$$

if this join and this meet exist, and they are undefined otherwise.

$$\mathcal{L}_2 := \mathcal{L} + \mu_2 X.\varphi \mid \nu_2 X.\varphi$$

Definition [AKM, '95]

A modal bi-Heyting algebra **A** is said to be of the second kind if $t^{\mathbf{A}}(a_1, \ldots, a_n)$ is defined for all $a_1, \ldots, a_n \in \mathbf{A}$ and all $t \in \mathcal{L}_2$.

Languages for canonical extension

$$\mathcal{L}_* := \mathcal{L} + \mu^* X. \varphi \mid v^* X. \varphi$$

In the canonical extensions \mathbf{A}^{δ} of modal bi-Heyting algebras \mathbf{A} :

$$\mu^* x_1.t(x_1, a_1, \ldots, a_{n-1}) := \bigwedge \{ a \in A \mid t(a, a_1, \ldots, a_{n-1}) \le a \}$$

and

$$v^*x_1.t(x_1, a_2, \ldots, a_n) := \bigvee \{ a \in A \mid a \leq t(a, a_1, \ldots, a_{n-1}) \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Languages for canonical extension

$$\mathcal{L}_* := \mathcal{L} + \mu^* X. \varphi \mid v^* X. \varphi$$

In the canonical extensions \mathbf{A}^{δ} of modal bi-Heyting algebras \mathbf{A} :

$$\mu^* x_1.t(x_1, a_1, \ldots, a_{n-1}) := \bigwedge \{ a \in A \mid t(a, a_1, \ldots, a_{n-1}) \le a \}$$

and

$$v^*x_1.t(x_1, a_2, \ldots, a_n) := \bigvee \{ a \in A \mid a \leq t(a, a_1, \ldots, a_{n-1}) \}.$$

Extended language \mathcal{L}_{ρ}^{+} , for \mathcal{L}_{ρ} , with $\rho \in \{1, 2, *\}$:

$$\mathcal{L}_1 := \mathcal{L} + \mathbf{j} | \mathbf{m} | \mathbf{m} \varphi | \mathbf{\Phi} \varphi$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Two types of canonicity

 $\varphi \leq \psi$ is canonical:

$$\mathbf{A}\models\varphi\leq\psi\quad\text{iff}\quad\mathbf{A}^{\delta}\models\varphi\leq\psi$$

 $\varphi \leq \psi$ is tame canonical [Bezhanishvili, Hodkinson, 2012]:

$$\mathbf{A}\models\varphi\leq\psi\quad\text{iff}\quad \mathbf{A}^{\delta}\models\varphi^{*}\leq\psi^{*}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Canonicty via correspondence

$$\begin{array}{cccc}
\mathbf{A} \models \alpha \leq \beta & & \mathbf{A}^{\delta} \models \alpha \leq \beta \\
 & \uparrow & & \uparrow \\
\mathbf{A}^{\delta} \models_{\mathbf{A}} \alpha \leq \beta & & \uparrow \\
 & \uparrow & & & \uparrow \\
\mathbf{A}^{\delta} \models_{\mathbf{A}} \operatorname{pure}(\alpha \leq \beta) & \longleftrightarrow & \mathbf{A}^{\delta} \models \operatorname{pure}(\alpha \leq \beta)
\end{array}$$

▲□▶▲□▶▲□▶▲□▶ = ● ● ●

μ^* -ALBA rules

First approximation rule

$$\frac{\varphi \leq \psi}{\forall \mathbf{j} \forall \mathbf{m}[(\mathbf{j} \leq \varphi \& \psi \leq \mathbf{m}) \Rightarrow \mathbf{j} \leq \mathbf{m}]}$$
(FA)

Residuation rules, e.g.,

$$\frac{\chi - \psi \le \varphi}{\chi \le \psi \lor \varphi} (-\mathsf{LR})$$

Adjunction rules, e.g.,

$$\frac{\Diamond \varphi \leq \psi}{\varphi \leq \blacksquare \psi} \ (\Diamond \mathsf{LA})$$

Approximation rule, e.g.,

$$\frac{\chi \to \varphi \le \mathbf{m}}{\exists \mathbf{j} \exists \mathbf{n} (\mathbf{j} \to \mathbf{n} \le \mathbf{m} \& \mathbf{j} \le \chi \& \varphi \le \mathbf{n})} (\to \mathsf{Appr})$$

Ackerman rules.

Approximation rule for μ^*

$$\frac{\mathbf{i} \leq \mu^* X. \psi(\overline{\varphi}/\overline{x}, X)}{\bigotimes_{i=1}^n (\exists \mathbf{j}^{\tau_i} [\mathbf{i} \leq \mu^* X. \psi(\overline{\mathbf{j}_i}^{\tau}/\overline{x}, X) \& \mathbf{j}^{\tau_i} \leq \tau_i \varphi_i])} (\mu^\tau - \mathsf{A} - \mathsf{R})$$

where

- 1. $\psi, \overline{\varphi} \in \mathcal{L}_*;$
- 2. $\overline{x} \in \mathsf{PHVAR}$ do not occur in $\overline{\varphi}$;
- 3. all propositional variables and free fixed point variables in $\psi(\overline{x}, X)$ and $\varphi(\overline{x}, X)$ are among \overline{x} and X.
- 4. $\psi(\overline{x}, X) : (\mathbf{C}^{\delta})^{\tau} \times \mathbf{C}^{\delta} \to \mathbf{C}^{\delta}$ preserves $(\mathbf{C}^{\tau} \times \mathbf{C})$ -targeted joins for all modal bi-Heyting algebras **C** of the second kind;
- 5. $\psi(\overline{x}, X)$ must be τ -positive in \overline{x} ;
- $(v^{\tau}-A-R)$ is defined similarly.

Tame run No application of $(\mu^{\tau}-A-R)$ or $(\nu^{\tau}-A-R)$. Proper run All occurrences of μ^{*} and ν^{*} handled by $(\mu^{\tau}-A-R)$ and $(\nu^{\tau}-A-R)$.

Syntactic classes

Outer Skeleton (P ₃)	Inner Skeleton (P ₂)	PIA (<i>P</i> ₁)
∆-adjoints	Binders	Binders
$ \begin{array}{c c} + & \vee & \wedge \\ \hline - & \wedge & \vee \\ \hline \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\frac{\begin{array}{c} + \mu \\ - \nu \end{array}}{SLA}$	$\frac{\begin{array}{c} + \nu \\ - \mu \end{array}}{\text{SRA}}$
$\begin{array}{cccc} + & \diamond & \triangleleft & \circ & - \\ - & \Box & \triangleright & \star & \rightarrow \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$- \lor \star \rightarrow$	- ^ o -

Table : Skeleton and PIA nodes.

Conditions on branches of generation trees (1)

 ϵ and order type on p_1, \ldots, p_n and Ω a partial order on p_1, \ldots, p_n .

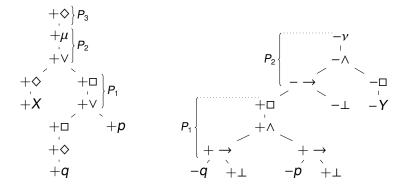
- (GB1) The formula corresponding to the uppermost node on P_1 is a mu-sentence.
- (GB2) For every SRR-node in P_1 of the form $\gamma \odot \beta$ or $\beta \odot \gamma$, where β is the side where the branch lies, γ is a mu-sentence and $\epsilon^{\partial}(\gamma) < *\varphi$.
- (GB3) For every SLR-node in P_2 of the form $\gamma \odot \beta$ or $\beta \odot \gamma$, where β is the side where the branch lies, γ is a mu-sentence and $\epsilon^{\partial}(\gamma) < *\varphi$ (see above for this notation).
- (NB-PIA) P_1 contains no fixed point binders.
 - (NL) For every SLR-node in P_2 of the form $\gamma \odot \beta$ or $\beta \odot \gamma$, where β is the side where the branch lies, the signed generation tree of γ contains no live branches.
- (Ω -CONF) For every SRR-node in P_1 of the form $\gamma \odot \beta$ or $\beta \odot \gamma$, where β is the side where the branch lies: $p_j <_{\Omega} p_i$ for every p_j occurring in γ , where p_i is the propositional variable labelling the leaf of the branch.

Conditions on branches of generation trees (2)

- 1. ϵ -recursive if every ϵ -critical branch is ϵ -good.
- (Ω, ε)-inductive it is ε-recursive and every ε-critical branch satisfies (Ω-CONF).
- 3. restricted (Ω, ϵ) -inductive if it is (Ω, ϵ) -inductive and
 - 3.1 every ϵ -critical branch satisfies (NB-PIA) and (NL),
 - 3.2 every occurrence of a binder is on an ϵ -critical branch.
- 4. tame (Ω, ϵ) -inductive if it is (Ω, ϵ) -inductive and
 - 4.1 $\Omega = \emptyset$,
 - 4.2 no binder occurs on any ϵ -critical branch,
 - 4.3 the only nodes involving binders which are allowed to occur are $+\nu$ and $-\mu$.

ション キョン キョン キョン しょう

Example: a restricted inductive inequality



The restricted (Ω, ϵ) -inductive inequality

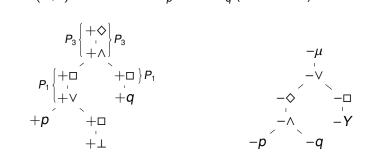
 $\Diamond \mu X.(\Diamond X \lor \Box (\Box \Diamond q \lor p)) \leq \nu Y.([\Box ((q \to \bot) \land (p \to \bot)) \to \bot] \land \Box Y)$

with $\epsilon_p = 1$ and $\epsilon_q = \partial$ and Ω such that $q <_{\Omega} p$.

Example: a tame inductive inequality

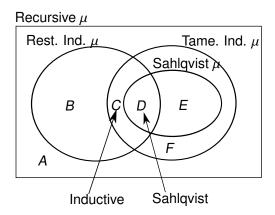
$$\Diamond(\Box \bot \lor p) \land \Box q \leq \mu Y.(\Diamond(p \land q) \land \Box Y)$$

is tame (Ω, ϵ) -inductive with $\epsilon_p = 1 = \epsilon_q$ (and $\Omega = \emptyset$).



▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - のへで

Relationships between the syntactic classes



Tame Canonicity Results (1)

Theorem (Tame Canonicity for μ^* -ALBA)

All \mathcal{L}_1 -inequalities on which a tame run of μ^* -ALBA succeeds are tame canonical.

Proof

$$\mathbf{A}\models\varphi\leq\psi\tag{1}$$

$$\iff \mathbf{A}^{\delta} \models_{\mathbf{A}} \varphi^* \le \psi^*$$
 (2)

$$\iff \mathbf{A}^{\delta} \models_{\mathbf{A}} \operatorname{pure}(\varphi^* \le \psi^*) \tag{3}$$

$$\iff \mathbf{A}^{\delta} \models \mathsf{pure}(\varphi^* \le \psi^*) \tag{4}$$

$$\iff \mathbf{A}^{\delta} \models \varphi^* \le \psi^* \tag{5}$$

Tame Canonicity Results (2)

Theorem

 $\mu^*\text{-ALBA}$ successfully purifies all tame inductive mu-inequalities by means of tame runs.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Corollary

All tame inductive mu-inequalities are tame canonical.

Canonicity Results (1)

Theorem (Canonicity for μ^* -ALBA)

Let **A** be a mu-algebra of the second kind and let $\varphi \leq \psi$ be an \mathcal{L}_1 -inequality on which a proper run of μ^* -ALBA succeeds.

Proof

$$\mathbf{A}\models\varphi\leq\psi\tag{6}$$

$$\iff \mathbf{A}^{\delta} \models_{\mathbf{A}} \varphi^* \le \psi^* \tag{7}$$

$$\iff \mathbf{A}^{\delta} \models_{\mathbf{A}} \operatorname{pure}(\varphi^* \le \psi^*)$$
(8)

$$\iff \mathbf{A}^{\delta} \models \mathsf{pure}(\varphi^* \le \psi^*) \tag{9}$$

$$\implies \mathbf{A}^{\delta} \models \varphi \le \psi \tag{10}$$

Canonicity Results (2)

Theorem

 μ^* -ALBA successfully purifies all restrictive inductive mu-inequalities by means of proper runs.

Corollary

All restricted inductive mu-inequalities are canonical.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

[Bezhanishvili Hodkinson]Sahlqvist theorem for modal fixed point logic, *TCS*, 424:1-19 (2012).

[Bezhanishvili Hodkinson]Preservation of Sahlqvist fixed point equations in completions of relativized fixed point Boolean algebras with operators, *Algebra Universalis*, 68:43-56 (2012).

[Conradie Craig] Canonicity results for mu-calculi: an algorithmic approach, *JLC*, to appear, 2015.

[Conradie Fomatati Palmigiano Sourabh] Correspondence theory for intuitionistic modal mu-calculus, *TCS*, 564:30-62 (2015).

[Conradie Ghilardi Palmigiano] Unified Correspondence, in Johan van Benthem on Logic and Information Dynamics, Springer, 2014.

[Conradie Palmigiano 2012] Algorithmic Correspondence and Canonicity for Distributive Modal Logic, *APAL*, 163:338-376.

[Conradie Palmigiano 2015] Algorithmic correspondence and canonicity for non-distributive logics, *JLC*, to appear.

[Conradie Palmigiano Sourabh] Algebraic modal correspondence: Sahlqvist and beyond, submitted, 2014.

[Conradie Palmigiano Sourabh Zhao] Canonicity and relativized canonicity via pseudo-correspondence, submitted, 2014.

[Conradie Robinson 2015] On Sahlqvist Theory for Hybrid Logics, *JLC*, to appear. [Frittella Palmigiano Santocanale] Dual characterizations for finite lattices via correspondence theory for monotone modal logic, *JLC*, to appear.

[Greco Ma Palmigiano Tzimoulis Zhao] Unified correspondence as a proof-theoretic tool, submitted, 2015.

Palminiano Sourabh Zhao/a] Sablovist theory for impossible worlds 1/ C 2015