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Fixed points on complete lattices
Theorem (Knaster-Tarski)
Let L be a complete lattice and f : L → L an order preserving map.
Then the least fixed-point of f exists and is given by

LFPx.f(x) =
∧
{a ∈ L | f(a) ≤ a}.

Or by ordinal unfolding:

LFPx.f(x) =
∨
0≤α

fα(⊥).

where

f0(⊥) = ⊥

fα+1(⊥) = f
(
fα(⊥))

fλ(⊥) =
∨
α<λ

fα(⊥)



Fixed points on complete lattices
Theorem (Knaster-Tarski)
Let L be a complete lattice and f : L → L an order preserving map.
Then the least fixed-point of f exists and is given by

LFPx.f(x) =
∧
{a ∈ L | f(a) ≤ a}.

Or by ordinal unfolding:

LFPx.f(x) =
∨
0≤α

fα(⊥).

where

f0(⊥) = ⊥

fα+1(⊥) = f
(
fα(⊥))

fλ(⊥) =
∨
α<λ

fα(⊥)



Fixed points on general (incomplete) modal bi-Heyting
algebras (1)

Language L of modal bi-Heyting algebras defined by:

ϕ ::= ⊥ | > | p | X | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ϕ − ψ | ^ϕ | �ϕ

where p ∈ PROP and X ∈ FVAR.

L1 := L+ µ1X .ϕ | ν1X .ϕ

µx.t(x, a1, . . . , an−1) :=
∧
{ a ∈ A | t(a, a1, . . . , an−1) ≤ a }

if this meet exists, otherwise µx.t(x, a1, . . . , an−1) is undefined.

νx.t(x, a1, . . . , an−1) :=
∨
{ a ∈ A | a ≤ t(a, a1, . . . , an−1) }

if this join exists, otherwise νx.t(x, a1, . . . , an−1) is undefined.

Definition [Ambler, Kwiatkowska, Measor, ’95]
A modal bi-Heyting algebra A is of the first kind if tA(a1, . . . , an) is
defined for all a1, . . . , an ∈ A and all t ∈ L1.



Fixed points on general (incomplete) modal bi-Heyting
algebras (2)

Language L of modal bi-Heyting algebras are defined recursively
by:
For t(x1, . . . , xn) ∈ L2 we then define

µ2x.t(x, a1, . . . , an−1) :=
∨
α≥0

tα(⊥, a1, . . . , an−1)

and
ν2x.t(x, a1, . . . , an−1) :=

∧
α≥0

tα(>, a1, . . . , an−1)

if this join and this meet exist, and they are undefined otherwise.

L2 := L+ µ2X .ϕ | ν2X .ϕ

Definition [AKM, ’95]
A modal bi-Heyting algebra A is said to be of the second kind if
tA(a1, . . . , an) is defined for all a1, . . . , an ∈ A and all t ∈ L2.



Languages for canonical extension

L∗ := L + µ∗X .ϕ | ν∗X .ϕ

In the canonical extensions Aδ of modal bi-Heyting algebras A:

µ∗x1.t(x1, a1, . . . , an−1) :=
∧
{ a ∈ A | t(a, a1, . . . , an−1) ≤ a }

and

ν∗x1.t(x1, a2, . . . , an) :=
∨
{ a ∈ A | a ≤ t(a, a1, . . . , an−1) }.

Extended language L+
ρ , for Lρ, with ρ ∈ {1, 2, ∗}:

L1 := L + j | m | �ϕ | _ϕ
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Two types of canonicity

ϕ ≤ ψ is canonical:

A |= ϕ ≤ ψ iff Aδ |= ϕ ≤ ψ

ϕ ≤ ψ is tame canonical [Bezhanishvili, Hodkinson, 2012]:

A |= ϕ ≤ ψ iff Aδ |= ϕ∗ ≤ ψ∗



Canonicty via correspondence

A |= α ≤ β
⇔

Aδ |=A α ≤ β

⇔

Aδ |=A pure(α ≤ β) Aδ |= pure(α ≤ β)

⇐
⇒

⇐⇒

Aδ |= α ≤ β



µ∗-ALBA rules
First approximation rule

ϕ ≤ ψ
(FA)

∀j∀m[(j ≤ ϕ & ψ ≤ m)⇒ j ≤ m]

Residuation rules, e.g.,

χ − ψ ≤ ϕ
(−LR)

χ ≤ ψ ∨ ϕ

Adjunction rules, e.g.,

^ϕ ≤ ψ
(^LA)

ϕ ≤ �ψ

Approximation rule, e.g.,

χ→ ϕ ≤ m
(→Appr)

∃j∃n(j→ n ≤ m & j ≤ χ & ϕ ≤ n)

Ackerman rules.



Approximation rule for µ∗

i ≤ µ∗X .ψ(ϕ/x,X)
(µτ-A-R)

On
i=1(∃jτi [i ≤ µ∗X .ψ(ji

τ
/x,X) & jτi ≤τi ϕi])

where

1. ψ, ϕ ∈ L∗;

2. x ∈ PHVAR do not occur in ϕ;

3. all propositional variables and free fixed point variables in
ψ(x,X) and ϕ(x,X) are among x and X .

4. ψ(x,X) : (Cδ)τ × Cδ → Cδ preserves (Cτ × C)-targeted joins
for all modal bi-Heyting algebras C of the second kind;

5. ψ(x,X) must be τ-positive in x;

(ντ-A-R) is defined similarly.

Tame run No application of (µτ-A-R) or (ντ-A-R).

Proper run All occurrences of µ∗ and ν∗ handled by (µτ-A-R) and
(ντ-A-R).



Syntactic classes

Outer Skeleton (P3) Inner Skeleton (P2) PIA (P1)
∆-adjoints Binders Binders

+ ∨ ∧

− ∧ ∨

+ µ

− ν

+ ν

− µ

SLR SLA SRA

+ ^ C ◦ −

− � B ? →

+ ^ C ∨

− � B ∧

+ � B ∧

− ^ C ∨

SLR SRR
+ ∧ ◦ −

− ∨ ? →

+ ∨ ? →

− ∧ ◦ −

Table : Skeleton and PIA nodes.



Conditions on branches of generation trees (1)
ε and order type on p1, . . . , pn and Ω a partial order on p1, . . . , pn.

(GB1) The formula corresponding to the uppermost node
on P1 is a mu-sentence.

(GB2) For every SRR-node in P1 of the form γ � β or β � γ,
where β is the side where the branch lies, γ is a
mu-sentence and ε∂(γ) ≺ ∗ϕ.

(GB3) For every SLR-node in P2 of the form γ � β or β � γ,
where β is the side where the branch lies, γ is a
mu-sentence and ε∂(γ) ≺ ∗ϕ (see above for this
notation).

(NB-PIA) P1 contains no fixed point binders.
(NL) For every SLR-node in P2 of the form γ � β or β � γ,

where β is the side where the branch lies, the signed
generation tree of γ contains no live branches.

(Ω-CONF) For every SRR-node in P1 of the form γ � β or β � γ,
where β is the side where the branch lies: pj <Ω pi for
every pj occurring in γ, where pi is the propositional
variable labelling the leaf of the branch.



Conditions on branches of generation trees (2)

1. ε-recursive if every ε-critical branch is ε-good.

2. (Ω, ε)-inductive it is ε-recursive and every ε-critical branch
satisfies (Ω-CONF).

3. restricted (Ω, ε)-inductive if it is (Ω, ε)-inductive and
3.1 every ε-critical branch satisfies (NB-PIA) and (NL),
3.2 every occurrence of a binder is on an ε-critical branch.

4. tame (Ω, ε)-inductive if it is (Ω, ε)-inductive and
4.1 Ω = ∅,
4.2 no binder occurs on any ε-critical branch,
4.3 the only nodes involving binders which are allowed to occur

are +ν and −µ.



Example: a restricted inductive inequality

+^
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The restricted (Ω, ε)-inductive inequality

^µX .(^X ∨�(�^q∨p)) ≤ νY .([�((q → ⊥)∧(p → ⊥))→ ⊥]∧�Y)

with εp = 1 and εq = ∂ and Ω such that q <Ω p.



Example: a tame inductive inequality

^(�⊥ ∨ p) ∧ �q ≤ µY .(^(p ∧ q) ∧ �Y)

is tame (Ω, ε)-inductive with εp = 1 = εq (and Ω = ∅).
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Relationships between the syntactic classes

Recursive µ

Rest. Ind. µ Tame. Ind. µ

Sahlqvist µ

Inductive Sahlqvist

A

B C D E

F



Tame Canonicity Results (1)

Theorem (Tame Canonicity for µ∗-ALBA)
All L1-inequalities on which a tame run of µ∗-ALBA succeeds are
tame canonical.

Proof

A |= ϕ ≤ ψ (1)

⇐⇒ Aδ |=A ϕ∗ ≤ ψ∗ (2)

⇐⇒ Aδ |=A pure(ϕ
∗ ≤ ψ∗) (3)

⇐⇒ Aδ |= pure(ϕ∗ ≤ ψ∗) (4)

⇐⇒ Aδ |= ϕ∗ ≤ ψ∗ (5)



Tame Canonicity Results (2)

Theorem
µ∗-ALBA successfully purifies all tame inductive mu-inequalities by
means of tame runs.

Corollary
All tame inductive mu-inequalities are tame canonical.



Canonicity Results (1)

Theorem (Canonicity for µ∗-ALBA)
Let A be a mu-algebra of the second kind and let ϕ ≤ ψ be an
L1-inequality on which a proper run of µ∗-ALBA succeeds.

Proof

A |= ϕ ≤ ψ (6)

⇐⇒ Aδ |=A ϕ∗ ≤ ψ∗ (7)

⇐⇒ Aδ |=A pure(ϕ
∗ ≤ ψ∗) (8)

⇐⇒ Aδ |= pure(ϕ∗ ≤ ψ∗) (9)

=⇒ Aδ |= ϕ ≤ ψ (10)



Canonicity Results (2)

Theorem
µ∗-ALBA successfully purifies all restrictive inductive
mu-inequalities by means of proper runs.

Corollary
All restricted inductive mu-inequalities are canonical.
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