Lax orthogonal factorisation systems in Topology

Maria Manuel Clementino

Centre for Mathematics, University of Coimbra

TACL, Ischia, 24 June 2015

Continuous lattices

A T0-space X is said to be injective if any continuous map $u: A \rightarrow X$ can be extended along any embedding $h: A \rightarrow B$:

Theorem. A T0-space is injective if and only if

- X is a continuous lattice [Scott 1970] [Day 1975]
- ► X has an algebra structure for the filter monad.

Question:

Are there similar characterizations for injective continuous maps?

A continuous map $f : X \to Y$ between T0-spaces is said to be injective if it is injective as an object of the comma category **Top**₀ $\downarrow Y$; that is,

Let C be a (pre)ordered enriched category.

Let $\mathbb{T} = (T, \eta, \mu)$ be a Kock-Zöberlein monad on **C**. The following assertions are equivalent, for a **C**-object X:

- ► X is injective with respect to T-embeddings,
- ► X is Kan-injective with respect to T-embeddings,
- ► X has a T-algebra structure.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

Let **C** be a (pre)ordered enriched category.

Let $\mathbb{T} = (T, \eta, \mu)$ be a Kock-Zöberlein (KZ) monad on **C**. The following assertions are equivalent, for a **C**-object X:

- ► X is injective with respect to T-embeddings,
- ► X is Kan-injective with respect to T-embeddings,
- ► X has a T-algebra structure.

A monad $\mathbb{T} = (T, \eta, \mu)$ is KZ if the (equivalent) conditions hold:

(I)
$$I \eta \leq \eta_T$$
;

- (ii) $T\eta_X \dashv \mu_X$ for every X;
- (iii) $\mu_X \dashv \eta_T$ for every X;

(iv)
$$TX \xrightarrow{a} X$$
 is a \mathbb{T} -algebra iff $TX \xrightarrow{\eta_X}_{T} X$ with id counit.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]
 [M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

Let **C** be a (pre)ordered enriched category.

Let $\mathbb{T} = (T, \eta, \mu)$ be a Kock-Zöberlein monad on **C**. The following assertions are equivalent, for a **C**-object X:

- ► X is injective with respect to *T*-embeddings,
- ► X is Kan-injective with respect to T-embeddings,
- X has a \mathbb{T} -algebra structure.

A morphism $h: A \rightarrow B$ is a *T*-embedding if

$$TA \xrightarrow[T^*h]{Th} TB \qquad \text{with id unit;}$$

that is: $1_{TA} = T^*h \cdot Th$ and $Th \cdot T^*h \leq 1_{TB}$.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

Let C be a (pre)ordered enriched category.

Let $\mathbb{T} = (T, \eta, \mu)$ be a Kock-Zöberlein monad on **C**. The following assertions are equivalent, for a **C**-object X:

- ► X is injective with respect to T-embeddings,
- ► X is Kan-injective with respect to T-embeddings,
- ► X has a T-algebra structure.

An object X is Kan-injective with respect to $h : A \rightarrow B$ if any $u : A \rightarrow X$ can be extended along $h : A \rightarrow B$ in a universal way:

- [M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]
- [M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

Let C be a (pre)ordered enriched category.

Let $\mathbb{T} = (T, \eta, \mu)$ be a Kock-Zöberlein monad on **C**. The following assertions are equivalent, for a **C**-object X:

- ► X is injective with respect to T-embeddings,
- ► X is Kan-injective with respect to T-embeddings,
- ► X has a T-algebra structure.

Consider in Top_0 the order: $x \le y$ if $y \in \overline{\{x\}}$; that is, the dual of the specialisation order. The filter monad $\mathbb{F} = (F, \eta, \mu)$

- is Kock-Zöberlein,
- F-embeddings are embeddings, and so
- Scott's result follows from Day's result.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]
 [M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

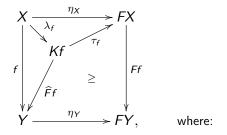
Question: Can we use Escardo's results for continuous maps?

Difficulties:

- \blacktriangleright Construction of a fibrewise filter monad $\widehat{\mathbb{F}}$
- Do the $\widehat{\mathbb{F}}$ -embeddings coincide with embeddings (as for \mathbb{F})?

Fibrewise Injectivity

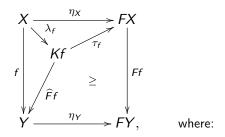
For each T0-space Y, the fibrewise filter monad $\widehat{\mathbb{F}} = (\widehat{F}, \lambda, \widehat{\mu})$ on **Top**₀ \downarrow Y, defined using comma objects:



[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

Fibrewise Injectivity

For each T0-space Y, the fibrewise filter monad $\widehat{\mathbb{F}} = (\widehat{F}, \lambda, \widehat{\mu})$ on **Top**₀ \downarrow Y, defined using comma objects:

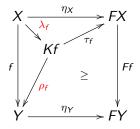


•
$$Kf = \{(y, \varphi) \in Y \times FY ; Ff(\varphi) \le \mathcal{O}(y)\}$$

• $\widehat{F}(f)$ and τ_f are projections, and $\lambda_f(x) = (f(x), \mathcal{O}(x))$,

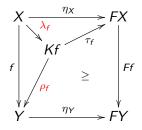
is a Kock-Zöberlein monad, such that embeddings coincide with $\widehat{F}\text{-embeddings}.$

The factorisation of f as



gives a weak factorisation system $(\mathcal{L}, \mathcal{R})$ in **Top**₀, with $\mathcal{L} = \{\text{embeddings}\} = \{F\text{-embeddings}\} = \{\widehat{F}\text{-embeddings}\}, \text{ and}$ $\mathcal{R} = \{\text{injective continuous maps}\} = \{\widehat{F}\text{-algebras}\};$

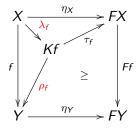
The factorisation of f as



gives a weak factorisation system $(\mathcal{L}, \mathcal{R})$ in **Top**₀, with $\mathcal{L} = \{\text{embeddings}\}\ \text{and}\ \mathcal{R} = \{\text{injective continuous maps}\};\ \text{that is,}\$

► every continuous maps can be written as a composition of a morphism in *L* followed by one in *R*,

The factorisation of f as

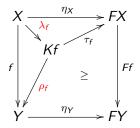


gives a weak factorisation system $(\mathcal{L}, \mathcal{R})$ in **Top**₀, with $\mathcal{L} = \{\text{embeddings}\}$ and $\mathcal{R} = \{\text{injective continuous maps}\}$; that is,

- every continuous maps can be written as a composition of a morphism in *L* followed by one in *R*,
- ▶ for any commutative square $\cdot \longrightarrow \cdot$, with $I \in \mathcal{L}$ and $r \in \mathcal{R}$ $I \downarrow \qquad \downarrow r$

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

The factorisation of f as



gives a weak factorisation system $(\mathcal{L}, \mathcal{R})$ in **Top**₀, with

 $\mathcal{L} = \{ \mathsf{embeddings} \} \text{ and } \mathcal{R} = \{ \mathsf{injective \ continuous \ maps} \}; \text{ that is,}$

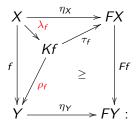
- every continuous maps can be written as a composition of a morphism in *L* followed by one in *R*,
- \blacktriangleright for any commutative square $\ \cdot \longrightarrow \cdot$, with $l \in \mathcal{L}$ and

$$I \downarrow d / \downarrow r$$

 $r \in \mathcal{R}$, there exists a diagonal filler d.

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

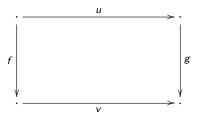
Special properties of this factorisation system The factorisation of f as



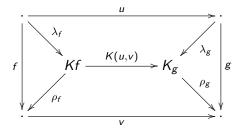
- gives a functorial factorisation system $\mathbf{Top}_0^2 \rightarrow \mathbf{Top}_0^3$;
- ► the endofunctors L : f → λ_f and R : f → ρ_f can be endowed resp. with a comonad L and a monad R structures, satisfying a distributivity law: (L, R) is an algebraic factorisation system.
- both \mathbb{L} and \mathbb{R} are Kock-Zöberlein.

Note that an orthogonal factorisation system is an algebraic one (\mathbb{L}, \mathbb{R}) with \mathbb{L} and \mathbb{R} idempotent. [C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]

An algebraic f.s. (\mathbb{L}, \mathbb{R}) is lax orthogonal if both \mathbb{L} and \mathbb{R} are KZ. For each commutative diagram as below, if f is an \mathbb{L} -coalgebra and g an \mathbb{R} -algebra, the diagonal filler d is obtained as:

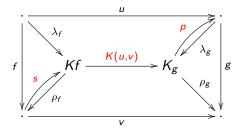


An algebraic f.s. (\mathbb{L}, \mathbb{R}) is lax orthogonal if both \mathbb{L} and \mathbb{R} are KZ. For each commutative diagram as below, if f is an \mathbb{L} -coalgebra and g an \mathbb{R} -algebra, the diagonal filler d is obtained as:



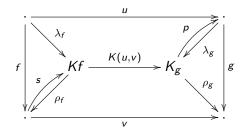
[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]

An algebraic f.s. (\mathbb{L}, \mathbb{R}) is lax orthogonal if both \mathbb{L} and \mathbb{R} are KZ. For each commutative diagram as below, if f is an \mathbb{L} -coalgebra and g an \mathbb{R} -algebra, the diagonal filler d is obtained as:

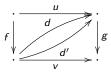


[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]

An algebraic f.s. (\mathbb{L}, \mathbb{R}) is lax orthogonal if both \mathbb{L} and \mathbb{R} are KZ. For each commutative diagram as below, if f is an \mathbb{L} -coalgebra and g an \mathbb{R} -algebra, the diagonal filler d is obtained as:

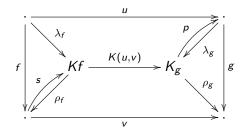


Moreover, this diagonal filler has a universal property:

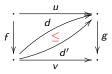


[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]

An algebraic f.s. (\mathbb{L}, \mathbb{R}) is lax orthogonal if both \mathbb{L} and \mathbb{R} are KZ. For each commutative diagram as below, if f is an \mathbb{L} -coalgebra and g an \mathbb{R} -algebra, the diagonal filler d is obtained as:



Moreover, this diagonal filler has a universal property:



[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]

Examples: Filter monads in **Top**₀

Escardó-Flagg examples include the following filter monads:

Monad T	<i>T</i> -embeddings	\mathbb{T} -algebras=
		Inj objects wrt <i>T</i> -emb
Filters	Embeddings	Continuous lattices
Proper filters	Dense embeddings	Continuous Scott domains
Prime filters	Flat embeddings	Stably compact spaces
Compl. prime filters	Completely flat emb	Sober spaces

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]

Examples: Filter monads in **Top**₀

Escardó-Flagg examples include the following filter monads:

Monad T	<i>T</i> -embeddings	\mathbb{T} -algebras=
		Inj objects wrt <i>T</i> -emb
Filters	Embeddings	Continuous lattices
Proper filters	Dense embeddings	Continuous Scott domains
Prime filters	Flat embeddings	Stably compact spaces
Compl. prime filters	Completely flat emb	Sober spaces

All these examples can be fibrewised, using the facts:

- $\widehat{\mathbb{F}}$ is KZ, and \widehat{F} -embeddings=F-embeddings=embeddings
- the other monads are *well-behaved* submonads of \mathbb{F} .

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]

Monad $\widehat{\mathbb{T}}$	$\widehat{\mathcal{T}}$ -embeddings	$\widehat{\mathbb{T}} ext{-algebras}=$
		Inj morph wrt $\widehat{\mathcal{T}}$ -embeddings
Fib filters	Embeddings	Fib continuous lattices
Fib proper filters	Dense embeddings	Fib continuous Scott domains
Fib prime filters	Flat embeddings	Fib stably compact spaces
Fib compl prime f.	Completely flat emb	Fib sober spaces

• How can these $\widehat{\mathbb{T}}$ -algebras be characterized?

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

If \mathbb{T} is a submonad of \mathbb{F} , define the \mathbb{T} -way below relation $\ll^{\mathbb{T}}$ as:

$$V \ll^{\mathbb{T}} U :\Leftrightarrow (\forall \varphi \in TX) (V \in \varphi \Rightarrow \lim \varphi \cap U \neq \emptyset),$$

for all T0-spaces X and $U, V \in \mathcal{O}X$.

[Hofmann, A four for the price of one duality principle for distributive topological spaces, Order 2013]

If \mathbb{T} is a submonad of \mathbb{F} , define the \mathbb{T} -way below relation $\ll^{\mathbb{T}}$ as:

$$V \ll^{\mathbb{T}} U :\Leftrightarrow (\forall \varphi \in TX) (V \in \varphi \Rightarrow \lim \varphi \cap U \neq \emptyset),$$

for all T0-spaces X and $U, V \in \mathcal{O}X$.

Theorem. For a *T*0-space *X* the following are equivalent:
(i) *X* is a T-algebra,
(ii) *X* is sober, T-corecompact and T-stable.

[Hofmann, A four for the price of one duality principle for distributive topological spaces, Order 2013]

If \mathbb{T} is a submonad of \mathbb{F} , define the \mathbb{T} -way below relation $\ll^{\mathbb{T}}$ as:

$$V \ll^{\mathbb{T}} U :\Leftrightarrow (\forall \varphi \in TX) (V \in \varphi \Rightarrow \lim \varphi \cap U \neq \emptyset),$$

for all T0-spaces X and $U, V \in \mathcal{O}X$.

Theorem. For a T0-space X the following are equivalent:
(i) X is a T-algebra,
(ii) X is sober, T-corecompact and T-stable.

A T0-space is \mathbb{T} -corecompact if

$$(\forall U \in \mathcal{O}X) \ U = \bigvee \{V ; V \in \mathcal{O}X, V \ll^{\mathbb{T}} U \}.$$

A T0-space is T-stable if

$$\forall J \text{ finite}, (U_j)_j, (V_j)_j \text{ in } \mathcal{O}X \ (\forall j \in J \ V_j \ll^{\mathbb{T}} U_j) \ \Rightarrow \ \bigcap_{j \in J} V_j \ll^{\mathbb{T}} \bigcap_{j \in J} U_j.$$

[Hofmann, A four for the price of one duality principle for distributive topological spaces, Order 2013]

If \mathbb{T} is a submonad of \mathbb{F} , the fibrewise \mathbb{T} -way below relation:

 $V \ll_W^{\mathbb{T}} U \iff (\forall (z, \varphi) \in W \times V^{\sharp} \subseteq \widehat{T}X) \lim \varphi \cap X_z \cap U \neq \emptyset,$

for continuous maps $f : X \to Y$ in **Top**₀, $U, V \in \mathcal{O}X$, $W \in \mathcal{O}Y$.

If $\mathbb T$ is a submonad of $\mathbb F,$ the fibrewise $\mathbb T\text{-way}$ below relation:

$$V \ll_W^{\mathbb{T}} U \iff (orall (z, arphi) \in W imes V^{\sharp} \subseteq \widehat{T}X) \lim arphi \cap X_z \cap U
eq \emptyset,$$

for continuous maps $f : X \to Y$ in **Top**₀, $U, V \in \mathcal{O}X$, $W \in \mathcal{O}Y$.

Theorem.

For a continuous map $f : X \to Y$ the following are equivalent: (i) f is a $\widehat{\mathbb{T}}$ -algebra, (ii) f is fibrewise sober, $\widehat{\mathbb{T}}$ -corecompact and $\widehat{\mathbb{T}}$ -stable.

Theorem.

For a continuous map $f : X \to Y$ the following are equivalent: (i) f is a $\widehat{\mathbb{T}}$ -algebra, (ii) f is fibrewise sober, $\widehat{\mathbb{T}}$ -corecompact and $\widehat{\mathbb{T}}$ -stable.

A continuous map $f: X \to Y$ is:

► fibrewise sober if, for irreducible closed subsets *A* of *X* and $y \in Y$, $\overline{f(A)} = \overline{\{y\}} \Rightarrow \exists ! x \in X_v : A = \overline{\{x\}}.$

• fibrewise \mathbb{T} -corecompact if, for all $U \in \mathcal{O}X$,

 $U = \bigvee \{ V \cap X_W ; V \in \mathcal{O}X, W \in \mathcal{O}Y, V \cap X_W \ll_W^{\mathbb{T}} U \cap X_W \}.$

▶ fibrewise T-stable if

 $\forall J \text{ finite,} (U_j)_j, (V_j)_j \text{ in } \mathcal{O}X \ (\forall j \in J \ V_j \ll^{\mathbb{T}}_{W_j} U_j) \ \Rightarrow \ \bigcap_{j \in J} V_j \ll^{\mathbb{T}}_{W} \bigcap_{j \in J} U_j,$

where $W_j \in \mathcal{O}Y$ and $W = \bigcap_{j \in J} W_j$.

Theorem.

For a continuous map $f: X \to Y$ the following are equivalent:

- (i) f is a $\widehat{\mathbb{T}}$ -algebra,
- (ii) f is fibrewise sober, fibrewise $\widehat{\mathbb{T}}$ -corecompact and fibrewise $\widehat{\mathbb{T}}$ -stable.

Examples of lax orthogonal factorisation systems in \mathbf{Top}_0 : (*T*-embeddings, $\widehat{\mathbb{T}}$ -algebras), when \mathbb{T} is

- the filter monad,
- the proper filter monad,
- the prime filter monad,
- the completely prime filter monad.

Lax orthogonal factorization systems in (\mathbb{T}, V) -spaces

First example: The Cauchy completion of a (generalised) metric space

[Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. M. F. Milano 1973; TAC Rep. 2002] [C, Hofmann, Relative injectivity as cocompleteness for a class of distributors, TAC 2008] [C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]

Lax orthogonal factorization systems in (\mathbb{T}, V) -spaces

General construction of examples:

In the setting of [C, Hofmann, TAC 2008], given a quantale V, a **Set**-monad \mathbb{T} conveniently extended to *V*-**Rel**, and a class of bimodules (or distributors) Φ ,

- the category (\mathbb{T}, V) -**Cat** is order enriched,
- ► the presheaf monad P on (T, V)-Cat is KZ, as well as the corresponding fibrewise presheaf monad,
- embeddings=P-embeddings= \widehat{P} -embeddings,
- the submonads Φ of P are *well-behaved*,

so that each choice of a class Φ gives rise to a pair (\mathbb{L}, \mathbb{R}) of a KZ comonad \mathbb{L} and a KZ monad \mathbb{R} , that is, a lax factorisation system.

[Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. M. F. Milano 1973; TAC Rep. 2002] [C, Hofmann, Relative injectivity as cocompleteness for a class of distributors, TAC 2008]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]

References

- F. Cagliari, M.M. Clementino, S. Mantovani, Fibrewise injectivity and Kock-Zöberlein monads. J. Pure Appl. Algebra 216 (2012) 2411–2424
- F. Cagliari, M.M. Clementino, S. Mantovani, Fibrewise injectivity in order and topology. Preprint 14-20, Dep. Math, Univ. Coimbra
- M.M. Clementino, D. Hofmann, Relative injectivity as cocompleteness for a class of distributors. Theory Appl. Categ. 21 (2008) 210–230
- M.M. Clementino, I. López-Franco, Lax orthogonal factorisation systems. arXiv 1503.06469; Preprint 15–09, Dep. Math, Univ. Coimbra
- M.M. Clementino, I. López-Franco, Lax orthogonal factorisation systems in Topology, in preparation
- A. Day, Filter monads, continuous lattices and closure systems. Canad. J. Math. XXVII (1975) 50–59
- M. Escardó, Properly injective spaces and function spaces. Topology Appl. 89 (1998) 75–120
- M. Escardó, R. Flagg, Semantic domains, injective spaces and monads. Electr. Notes in Theor. Comp. Science 20, electronic paper 15 (1999)
- D. Hofmann, A four for the price of one duality principle for distributive topological spaces. Order 30 (2013) 643–655
- D. Hofmann, W. Tholen, Lawvere completion and separation via closure. Appl. Categ. Structures 18 (2010) 259–287
- G. Richter, Exponentiability for maps means fibrewise core-compactness. J. Pure Appl. Algebra 187 (2004) 295–303
- G. Richter, A. Vauth, Fibrewise sobriety. In: Categorical structures and their applications, World Sci. Publ. (2004), pp. 265–283
- D. Scott, Continuous lattices. In: Springer Lecture Notes Math. 274 (1972), pp. 97–136
- H. Simmons, A couple of triples. Topology Appl. 13 (1982) 201–223
- S. Sozubek, Lawvere completeness as a topological property. Theory Appl. Categ. 27 (2013) 242–262