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Continuous lattices

A T0-space X is said to be injective if any continuous map
u : A → X can be extended along any embedding h : A → B:

A
u //

h
��

X

B
u

??

Theorem. A T0-space is injective if and only if

I X is a continuous lattice [Scott 1970]

I X has an algebra structure for the filter monad. [Day 1975]



Fibrewise continuous lattices

Question:
Are there similar characterizations for injective continuous maps?

A continuous map f : X → Y between T0-spaces is said to be
injective if it is injective as an object of the comma category
Top0 ↓ Y ; that is,

A

h
��

u // X

f
��

B

d
??

v
// Y



Using Kock-Zöberlein monads

Let C be a (pre)ordered enriched category.

Let T = (T , η, µ) be a Kock-Zöberlein monad on C.
The following assertions are equivalent, for a C-object X :

I X is injective with respect to T -embeddings,

I X is Kan-injective with respect to T -embeddings,

I X has a T-algebra structure.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]
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The following assertions are equivalent, for a C-object X :

I X is injective with respect to T -embeddings,

I X is Kan-injective with respect to T -embeddings,

I X has a T-algebra structure.

A monad T = (T , η, µ) is KZ if the (equivalent) conditions hold:

(i) Tη ≤ ηT ;

(ii) TηX ⊣ µX for every X ;

(iii) µX ⊣ ηT for every X ;

(iv) TX
a // X is a T-algebra iff TX ⊤

a
55 X

ηXss
with id counit.
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Let C be a (pre)ordered enriched category.

Let T = (T , η, µ) be a Kock-Zöberlein monad on C.
The following assertions are equivalent, for a C-object X :

I X is injective with respect to T -embeddings,

I X is Kan-injective with respect to T -embeddings,

I X has a T-algebra structure.

A morphism h : A → B is a T -embedding if

TA
Th

++
⊥ TB

T∗h

kk with id unit;

that is: 1TA = T ∗h · Th and Th · T ∗h ≤ 1TB .

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]
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Using Kock-Zöberlein monads
Let C be a (pre)ordered enriched category.

Let T = (T , η, µ) be a Kock-Zöberlein monad on C.
The following assertions are equivalent, for a C-object X :

I X is injective with respect to T -embeddings,

I X is Kan-injective with respect to T -embeddings,

I X has a T-algebra structure.

An object X is Kan-injective with respect to h : A → B if any
u : A → X can be extended along h : A → B in a universal way:

A

≤

u //

h
��

X

B

u
??

u′

LL

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]
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Using Kock-Zöberlein monads

Let C be a (pre)ordered enriched category.

Let T = (T , η, µ) be a Kock-Zöberlein monad on C.
The following assertions are equivalent, for a C-object X :

I X is injective with respect to T -embeddings,

I X is Kan-injective with respect to T -embeddings,

I X has a T-algebra structure.

Consider in Top0 the order: x ≤ y if y ∈ {x};
that is, the dual of the specialisation order.
The filter monad F = (F , η, µ)

I is Kock-Zöberlein,

I F -embeddings are embeddings, and so

I Scott’s result follows from Day’s result.

[M. Escardó, Properly injective spaces and function spaces. Top. Appl. (1998)]

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]



Fibrewising Escardó’s results

Question: Can we use Escardó’s results for continuous maps?

Difficulties:

I Construction of a fibrewise filter monad F̂
I Do the F̂-embeddings coincide with embeddings (as for F)?



Fibrewise Injectivity

For each T0-space Y , the fibrewise filter monad F̂ = (F̂ , λ, µ̂) on
Top0 ↓ Y , defined using comma objects:

X
ηX //

f

��

λf

��

FX

Ff

��

Kf
τf

77

F̂ f

��

≥

Y
ηY // FY , where:

I Kf = {(y , φ) ∈ Y × FY ; Ff (φ) ≤ O(y)}

I F̂ (f ) and τf are projections, and λf (x) = (f (x),O(x)),

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]
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For each T0-space Y , the fibrewise filter monad F̂ = (F̂ , λ, µ̂) on
Top0 ↓ Y , defined using comma objects:

X
ηX //

f

��

λf

��

FX

Ff
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Kf
τf

77

F̂ f

��

≥

Y
ηY // FY , where:

I Kf = {(y , φ) ∈ Y × FY ; Ff (φ) ≤ O(y)}
I F̂ (f ) and τf are projections, and λf (x) = (f (x),O(x)),

is a Kock-Zöberlein monad,
such that embeddings coincide with F̂ -embeddings.

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]



The weak factorisation system

The factorisation of f as

X
ηX //

f

��

λf

��

FX

Ff

��

Kf
τf

77

ρf

��

≥

Y
ηY // FY

gives a weak factorisation system (L,R) in Top0, with
L = {embeddings} = {F -embeddings} = {F̂ -embeddings}, and
R = {injective continuous maps} = {F̂-algebras};

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]
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The weak factorisation system
The factorisation of f as

X
ηX //

f

��

λf

��

FX

Ff

��

Kf
τf

77

ρf

��

≥

Y
ηY // FY

gives a weak factorisation system (L,R) in Top0, with
L = {embeddings} and R = {injective continuous maps}; that is,

I every continuous maps can be written as a composition of a
morphism in L followed by one in R,

I for any commutative square · //

l
��

·
r

��
·

d
@@

// ·

, with l ∈ L and

r ∈ R, there exists a diagonal filler d .

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]



Special properties of this factorisation system
The factorisation of f as

X
ηX //

f

��

λf
��

FX

Ff

��

Kf
τf

77

ρf

��

≥

Y
ηY // FY :

I gives a functorial factorisation system Top20 → Top30;

I the endofunctors L : f 7→ λf and R : f 7→ ρf can be endowed
resp. with a comonad L and a monad R structures, satisfying
a distributivity law: (L,R) is an algebraic factorisation system.

I both L and R are Kock-Zöberlein.

Note that an orthogonal factorisation system is an algebraic one
(L,R) with L and R idempotent.
[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]



Lax orthogonal factorisation systems

An algebraic f.s. (L,R) is lax orthogonal if both L and R are KZ.
For each commutative diagram as below, if f is an L-coalgebra
and g an R-algebra, the diagonal filler d is obtained as:

· u //

f

��

·

g

��
· v

// ·

[C, López-Franco, Lax orthogonal factorisation systems, arXiv 1503.06469]
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Examples: Filter monads in Top0

Escardó-Flagg examples include the following filter monads:

Monad T T -embeddings T-algebras=
Inj objects wrt T -emb

Filters Embeddings Continuous lattices
Proper filters Dense embeddings Continuous Scott domains
Prime filters Flat embeddings Stably compact spaces
Compl. prime filters Completely flat emb Sober spaces

[M. Escardó, R. Flagg, Semantic domains, injective spaces and monads, Elect. Notes TCS (1999)]



Examples: Filter monads in Top0

Escardó-Flagg examples include the following filter monads:

Monad T T -embeddings T-algebras=
Inj objects wrt T -emb

Filters Embeddings Continuous lattices
Proper filters Dense embeddings Continuous Scott domains
Prime filters Flat embeddings Stably compact spaces
Compl. prime filters Completely flat emb Sober spaces

All these examples can be fibrewised, using the facts:

I F̂ is KZ, and F̂ -embeddings=F -embeddings=embeddings

I the other monads are well-behaved submonads of F.

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]



Examples: Fibrewise filter monads in Top0

Monad T̂ T̂ -embeddings T̂-algebras=
Inj morph wrt T̂ -embeddings

Fib filters Embeddings Fib continuous lattices
Fib proper filters Dense embeddings Fib continuous Scott domains
Fib prime filters Flat embeddings Fib stably compact spaces
Fib compl prime f. Completely flat emb Fib sober spaces

I How can these T̂-algebras be characterized?

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]



Examples: Fibrewise filter monads in Top0

If T is a submonad of F, define the T-way below relation ≪T as:

V ≪T U :⇔ (∀φ ∈ TX ) (V ∈ φ ⇒ limφ ∩ U ̸= ∅),

for all T0-spaces X and U,V ∈ OX .

[Hofmann, A four for the price of one duality principle for distributive topological spaces, Order 2013]
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Examples: Fibrewise filter monads in Top0
If T is a submonad of F, define the T-way below relation ≪T as:

V ≪T U :⇔ (∀φ ∈ TX ) (V ∈ φ ⇒ limφ ∩ U ̸= ∅),

for all T0-spaces X and U,V ∈ OX .

Theorem. For a T0-space X the following are equivalent:

(i) X is a T-algebra,
(ii) X is sober, T-corecompact and T-stable.

A T0-space is T-corecompact if

(∀U ∈ OX ) U =
∨

{V ; V ∈ OX , V ≪T U}.

A T0-space is T-stable if

∀J finite,(Uj)j , (Vj)j in OX (∀j ∈ J Vj ≪T Uj) ⇒
∩
j∈J

Vj ≪T
∩
j∈J

Uj .

[Hofmann, A four for the price of one duality principle for distributive topological spaces, Order 2013]



Examples: Fibrewise filter monads in Top0

If T is a submonad of F, the fibrewise T-way below relation:

V ≪T
W U :⇔ (∀(z , φ) ∈ W × V ♯ ⊆ T̂X ) limφ ∩ Xz ∩ U ̸= ∅,

for continuous maps f : X → Y in Top0, U,V ∈ OX , W ∈ OY .

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]
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V ≪T
W U :⇔ (∀(z , φ) ∈ W × V ♯ ⊆ T̂X ) limφ ∩ Xz ∩ U ̸= ∅,

for continuous maps f : X → Y in Top0, U,V ∈ OX , W ∈ OY .

Theorem.
For a continuous map f : X → Y the following are equivalent:

(i) f is a T̂-algebra,
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Examples: Fibrewise filter monads in Top0
Theorem.
For a continuous map f : X → Y the following are equivalent:

(i) f is a T̂-algebra,
(ii) f is fibrewise sober, T̂-corecompact and T̂-stable.

A continuous map f : X → Y is:
I fibrewise sober if, for irreducible closed subsets A of X and

y ∈ Y ,
f (A) = {y} ⇒ ∃!x ∈ Xy : A = {x}.

I fibrewise T-corecompact if, for all U ∈ OX ,

U =
∨

{V∩XW ; V ∈ OX , W ∈ OY , V∩XW ≪T
W U∩XW }.

I fibrewise T-stable if

∀J finite,(Uj)j , (Vj)j in OX (∀j ∈ J Vj ≪T
Wj

Uj) ⇒
∩
j∈J

Vj ≪T
W

∩
j∈J

Uj ,

where Wj ∈ OY and W = ∩j∈JWj .
[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]



Examples: Fibrewise filter monads in Top0

Theorem.
For a continuous map f : X → Y the following are equivalent:

(i) f is a T̂-algebra,
(ii) f is fibrewise sober, fibrewise T̂-corecompact and fibrewise

T̂-stable.

Examples of lax orthogonal factorisation systems in Top0:
(T -embeddings, T̂-algebras), when T is

I the filter monad,

I the proper filter monad,

I the prime filter monad,

I the completely prime filter monad.

[Cagliary, C, Mantovani, Fibrewise injectivity and Kock-Zöberlein monads, JPAA 2012]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]



Lax orthogonal factorization systems in (T,V )-spaces

First example:
The Cauchy completion of a (generalised) metric space

[Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. M. F. Milano 1973; TAC Rep. 2002]

[C, Hofmann, Relative injectivity as cocompleteness for a class of distributors, TAC 2008]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]



Lax orthogonal factorization systems in (T,V )-spaces

General construction of examples:
In the setting of [C, Hofmann, TAC 2008], given a quantale V, a
Set-monad T conveniently extended to V -Rel, and a class of
bimodules (or distributors) Φ,

I the category (T,V )-Cat is order enriched,

I the presheaf monad P on (T,V )-Cat is KZ, as well as the
corresponding fibrewise presheaf monad,

I embeddings=P-embeddings=P̂-embeddings,

I the submonads Φ of P are well-behaved,

so that each choice of a class Φ gives rise to a pair (L,R) of a KZ
comonad L and a KZ monad R, that is, a lax factorisation system.

[Lawvere, Metric spaces, generalized logic, and closed categories, Rend. Sem. M. F. Milano 1973; TAC Rep. 2002]

[C, Hofmann, Relative injectivity as cocompleteness for a class of distributors, TAC 2008]

[C, López-Franco, Lax orthogonal factorisation systems in Topology, in preparation]
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