Hereditary Structural Completeness in Intermediate Logics

Alex Citkin

TACL, June 23, 2015

Outline

Introduction

Primitive Quasivarieties

Applications to Intermediate Logics

Introduction

G. Mints (1939-2014)

Introduction

G. Mints (1939-2014)

"If for some time I am unable to find an answer to a question, first, I go on Internet and ask the interest groups. If I am not getting an answer, I am writing to Prof. Mints, and in a couple of days I am getting the answer." S. Ghilardi TACL-2013

Introduction

A (finitary structural) consequence relation:
(R) $A \vdash A$;
(M) $\Gamma \vdash A$ yields $\Gamma \cup \Delta \vdash A$;
(T) if $\Gamma \vdash A$ and $\Delta \vdash B$ for all $B \in \Gamma$, then $\Delta \vdash A$.

Introduction

A (finitary structural) consequence relation:
(R) $A \vdash A$;
(M) $\Gamma \vdash A$ yields $\Gamma \cup \Delta \vdash A$;
(T) if $\Gamma \vdash A$ and $\Delta \vdash B$ for all $B \in \Gamma$, then $\Delta \vdash A$.
Given $\vdash, \mathrm{L}:=\{A: \vdash A\}$ is a logic defined by \vdash. A consequence relation \vdash defining a logic L is structurally complete $(\mathcal{S C})$ if every proper extension of \vdash defines a proper extension of L. A logic L is structurally complete if a consequence relation defined by the axioms of L and modus ponens is structurally complete.

Introduction

A (finitary structural) consequence relation:
(R) $A \vdash A$;
(M) $\Gamma \vdash A$ yields $\Gamma \cup \Delta \vdash A$;
(T) if $\Gamma \vdash A$ and $\Delta \vdash B$ for all $B \in \Gamma$, then $\Delta \vdash A$.
Given $\vdash, \mathrm{L}:=\{A: \vdash A\}$ is a logic defined by \vdash. A consequence relation \vdash defining a logic L is structurally complete $(\mathcal{S C})$ if every proper extension of \vdash defines a proper extension of L. A logic L is structurally complete if a consequence relation defined by the axioms of L and modus ponens is structurally complete.

Definition

A consequence relation \vdash is said to be hereditarily structurally complete ($\mathcal{H S C}$) if \vdash and all its extensions are structurally complete. Logic L is $\mathcal{H S C}$ if L and all its extensions are $\mathcal{S C}$.

Introduction

The notion of hereditary structural completeness ($\mathcal{H S C})$ for intermediate logics was introduced in [Citkin, 1978], where the criterion of $\mathcal{H S C}$ for intermediate logics had been proven. In [Rybakov, 1995] V.V. Rybakov has established a similar criterion for normal extensions of K4.

More recently, the hereditarily structurally complete consequence relations have been studied by J. S. Olson, J. G. Raftery and C. J. van Alten, in [Olson et al., 2008], and by P. Cintula and G. Metcalfe in [Cintula and Metcalfe, 2009], G. Metcalfe in [Metcalfe, 2013].
K. Słomczyńska studied the hereditarily structurally complete Fregean logics in [Słomczyńska, 2012b, Słomczyńska, 2012a]

Introduction

The notion of hereditary structural completeness ($\mathcal{H S C})$ for intermediate logics was introduced in [Citkin, 1978], where the criterion of $\mathcal{H S C}$ for intermediate logics had been proven. In [Rybakov, 1995] V.V. Rybakov has established a similar criterion for normal extensions of K4.

More recently, the hereditarily structurally complete consequence relations have been studied by J. S. Olson, J. G. Raftery and C. J. van Alten, in [Olson et al., 2008], and by P. Cintula and G. Metcalfe in [Cintula and Metcalfe, 2009], G. Metcalfe in [Metcalfe, 2013].
K. Słomczyńska studied the hereditarily structurally complete Fregean logics in [Słomczyńska, 2012b, Słomczyńska, 2012a]
In this presentation, we will focus on $\mathcal{H S C}$ consequence relations in intermediate logics.

Introduction

The hereditary structural completeness has also another meaning. Let L be a logic. A rule r is said to be admissible for L if L is closed under r. A set of rules R admissible for L is called a basis of admissible rules if any rule admissible for L is derivable from R.

Introduction

The hereditary structural completeness has also another meaning. Let L be a logic. A rule r is said to be admissible for L if L is closed under r. A set of rules R admissible for L is called a basis of admissible rules if any rule admissible for L is derivable from R.
Given a logic L, by L° we denote its structural completion (or admissible closure [Rybakov, 1997]): the greatest consequence relation having L as a set of theorems (that is, the consequence relation induced by all rules admissible for L).

Introduction

The hereditary structural completeness has also another meaning. Let L be a logic. A rule r is said to be admissible for L if L is closed under r. A set of rules R admissible for L is called a basis of admissible rules if any rule admissible for L is derivable from R.
Given a logic L, by L° we denote its structural completion (or admissible closure [Rybakov, 1997]): the greatest consequence relation having L as a set of theorems (that is, the consequence relation induced by all rules admissible for L).

Theorem

Let L be a logic and R be a basis of rules admissible for L . The structural completion L° is $\mathcal{H S C}$ if and only if the rules R form a basis of admissible rules for every extension of L , for which all rules from R are admissible.

Introduction

The properties of classes of $\mathcal{H S C}$ logics and $\mathcal{H S C}$ consequence relations are quite different.
Let \mathscr{L} be a class of all intermediate $\mathcal{H S C}$ logics, and \mathscr{R} be a class of all intermediate $\mathcal{H S C}$ consequence relations.

	Property	\mathscr{L}	\mathscr{R}
1	Has a smallest element	Yes	No
2	Is countable	Yes	No
3	All members are f. axiomatizable	Yes	No
4	All members are locally tabular	Yes	No (may not have the fmp)

The Case of Intermediate Logics

Theorem ([lemhoff, 2001])
The Visser rules

$$
V_{n}:=\left(A^{(n)} \rightarrow\left(A_{n+1} \vee A_{n+1}\right)\right) \vee C / \vee_{j=1}^{n+2}\left(A^{n} \rightarrow A_{j}\right) \vee C,
$$

where $A^{(n)}=\wedge_{i=1}^{n}\left(A_{i} \rightarrow B_{i}\right)$, form a basis of rules admissible for Int.

The Case of Intermediate Logics

Theorem ([lemhoff, 2001])
The Visser rules

$$
V_{n}:=\left(A^{(n)} \rightarrow\left(A_{n+1} \vee A_{n+1}\right)\right) \vee C / \vee_{j=1}^{n+2}\left(A^{n} \rightarrow A_{j}\right) \vee C,
$$

where $A^{(n)}=\wedge_{i=1}^{n}\left(A_{i} \rightarrow B_{i}\right)$, form a basis of rules admissible for Int.

Theorem ([lemhoff, 2005])
The Visser rules form a basis of admissible rules of every intermediate logic for which they are admissible.

The Case of Intermediate Logics

Theorem ([lemhoff, 2001])
The Visser rules

$$
V_{n}:=\left(A^{(n)} \rightarrow\left(A_{n+1} \vee A_{n+1}\right)\right) \vee C / \vee_{j=1}^{n+2}\left(A^{n} \rightarrow A_{j}\right) \vee C,
$$

where $A^{(n)}=\wedge_{i=1}^{n}\left(A_{i} \rightarrow B_{i}\right)$, form a basis of rules admissible for Int.

Theorem ([lemhoff, 2005])
The Visser rules form a basis of admissible rules of every intermediate logic for which they are admissible.

Corollary
Int ${ }^{\circ}$ is hereditarily structurally complete.

Properties of \mathscr{R}

1. Int $^{\circ}$ is minimal in \mathscr{R}. Logic L_{9} (of single-generated 9-element Heyting algebra) satisfies the $\mathcal{H S C}$-criterion. But Visser rules are not admissible for L_{9}. Hence, $\mathbf{I n t}^{\circ}$ and L_{9}° are incomparable and, therefore, \mathscr{R} does not have the smallest element (so, \mathscr{R} is not a lattice).

Properties of \mathscr{R}

1. Int $^{\circ}$ is minimal in \mathscr{R}. Logic L_{9} (of single-generated 9-element Heyting algebra) satisfies the $\mathcal{H S C}$-criterion. But Visser rules are not admissible for L_{9}. Hence, $\mathbf{I n t}^{\circ}$ and L_{9}° are incomparable and, therefore, \mathscr{R} does not have the smallest element (so, \mathscr{R} is not a lattice).
2. There are continuum many intermediate logics whose structural completion extends $\mathbf{I n t}^{\circ}$ (follows from [Rybakov, 1993])

Properties of \mathscr{R}

1. Int $^{\circ}$ is minimal in \mathscr{R}. Logic L_{9} (of single-generated 9-element Heyting algebra) satisfies the $\mathcal{H S C}$-criterion. But Visser rules are not admissible for L_{9}. Hence, Int $^{\circ}$ and L_{9}° are incomparable and, therefore, \mathscr{R} does not have the smallest element (so, \mathscr{R} is not a lattice).
2. There are continuum many intermediate logics whose structural completion extends $\mathbf{I n t}^{\circ}$ (follows from [Rybakov, 1993])
3. There are $\mathcal{H S C}$ structural completions that are not finitely aziomatizable. In particular, $\mathbf{I n t}^{\circ}$ is not finitely axiomatizable (e.g. [Rybakov, 1985])

Properties of \mathscr{R}

1. Int $^{\circ}$ is minimal in \mathscr{R}. Logic L_{9} (of single-generated 9-element Heyting algebra) satisfies the $\mathcal{H S C}$-criterion. But Visser rules are not admissible for L_{9}. Hence, Int $^{\circ}$ and L_{9}° are incomparable and, therefore, \mathscr{R} does not have the smallest element (so, \mathscr{R} is not a lattice).
2. There are continuum many intermediate logics whose structural completion extends $\mathbf{I n t}^{\circ}$ (follows from [Rybakov, 1993])
3. There are $\mathcal{H S C}$ structural completions that are not finitely aziomatizable. In particular, $\mathbf{I n t}^{\circ}$ is not finitely axiomatizable (e.g. [Rybakov, 1985])
4. Int ${ }^{\circ}$ does not have the fmp: from [Citkin, 1977] it follows that formula

$$
((p \rightarrow q) \rightarrow(p \vee r)) \rightarrow(((p \rightarrow q) \rightarrow p) \vee((p \rightarrow q) \rightarrow r))
$$

is valid in all finite models of $\boldsymbol{I n t}^{\circ}$, but is not valid in Int.

Properties of \mathscr{R}

The above formula is obtained from the following admissible for Int not derivable rule introduced by Mints [Mints, 1976]:

$$
(A \rightarrow B) \rightarrow(A \vee C) /((A \rightarrow B) \rightarrow A) \vee((A \rightarrow B) \rightarrow C)
$$

(Mints Rule)

Properties of \mathscr{R}

The above formula is obtained from the following admissible for Int not derivable rule introduced by Mints [Mints, 1976]:

$$
(A \rightarrow B) \rightarrow(A \vee C) /((A \rightarrow B) \rightarrow A) \vee((A \rightarrow B) \rightarrow C)
$$

(Mints Rule)
An algebraic meaning of the Mints rule is as follows:

Theorem ([Citkin, 1977])

Let A be a finite s.i. Heyting algebra. Then the following is equivalent

1. A is projective;
2. A is embedded into free Heyting algebra F_{ω};
3. The Mints rule is valid in A.

Properties of \mathscr{R}

The above formula is obtained from the following admissible for Int not derivable rule introduced by Mints [Mints, 1976]:

$$
(A \rightarrow B) \rightarrow(A \vee C) /((A \rightarrow B) \rightarrow A) \vee((A \rightarrow B) \rightarrow C)
$$

(Mints Rule)
An algebraic meaning of the Mints rule is as follows:

Theorem ([Citkin, 1977])

Let A be a finite s.i. Heyting algebra. Then the following is equivalent

1. A is projective;
2. A is embedded into free Heyting algebra F_{ω};
3. The Mints rule is valid in A.

Since every finite subalgebra of F_{ω} is s.i., every finite subalgebra of F_{ω} is projective.

Properties of \mathscr{R}

Due to Int enjoying the Disjunction Property, the following rule (a generalized Mints rule) is also admissible and not derivable in Int:

$$
\begin{array}{r}
((A \rightarrow B) \rightarrow(A \vee C)) \vee D /((A \rightarrow B) \rightarrow A) \vee((A \rightarrow B) \rightarrow \underset{(G M R)}{C) \vee D}
\end{array}
$$

Properties of \mathscr{R}

Due to Int enjoying the Disjunction Property, the following rule (a generalized Mints rule) is also admissible and not derivable in Int:

$$
((A \rightarrow B) \rightarrow(A \vee C)) \vee D /((A \rightarrow B) \rightarrow A) \vee((A \rightarrow B) \rightarrow \underset{(G M R)}{C) \vee D}
$$

Note: Generalized Mints rule is interderivable in Int with 1-st Visser rule.

Theorem
Let A be a finite Heyting algebra. Then the following is equivalent

1. $\mathbf{A} \in \mathbf{Q}\left(\mathrm{F}_{\omega}\right)$;
2. A is a subdirect product of projective algebras;
3. Generalized Mints rule is valid in A.

Properties of \mathscr{R}

Theorem
If an intermediate logic L admits the generalized Mints rule (or the 1 -st Visser rule) and L° enjoys the fmp, then L is hereditarily structurally complete.

Properties of \mathscr{R}

Theorem
If an intermediate logic L admits the generalized Mints rule (or the 1 -st Visser rule) and L° enjoys the fmp, then L is hereditarily structurally complete.

Recall that there are just countably many $\mathcal{H S C}$ intermediate logics, and there are continuum many extensions of $\mathbf{I n t}^{\circ}$.

Corollary
There are continuum many $\mathcal{H S C}$ consequence relations the structural completions of which do not enjoy the fmp.

Outline

Introduction

Primitive Quasivarieties

Applications to Intermediate Logics

Primitive Quasivarieties

A propositional logic L is algebraizable (in a sense of Blok and Pigozzi), if with L we can associate a variety of algebras. Accordingly, we can associate a quasivariety with any given algebraizable consequence relation. And a consequence relation is $\mathcal{H S C}$ if and only if the corresponding quasivariety \mathbf{Q} is primitive, that is, any proper subquasivariety of \mathbf{Q} can be defined over \mathbf{Q} by identities.

Primitive Quasivarieties

A propositional logic L is algebraizable (in a sense of Blok and Pigozzi), if with L we can associate a variety of algebras. Accordingly, we can associate a quasivariety with any given algebraizable consequence relation. And a consequence relation is $\mathcal{H S C}$ if and only if the corresponding quasivariety \mathbf{Q} is primitive, that is, any proper subquasivariety of \mathbf{Q} can be defined over \mathbf{Q} by identities.

Theorem ([Gorbunov, 1976])
Any subquasivariety of a primitive quasivariety is primitive. A class of subquasivarieties of a given primitive quasivariety forms a distributive lattice.

Corollary

Every extension of a given $\mathcal{H S C}$ consequence relation is $\mathcal{H S C}$.

Weakly Q-Projective Algebras

Definition

Let \mathbf{Q} be a quasivariety, $\mathrm{A} \in \mathbf{Q}$ be an algebra and θ be a congruence of \mathbf{A}. Then θ is said to be a \mathbf{Q}-congruence if $\mathbf{A} / \theta \in \mathbf{Q}$. And algebra A is said to be \mathbf{Q}-irreducible if the meet of all distinct from identity \mathbf{Q}-congruences of A is distinct from identity congruence.

Weakly Q-Projective Algebras

Definition
Let \mathbf{Q} be a quasivariety, $\mathbf{A} \in \mathbf{Q}$ be an algebra and θ be a congruence of \mathbf{A}. Then θ is said to be a \mathbf{Q}-congruence if $\mathbf{A} / \theta \in \mathbf{Q}$. And algebra A is said to be \mathbf{Q}-irreducible if the meet of all distinct from identity \mathbf{Q}-congruences of A is distinct from identity congruence.

Definition

Algebra $\mathbf{A} \in \mathbf{Q}$ is weakly \mathbf{Q}-projective, if A is embedded into every of its homomorphic pre-images from \mathbf{Q}, that is, $A \in \mathbf{H B}$ entails $A \in \mathbf{S B}$ for every $B \in \mathbf{Q}$.

Weakly Q-Projective Algebras

Definition

Let \mathbf{Q} be a quasivariety, $\mathbf{A} \in \mathbf{Q}$ be an algebra and θ be a congruence of \mathbf{A}. Then θ is said to be a \mathbf{Q}-congruence if $\mathbf{A} / \theta \in \mathbf{Q}$. And algebra \mathbf{A} is said to be \mathbf{Q}-irreducible if the meet of all distinct from identity \mathbf{Q}-congruences of A is distinct from identity congruence.

Definition

Algebra $\mathbf{A} \in \mathbf{Q}$ is weakly \mathbf{Q}-projective, if A is embedded into every of its homomorphic pre-images from \mathbf{Q}, that is, $A \in \mathbf{H B}$ entails $A \in \mathbf{S B}$ for every $B \in \mathbf{Q}$.

Proposition

Every countable weakly Q-projective algebra is embedded into a free algebra of quasivariety \mathbf{Q} of at most countable rank.

Weakly Q-Projective Algebras

The following theorem gives a simple sufficient condition of primitiveness.

Theorem ([Gorbunov, 1976])
If all finitely generated \mathbf{Q}-irreducible algebras of a quasivariety \mathbf{Q} are weakly \mathbf{Q}-projective, then \mathbf{Q} is primitive.

Weakly Q-Projective Algebras

The following theorem gives a simple sufficient condition of primitiveness.

Theorem ([Gorbunov, 1976])
If all finitely generated \mathbf{Q}-irreducible algebras of a quasivariety \mathbf{Q} are weakly \mathbf{Q}-projective, then \mathbf{Q} is primitive.

In case of the locally finite varieties, the sufficient condition is also necessary.

Theorem ([Gorbunov, 1976])
A locally finite quasivariety \mathbf{Q} is primitive if and only if every of its finite \mathbf{Q}-irreducible algebras is weakly \mathbf{Q}-projective.

Totally Non-Projective Algebras

An algebra A is totally non-projective if A is not weakly Q-projective in the quasivariety it generates.

Totally Non-Projective Algebras

An algebra A is totally non-projective if A is not weakly Q-projective in the quasivariety it generates.

Proposition
Every quasivariety containing a totally non-projective algebra is not primitive.

Totally Non-Projective Algebras

An algebra A is totally non-projective if A is not weakly Q-projective in the quasivariety it generates.

Proposition

Every quasivariety containing a totally non-projective algebra is not primitive.

For varieties, the above necessary condition is also sufficient.
Theorem
A variety of Heyting algebras is primitive if and only if it does not contain any totally non-projective algebras.

Totally Non-Projective Algebras

Fig. 1
$Z_{5} \in \mathbf{Q} Z_{7}$, for $Z_{5} \in \mathbf{S} Z_{7}$.

Totally Non-Projective Algebras

Fig. 1
$Z_{5} \in \mathbf{Q Z}_{7}$, for $Z_{5} \in \mathbf{S Z}_{7}$.
$Z_{10} \in \mathbf{Q} \mathbf{Z}_{7}$, for Z_{10} is a subdirect product of Z_{7} and Z_{5}.

Totally Non-Projective Algebras

Fig. 1
$Z_{5} \in \mathbf{Q Z}_{7}$, for $Z_{5} \in \mathbf{S} Z_{7}$.
$Z_{10} \in \mathbf{Q Z}_{7}$, for Z_{10} is a subdirect product of Z_{7} and Z_{5}.
Z_{7} is a homomorphic image of Z_{10}, but $Z_{7} \notin \mathbf{S} Z_{10}$, hence Z_{7} is not weakly $\mathbf{Q} \mathbf{Z}_{7}$-projective. Thus, \mathbf{Z}_{7} is totally non-projective.

Totally Non-Projective Algebras

Fig. 1
$Z_{5} \in \mathbf{Q Z}_{7}$, for $Z_{5} \in \mathbf{S Z}_{7}$.
$Z_{10} \in \mathbf{Q} Z_{7}$, for Z_{10} is a subdirect product of Z_{7} and Z_{5}.
Z_{7} is a homomorphic image of Z_{10}, but $Z_{7} \notin \mathbf{S} Z_{10}$, hence Z_{7} is not weakly $\mathbf{Q} \mathbf{Z}_{7}$-projective. Thus, Z_{7} is totally non-projective.

By a similar argument, one can show that $Z_{2} \oplus Z_{7}$ is totally non-projective too.

Weakly Q-Projective Algebras

If \mathbf{Q} is a quasivariety, by $\mathbf{Q}^{n}, n=1,2, \ldots$ we denote a subquasivariety of \mathbf{Q} generated by $\mathrm{F}_{\mathbf{Q}}(n)$, and by \mathbf{Q}^{0} we denote a subquasivariety of \mathbf{Q} generated by $\boldsymbol{F}_{\mathbf{Q}}(\omega)$.

Weakly Q-Projective Algebras

If \mathbf{Q} is a quasivariety, by $\mathbf{Q}^{n}, n=1,2, \ldots$ we denote a subquasivariety of \mathbf{Q} generated by $\mathrm{F}_{\mathbf{Q}}(n)$, and by \mathbf{Q}^{0} we denote a subquasivariety of \mathbf{Q} generated by $\mathbf{F}_{\mathbf{Q}}(\omega)$.
Note, that $\mathbf{Q}^{0}=\cup_{n=1}^{\infty} \mathbf{Q}_{i}$.
Proposition
A quasivariety \mathbf{Q}^{0} is primitive if and only if \mathbf{Q}^{n} is primitive for every $n=1,2, \ldots$.

Weakly Q-Projective Algebras

If \mathbf{Q} is a quasivariety, by $\mathbf{Q}^{n}, n=1,2, \ldots$ we denote a subquasivariety of \mathbf{Q} generated by $\mathrm{F}_{\mathbf{Q}}(n)$, and by \mathbf{Q}^{0} we denote a subquasivariety of \mathbf{Q} generated by $\mathbf{F}_{\mathbf{Q}}(\omega)$.
Note, that $\mathbf{Q}^{0}=\cup_{n=1}^{\infty} \mathbf{Q}_{i}$.
Proposition
A quasivariety \mathbf{Q}^{0} is primitive if and only if \mathbf{Q}^{n} is primitive for every $n=1,2, \ldots$.

First, we will give a criterion of primitiveness of \mathbf{Q}^{1}.

Primitiveness of $\mathbf{Q}\left(Z_{n}\right)$

Denote by Z_{n} the single-generated Heyting algebra of cardinality n, and by Z - the countable single-generated algebra (the Rieger-Nishimura ladder).

Theorem
(a) Quasivariety $\mathbf{Q}\left(Z_{2 k+1}\right)$ is primitive if and only if $k<5$;
(b) Quasivariety $\mathbf{Q}\left(\mathrm{Z}_{2 k}\right)$ is primitive if and only if $k<8$.

Primitiveness of $\mathbf{Q}\left(Z_{n}\right)$

Denote by Z_{n} the single-generated Heyting algebra of cardinality n, and by Z - the countable single-generated algebra (the Rieger-Nishimura ladder).

Theorem
(a) Quasivariety $\mathbf{Q}\left(Z_{2 k+1}\right)$ is primitive if and only if $k<5$;
(b) Quasivariety $\mathbf{Q}\left(Z_{2 k}\right)$ is primitive if and only if $k<8$.

For every $k \geq 5$ the quasivariety $\mathbf{Q}\left(Z_{2 k+1}\right)$ is not primitive, for $Z_{2} \oplus Z_{7}$ is embedded into $Z_{2 k+1}$ and $Z_{2} \oplus Z_{7}$ is totally non-projective.

Primitiveness of $\mathbf{Q}\left(Z_{n}\right)$

For every $k \geq 8$ the quasivariety $\mathbf{Q}\left(Z_{2 k}\right)$ is not primitive, for algebra $\mathbf{Z}_{2} \oplus \mathbf{Z}_{10}$ is $\mathbf{Q}\left(Z_{2 k}\right)$-irreducible, although NOT weakly $\mathbf{Q}\left(Z_{2 k}\right)$-projective: $Z_{2} \oplus Z_{10} \in \mathbf{H}\left(Z_{2} \oplus Z_{12}\right)$, but $Z_{2} \oplus Z_{10} \notin \mathbf{S}\left(Z_{2} \oplus Z_{12}\right)$.

$Z_{2} \oplus Z_{12}$

Fig. 2

Outline

Introduction

Primitive Quasivarieties

Applications to Intermediate Logics

Structural completions of Extensions of $\mathbf{I n t}^{\circ}$

Since $\mathbf{I n t}^{\circ}$ is $\mathcal{H S C}$, and every extension of an $\mathcal{H S C}$ consequence relation is $\mathcal{H S C}$, we have

Theorem

The structural completions of the following logics are hereditarily structurally complete:
(a) G_{n} - Gödel logics
(b) KC - Yankov logic
(c) LC - Gödel - Dummett logic
(d) P - logic of projective algebras
(e) RN - logic of Rieger-Nishimura ladder
(f) Sm - Smetanich logic.

Structural completions of BD_{n}

Theorem
Let L be a locally tabular intermediate logic. If Z_{16} is a model of L , then L° is not $\mathcal{H S C}$.

Structural completions of BD_{n}

Theorem

Let L be a locally tabular intermediate logic. If Z_{16} is a model of L , then L° is not $\mathcal{H S C}$.

By $\mathrm{BD}_{n}, n=1,2,3, \ldots$ we denote the logic of frames of depth at most $n+1$ and by $\mathbf{B D}_{n}$ - a corresponding variety of Heyting algebras.

Structural completions of BD_{n}

Theorem

Let L be a locally tabular intermediate logic. If Z_{16} is a model of L , then L° is not $\mathcal{H S C}$.

By $\mathrm{BD}_{n}, n=1,2,3, \ldots$ we denote the logic of frames of depth at most $n+1$ and by $\mathbf{B D}_{n}$ - a corresponding variety of Heyting algebras.
Since $Z_{4 n}$ is a free cyclic algebra of $\mathbf{B D}_{n}$, the following holds.
Theorem
Structural completions of BD_{n} for all $n>5$ are not $\mathcal{H S C}$.

Structural completions in intermediate logics

L	Description	L is $\mathcal{H S C}$	L° is $\mathcal{H S C}$
Int	(intuitionistic logic)	No	Yes
BD_{n}	(depth at most n)	No for $n>1$	No for $n>4$
D_{n}	(Gabbay - de Jongh)	No for $n>2$	$?$
G_{n}	(Gödel logics)	Yes	Yes
KC	(Yankov logic)	No	Yes
KP	(Kreisel-Putnam logic)	No	No (Jeřábek)
LC	(Gödel - Dummett logic)	Yes	Yes
M_{n}	(at most n maximal nodes)	No for $n>2$	$?$
ML	(Medvedev logic)	No	No
P	(logic of projective algebras) $)$	Yes	Yes
RN	(logic of Z)	No	Yes
$R N_{n}$	(logic of Z_{n})	No for $n=7$	No for $n>11$
		and $n>9$	
$S m$	(Smetanich logic)	Yes	Yes

Conclusion

G. Mints (1939-2014)

If we have a question that Prof. S.Ghilardi and the Internet interest groups cannot answer, who do we ask?...

Thanks

Thank you!

雷 Cintula，P．and Metcalfe，G．（2009）．
Structural completeness in fuzzy logics．
Notre Dame J．Form．Log．，50（2）：153－182．
－Citkin，A．（1977）．
On admissible rules of intuitionistic propositional logic．
Math．USSR，Sb．，31：279－288．
（A．Tsitkin）．
國 Citkin，A．I．（1978）．
Structurally complete superintuitionistic logics．
Dokl．Akad．Nauk SSSR，241（1）：40－43．
國 Gorbunov，V．A．（1976）．
Lattices of quasivarieties．
Algebra i Logika，15（4）：436－457，487－488．
围 lemhoff，R．（2001）．
On the admissible rules of intuitionistic propositional logic．
J．Symbolic Logic，66（1）：281－294．

目 lemhoff，R．（2005）．
Intermediate logics and Visser＇s rules．
Notre Dame J．Formal Logic，46（1）：65－81．
國 Metcalfe，G．（2013）．
An avron rule for fragments of r－mingle．
Journal of Logic and Computation，page ext031．
目 Mints，G．（1976）．
Derivability of admissible rules．
J．Sov．Math．，6：417－421．
Translated from Mints，G．E．Derivability of admissible rules．
（Russian）Investigations in constructive mathematics and mathematical logic，V．Zap．Nauchn．Sem．Leningrad．Otdel．
Mat．Inst．Steklov．（LOMI） 32 （1972），pp．85－89．
囲 Olson，J．S．，Raftery，J．G．，and van Alten，C．J．（2008）．
Structural completeness in substructural logics．
Log．J．IGPL，16（5）：455－495．
囯 Rybakov，V．V．（1985）．

Bases of admissible rules of the modal system Grz and intuitionistic logic.
Mat. Sb. (N.S.), 128(170)(3):321-338, 446.
目 Rybakov, V. V. (1993).
Intermediate logics preserving admissible inference rules of Heyting calculus.
Math. Logic Quart., 39(3):403-415.
R Rybakov, V. V. (1995).
Hereditarily structurally complete modal logics.
J. Symbolic Logic, 60(1):266-288.

目 Rybakov, V. V. (1997).
Admissibility of logical inference rules, volume 136 of Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Co., Amsterdam.

- Słomczyńska, K. (2012a).

Algebraic semantics for the $(\leftrightarrow, \neg \neg)$-fragment of IPC. MLQ Math. Log. Q., 58(1-2):29-37.

Słomczyńska, K. (2012b).
Unification and projectivity in Fregean varieties.
Log. J. IGPL, 20(1):73-93.

