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Introduction

G. Mints (1939 - 2014)

”If for some time I am unable to find an answer to a question,
first, I go on Internet and ask the interest groups. If I am not
getting an answer, I am writing to Prof. Mints, and in a couple of
days I am getting the answer.” S. Ghilardi TACL-2013

Alex Citkin Introduction TACL, June 23, 2015 3 / 27



Introduction

G. Mints (1939 - 2014)

”If for some time I am unable to find an answer to a question,
first, I go on Internet and ask the interest groups. If I am not
getting an answer, I am writing to Prof. Mints, and in a couple of
days I am getting the answer.” S. Ghilardi TACL-2013

Alex Citkin Introduction TACL, June 23, 2015 3 / 27



Introduction

A (finitary structural) consequence relation:

(R) A ` A;

(M) Γ ` A yields Γ ∪∆ ` A;

(T) if Γ ` A and ∆ ` B for all B ∈ Γ, then ∆ ` A.

Given `, L := {A : ` A} is a logic defined by `. A consequence
relation ` defining a logic L is structurally complete (SC) if every
proper extension of ` defines a proper extension of L. A logic L is
structurally complete if a consequence relation defined by the
axioms of L and modus ponens is structurally complete.

Definition

A consequence relation ` is said to be hereditarily structurally
complete (HSC) if ` and all its extensions are structurally
complete. Logic L is HSC if L and all its extensions are SC.
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Introduction

The notion of hereditary structural completeness (HSC) for
intermediate logics was introduced in [Citkin, 1978], where the
criterion of HSC for intermediate logics had been proven.
In [Rybakov, 1995] V.V. Rybakov has established a similar criterion
for normal extensions of K4.

More recently, the hereditarily structurally complete consequence
relations have been studied by J. S. Olson, J. G. Raftery and C. J.
van Alten, in [Olson et al., 2008], and by P. Cintula and G.
Metcalfe in [Cintula and Metcalfe, 2009], G. Metcalfe in
[Metcalfe, 2013].

K. S lomczyńska studied the hereditarily structurally complete
Fregean logics in [S lomczyńska, 2012b, S lomczyńska, 2012a]

In this presentation, we will focus on HSC consequence relations in
intermediate logics.
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Introduction

The hereditary structural completeness has also another meaning.

Let L be a logic. A rule r is said to be admissible for L if L is
closed under r. A set of rules R admissible for L is called a basis of
admissible rules if any rule admissible for L is derivable from R.

Given a logic L, by L◦ we denote its structural completion (or
admissible closure [Rybakov, 1997]): the greatest consequence
relation having L as a set of theorems (that is, the consequence
relation induced by all rules admissible for L).

Theorem

Let L be a logic and R be a basis of rules admissible for L. The
structural completion L◦ is HSC if and only if the rules R form a
basis of admissible rules for every extension of L, for which all rules
from R are admissible.
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Introduction

The properties of classes of HSC logics and HSC consequence
relations are quite different.

Let L be a class of all intermediate HSC logics, and R be a class
of all intermediate HSC consequence relations.

Property L R
1 Has a smallest element Yes No
2 Is countable Yes No
3 All members are f. axiomatizable Yes No
4 All members are locally tabular Yes No (may not have

the fmp)

Alex Citkin Introduction TACL, June 23, 2015 7 / 27



The Case of Intermediate Logics

Theorem ([Iemhoff, 2001])

The Visser rules

Vn := (A(n) → (An+1 ∨ An+1)) ∨ C/ ∨n+2
j=1 (An → Aj) ∨ C ,

where A(n) = ∧ni=1(Ai → Bi ), form a basis of rules admissible for
Int.

Theorem ([Iemhoff, 2005])

The Visser rules form a basis of admissible rules of every
intermediate logic for which they are admissible.

Corollary

Int◦ is hereditarily structurally complete.
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Properties of R

1. Int◦ is minimal in R. Logic L9 (of single-generated 9-element
Heyting algebra) satisfies the HSC-criterion. But Visser rules are
not admissible for L9. Hence, Int◦ and L◦9 are incomparable and,
therefore, R does not have the smallest element (so, R is not a
lattice).

2. There are continuum many intermediate logics whose structural
completion extends Int◦ (follows from [Rybakov, 1993])

3. There are HSC structural completions that are not finitely
aziomatizable . In particular, Int◦ is not finitely axiomatizable (e.g.
[Rybakov, 1985])

4. Int◦ does not have the fmp: from [Citkin, 1977] it follows that
formula

((p → q)→ (p ∨ r))→ (((p → q)→ p) ∨ ((p → q)→ r))

is valid in all finite models of Int◦ , but is not valid in Int.

Alex Citkin Introduction TACL, June 23, 2015 9 / 27



Properties of R

1. Int◦ is minimal in R. Logic L9 (of single-generated 9-element
Heyting algebra) satisfies the HSC-criterion. But Visser rules are
not admissible for L9. Hence, Int◦ and L◦9 are incomparable and,
therefore, R does not have the smallest element (so, R is not a
lattice).

2. There are continuum many intermediate logics whose structural
completion extends Int◦ (follows from [Rybakov, 1993])

3. There are HSC structural completions that are not finitely
aziomatizable . In particular, Int◦ is not finitely axiomatizable (e.g.
[Rybakov, 1985])

4. Int◦ does not have the fmp: from [Citkin, 1977] it follows that
formula

((p → q)→ (p ∨ r))→ (((p → q)→ p) ∨ ((p → q)→ r))

is valid in all finite models of Int◦ , but is not valid in Int.

Alex Citkin Introduction TACL, June 23, 2015 9 / 27



Properties of R

1. Int◦ is minimal in R. Logic L9 (of single-generated 9-element
Heyting algebra) satisfies the HSC-criterion. But Visser rules are
not admissible for L9. Hence, Int◦ and L◦9 are incomparable and,
therefore, R does not have the smallest element (so, R is not a
lattice).

2. There are continuum many intermediate logics whose structural
completion extends Int◦ (follows from [Rybakov, 1993])

3. There are HSC structural completions that are not finitely
aziomatizable . In particular, Int◦ is not finitely axiomatizable (e.g.
[Rybakov, 1985])

4. Int◦ does not have the fmp: from [Citkin, 1977] it follows that
formula

((p → q)→ (p ∨ r))→ (((p → q)→ p) ∨ ((p → q)→ r))

is valid in all finite models of Int◦ , but is not valid in Int.

Alex Citkin Introduction TACL, June 23, 2015 9 / 27



Properties of R

1. Int◦ is minimal in R. Logic L9 (of single-generated 9-element
Heyting algebra) satisfies the HSC-criterion. But Visser rules are
not admissible for L9. Hence, Int◦ and L◦9 are incomparable and,
therefore, R does not have the smallest element (so, R is not a
lattice).

2. There are continuum many intermediate logics whose structural
completion extends Int◦ (follows from [Rybakov, 1993])

3. There are HSC structural completions that are not finitely
aziomatizable . In particular, Int◦ is not finitely axiomatizable (e.g.
[Rybakov, 1985])

4. Int◦ does not have the fmp: from [Citkin, 1977] it follows that
formula

((p → q)→ (p ∨ r))→ (((p → q)→ p) ∨ ((p → q)→ r))

is valid in all finite models of Int◦ , but is not valid in Int.
Alex Citkin Introduction TACL, June 23, 2015 9 / 27



Properties of R

The above formula is obtained from the following admissible for
Int not derivable rule introduced by Mints [Mints, 1976]:

(A→ B)→ (A ∨ C )/((A→ B)→ A) ∨ ((A→ B)→ C )
(Mints Rule)

An algebraic meaning of the Mints rule is as follows:

Theorem ([Citkin, 1977])

Let A be a finite s.i. Heyting algebra. Then the following is
equivalent

1. A is projective;

2. A is embedded into free Heyting algebra Fω;

3. The Mints rule is valid in A.

Since every finite subalgebra of Fω is s.i., every finite subalgebra of
Fω is projective.
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Properties of R

Due to Int enjoying the Disjunction Property, the following rule (a
generalized Mints rule) is also admissible and not derivable in Int:

((A→ B)→ (A∨C ))∨D/((A→ B)→ A)∨ ((A→ B)→ C )∨D
(GMR)

Note: Generalized Mints rule is interderivable in Int with 1-st
Visser rule.

Theorem

Let A be a finite Heyting algebra. Then the following is equivalent

1. A ∈ Q(Fω);

2. A is a subdirect product of projective algebras;

3. Generalized Mints rule is valid in A.
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Properties of R

Theorem

If an intermediate logic L admits the generalized Mints rule (or the
1-st Visser rule) and L◦ enjoys the fmp, then L is hereditarily
structurally complete.

Recall that there are just countably many HSC intermediate
logics, and there are continuum many extensions of Int◦.

Corollary

There are continuum many HSC consequence relations the
structural completions of which do not enjoy the fmp.
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Primitive Quasivarieties

A propositional logic L is algebraizable (in a sense of Blok and
Pigozzi), if with L we can associate a variety of algebras.
Accordingly, we can associate a quasivariety with any given
algebraizable consequence relation. And a consequence relation is
HSC if and only if the corresponding quasivariety Q is primitive,
that is, any proper subquasivariety of Q can be defined over Q by
identities.

Theorem ([Gorbunov, 1976])

Any subquasivariety of a primitive quasivariety is primitive. A class
of subquasivarieties of a given primitive quasivariety forms a
distributive lattice.

Corollary

Every extension of a given HSC consequence relation is HSC.
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Weakly Q-Projective Algebras

Definition

Let Q be a quasivariety, A ∈ Q be an algebra and θ be a
congruence of A. Then θ is said to be a Q-congruence if A/θ ∈ Q.
And algebra A is said to be Q-irreducible if the meet of all distinct
from identity Q-congruences of A is distinct from identity
congruence.

Definition

Algebra A ∈ Q is weakly Q-projective, if A is embedded into every
of its homomorphic pre-images from Q, that is, A ∈ HB entails
A ∈ SB for every B ∈ Q.

Proposition

Every countable weakly Q-projective algebra is embedded into a
free algebra of quasivariety Q of at most countable rank.
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Weakly Q-Projective Algebras

The following theorem gives a simple sufficient condition of
primitiveness.

Theorem ([Gorbunov, 1976])

If all finitely generated Q-irreducible algebras of a quasivariety Q
are weakly Q-projective, then Q is primitive.

In case of the locally finite varieties, the sufficient condition is also
necessary.

Theorem ([Gorbunov, 1976])

A locally finite quasivariety Q is primitive if and only if every of its
finite Q-irreducible algebras is weakly Q-projective.
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Totally Non-Projective Algebras

An algebra A is totally non-projective if A is not weakly
Q-projective in the quasivariety it generates.

Proposition

Every quasivariety containing a totally non-projective algebra is not
primitive.

For varieties, the above necessary condition is also sufficient.

Theorem

A variety of Heyting algebras is primitive if and only if it does not
contain any totally non-projective algebras.
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Totally Non-Projective Algebras
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Z7 Z5 Z10 Z2 ⊕ Z7

Fig. 1

Z5 ∈ QZ7, for Z5 ∈ SZ7.

Z10 ∈ QZ7, for Z10 is a subdirect product of Z7 and Z5.

Z7 is a homomorphic image of Z10, but Z7 /∈ SZ10, hence Z7 is not
weakly QZ7-projective. Thus, Z7 is totally non-projective.

By a similar argument, one can show that Z2 ⊕ Z7 is totally
non-projective too.
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Weakly Q-Projective Algebras

If Q is a quasivariety, by Qn, n = 1, 2, . . . we denote a
subquasivariety of Q generated by FQ(n), and by Q0 we denote a
subquasivariety of Q generated by FQ(ω).

Note, that Q0 = ∪∞n=1Qi .

Proposition

A quasivariety Q0 is primitive if and only if Qn is primitive for
every n = 1, 2, . . . .

First, we will give a criterion of primitiveness of Q1.
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Primitiveness of Q(Zn)

Denote by Zn the single-generated Heyting algebra of cardinality n,
and by Z - the countable single-generated algebra (the
Rieger-Nishimura ladder).

Theorem

(a) Quasivariety Q(Z2k+1) is primitive if and only if k < 5;

(b) Quasivariety Q(Z2k) is primitive if and only if k < 8.

For every k ≥ 5 the quasivariety Q(Z2k+1) is not primitive, for
Z2 ⊕ Z7 is embedded into Z2k+1 and Z2 ⊕ Z7 is totally
non-projective.
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Primitiveness of Q(Zn)

For every k ≥ 8 the quasivariety Q(Z2k) is not primitive, for
algebra Z2 ⊕ Z10 is Q(Z2k)-irreducible, although NOT weakly
Q(Z2k)-projective: Z2 ⊕ Z10 ∈ H(Z2 ⊕ Z12), but
Z2 ⊕ Z10 /∈ S(Z2 ⊕ Z12).

•
•
••

• •
• •
••

•
a

•
•
••

• •
• •
••

• •
•

b

•

∗

•

•

•

◦

•

•

•

◦

∗

•

•

◦

•

•

•
•
••

• •
•

•

Z2 ⊕ Z10 Z2 ⊕ Z12 Z16 Z2 ⊕ Z7

Fig. 2

Alex Citkin Primitive Quasivarieties TACL, June 23, 2015 21 / 27



Outline

Introduction

Primitive Quasivarieties

Applications to Intermediate Logics

Alex Citkin Applications to Intermediate Logics TACL, June 23, 2015 22 / 27



Structural completions of Extensions of Int◦

Since Int◦ is HSC, and every extension of an HSC consequence
relation is HSC, we have

Theorem

The structural completions of the following logics are hereditarily
structurally complete:

(a) Gn - Gödel logics

(b) KC - Yankov logic

(c) LC - Gödel - Dummett logic

(d) P - logic of projective algebras

(e) RN - logic of Rieger-Nishimura ladder

(f) Sm - Smetanich logic.
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Structural completions of BDn

Theorem

Let L be a locally tabular intermediate logic. If Z16 is a model of
L, then L◦ is not HSC.

By BDn, n = 1, 2, 3, . . . we denote the logic of frames of depth at
most n + 1 and by BDn – a corresponding variety of Heyting
algebras.

Since Z4n is a free cyclic algebra of BDn, the following holds.

Theorem

Structural completions of BDn for all n > 5 are not HSC.
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Structural completions in intermediate logics

L Description L is HSC L◦ is HSC
Int (intuitionistic logic) No Yes
BDn (depth at most n) No for n > 1 No for n > 4
Dn (Gabbay - de Jongh) No for n > 2 ?
Gn (Gödel logics) Yes Yes
KC (Yankov logic) No Yes
KP (Kreisel-Putnam logic) No No (Jěrábek)
LC (Gödel - Dummett logic) Yes Yes
Mn (at most n maximal nodes) No for n > 2 ?
ML (Medvedev logic) No No
P (logic of projective algebras) Yes Yes
RN (logic of Z) No Yes
RNn (logic of Zn) No for n = 7 No for n > 11

and n > 9
Sm (Smetanich logic) Yes Yes
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Conclusion

G. Mints (1939 - 2014)

If we have a question that Prof. S.Ghilardi and the Internet
interest groups cannot answer, who do we ask?...
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Thanks

Thank you!
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