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MTL and MTL-algebras

Syntax
@ Monoidal t-norm based logic (MTL) was introduced in [EGO1]: it is based over
connectives &, A, —, L (the first three are binary, whilst the last one is 0-ary).
@ The notion of formula is defined inductively starting from the fact that all
propositional variables and 1 are formulas.
@ MTL can be axiomatized with a Hilbert style calculus, having MP as an inference
rule.

@ An axiomatic extension of MTL is a logic obtained by adding one or more axiom
schemata to it.

Semantics
o An MTL algebra is a (A, *,=,1,14,0,1): MTL-algebras forms an
algebraic variety, and every axiomatic extension of MTL is algebraizable in the sense
of [BP89].

@ An L-algebra is an MTL-algebra satisfying all the axioms of L.
@ A totally ordered MTL-algebra is called MTL-chain.

o An MTL-algebra is called standard when its lattice reduct is ([0, 1], min, max, 0, 1):
this happens (see [EG01, BEG99]) if and only if « is a left-continuous t-norm.



First-order case

A first-order language is a countable set P of predicate symbols, containing at least
a binary one (i.e. we do not work with monadic fragments).

We overlook constant, function symbols, and we work without equality.

We have the “classical” quantifiers V, 3.

@ The notions of term (note that our terms coincide with variables), formula, closed
formula, term substitutable in a formula are defined like in the classical case; the
connectives are those of the propositional level.



First-order case - semantics

As regards to semantics, we need to restrict to L-chains: given an L-chain A, a finite
A-model is a structure M = (M, {rp}pcp), where:

@ M is a finite non-empty set.
o for each P € P of arity! n, rp : M" — A.

@ For each evaluation over variables v : Var — M, the truth value of a formula ¢
(Illlf4.) is defined inductively as follows:

o ||P(xi,.. .,x,,)Hﬂ,V =rp(v(x1),...,v(xn)).
@ The truth value commutes with the connectives of LV, i.e.
ll — wllia,v = lllliay = [,
lp&tlliay = llplliay 1],
Ll =0
o A Pl = Il 1 l[4]1,

° H(Vx)cpH“,f}LV = min{\|<p||ﬁyv, : v =, v, ie V/(y) = v(y) for all variables except for
x}

o [[(3x)ellin, = max{[|¢llm., : v/ =« v, ie V(y) = v(y) for all variables except for
x}.

Yf P has arity zero, then rp € A.



Trakhtenbrot theorem, previous results

Theorem 1 ([Tra50, Vau60, BGGO1])

Consider countable language containing only predicates, with at least a binary one, and
without equality. Then the set fTAUTS is M3-complete.
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Theorem 2 ([H4j99])

Consider countable language containing only predicates, with at least a binary one, and
without equality. If A € {[0,1]¢,[0,1]n,[0,1]:} then fTAUTY is M?-complete.




First main result

(i) For every non-trivial MTL-chain A, fTAUTZ is M9-hard. More in general, for every
class of non-trivial MTL-chains K, fTAUTE is N3-hard.

(ii) Let L be a consistent axiomatic extension of MTL. If K is a class of L-chains and
TAUT, = TAUT(K), then fTAUTY is N?-hard.

(iii) For every consistent axiomatic extension L of MTL, the set fTAUT (LY) is N?-hard.




Ingredients of the proof

Definition 4

A first-order formula is said to be Boolean if its connectives are among —, V and A.
For each n-ary predicate P, let us define:

PREDEF(P) £ Vx; .. . Yxg=(—=P(x1, ..., x2) <> ~P(x1, ..., %))

Moreover for every formula ¢, PREDEF(¢) will denote the lattice conjunction of all
formulas PREDEF (P) such that P is a predicate occurring in ¢.
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Lemma 5

| \

Let A be any non-trivial MTL-chain, K be a class of non-trivial MTL-chains, and let ¢
be a Boolean first-order closed formula. The following are equivalent.

(1) ¢ € FTAUT?.
(2) ~PREDEF(¢)V (—¢™ " — ¢ 7) € fTAUTH.
(3) ~PREDEF(¢) V (m¢™~ — ¢ ) € fTAUTY.




Trakhtenbrot theorem and first-order extensions of MTL: second main result

Theorem 6

(i) If A is any non-trivial MTL-chain and TAUT (A) is decidable, then fTAUT is in
NS. More in general, if K is any class of non-trivial MTL-chains and TAUT (K) is
decidable, then fTAUT\Hf is in M9.

(i) Let L be a consistent axiomatic extension of MTL. If L is decidable and is sound and
complete with respect to a class of L-chains K, that is, if TAUT, = TAUT (K), then
fTAUTY is in 9.

(iii) For every decidable axiomatic extension L of MTL, the set fTAUT(LY) is in MJ.




A translation from first-order to propositional formulas

Let N* £ N\ {0}. For every n € N*, with £V we denote the language of MTLY
expanded with the constants c, ..., c,. The set of L"V formulas will be called FORM,,.

Definition 7

Let ¢, : FORM, — N be a computable map that encodes a first-order formulas into
natural numbers. Since we are working with a countable language, this can be done
without any problem.

For n € NT, we define by induction an interpretation ;; from the closed formulas of L,
into propositional formulas of MTL as follows.

o If ¢ is atomic, say, ¢ = P(as,...,ak), with ai,...,ax among ci, ..., cn, then
n = Xco(P(ar,...,an))- N other terms, every closed atomic formula is mapped into a
propositional variable.

@ ; commutes with all logical connectives.
o (Vx¢(x))n = AiLy(8(ci))n-
° (Ixe(x))a = Viy(d(ci))a-
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Axiomatization and M9-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L
of MTL is a sufficient condition for the M$-completess of fTAUT(LY). Is it also necessary?
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If a logic L (thought of as a set of formulas closed under deduction and under
substitution) is not in NS, then fTAUT(LY) is not in M.
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If a logic L (thought of as a set of formulas closed under deduction and under
substitution) is not in NS, then fTAUT(LY) is not in M.

We have a negative answer to the question if we expand the language of L with
constants, and L is not recursively axiomatizable.



Axiomatic extensions of MTL with Baaz operator A

@ The Baaz operator A was firstly introduced in [Baa96].

@ For every axiomatic extension L of MTL, we denote with La its expansion with an
operator A satisfying the following axioms:

(A1) A(p) V —A(g).
(A2) A(p V) = ((Alp) V A(Y))).
(A3) A(p) = ¢
(A4) Ap) = A(A(p))-
(A5) Ap = ¥) = (Ap) = A(Y)),
and the following additional inference rule: A%D.
@ An MTLa-chain is an MTL-chain expanded with an operation § such that, for every

element x,

50) = {1 ifx =1,

0 otherwise.



Last result

Theorem 10

(i) If A is any non-trivial MTLa-chain and TAUT (A) is decidable, then fTAUT' is
M?-complete. More in general, if K is any class of non-trival MTLa-chains and
TAUT (K) is decidable, then fTAUTY is M3-complete.

(ii) Let L be a consistent axiomatic extension of MTLa. If L is decidable and is sound
and complete with respect to a class of L-chains K, that is, if TAUT, = TAUT (K),
then fTAUTY is M{-complete.

(iii) For every consistent and decidable axiomatic extension L of MTLa, the set
fTAUT (LV) is M3-complete.




(i) Let K be a class of non-trivial MTLa-chains. For every Boolean formula ¢, if ¢2
denotes the formula obtained by replacing each atomic subformula v by A(7), then
an easy check shows that ¢ € fTAUTZ iff ¢* € fTAUTY. Hence fTAUTY is
M9-hard.

Finally, imitating the proof of Theorem 6, we can prove that fTAUTX is in M9,

(ii) Immediate from (i).

(iii) Immediate from (ii).
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APPENDIX




MT L-algebras

An MTL algebra is an algebra (A, x,=,M,L,0,1). such that:
Q (A,M,U,0,1) is a bounded lattice with minimum 0 and maximum 1.
@ (A, #,1) is a commutative monoid.
@ (x,=) forms a residuated pair. zxx <y iff z<x =y for all x,y,z € A.
@ The following axiom holds, for all x,y € A:

(Prelinearity) (x=y)u(y=x)=1
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