Trakhtenbrot theorem and first-order axiomatic extensions of MTL

Matteo Bianchi
Università degli Studi di Milano
Department of Computer Science
matteo.bianchi@unimi.it
joint work with
Franco Montagna

Outline

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π_{1}^{0}-complete).

Outline

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π_{1}^{0}-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.

Outline

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π_{1}^{0}-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.
- In this talk we extend the analysis to the first-order axiomatic extensions of MTL.

Outline

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π_{1}^{0}-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.
- In this talk we extend the analysis to the first-order axiomatic extensions of MTL.
M. Bianchi and F. Montagna. Trakhtenbrot theorem and first-order axiomatic extensions of MTL. Studia Logica, 2015. doi:10.1007/s11225-015-9614-3

MTL and MTL-algebras

Syntax

- Monoidal t-norm based logic (MTL) was introduced in [EG01]: it is based over connectives $\&, \wedge, \rightarrow, \perp$ (the first three are binary, whilst the last one is 0 -ary).
- The notion of formula is defined inductively starting from the fact that all propositional variables and \perp are formulas.
- MTL can be axiomatized with a Hilbert style calculus, having MP as an inference rule.
- An axiomatic extension of MTL is a logic obtained by adding one or more axiom schemata to it.

Semantics

- An MTL algebra is a prelinear residuated lattice $\langle A, *, \Rightarrow, \sqcap, \sqcup, 0,1\rangle$: MTL-algebras forms an algebraic variety, and every axiomatic extension of MTL is algebraizable in the sense of [BP89].
- An L-algebra is an MTL-algebra satisfying all the axioms of L.
- A totally ordered MTL-algebra is called MTL-chain.
- An MTL-algebra is called standard when its lattice reduct is $\langle[0,1]$, $\min , \max , 0,1\rangle$: this happens (see [EG01, BEG99]) if and only if $*$ is a left-continuous t-norm.

First-order case

- A first-order language is a countable set \mathbf{P} of predicate symbols, containing at least a binary one (i.e. we do not work with monadic fragments).
- We overlook constant, function symbols, and we work without equality.
- We have the "classical" quantifiers \forall, \exists.
- The notions of term (note that our terms coincide with variables), formula, closed formula, term substitutable in a formula are defined like in the classical case; the connectives are those of the propositional level.

First-order case - semantics

As regards to semantics, we need to restrict to L-chains: given an L-chain \mathcal{A}, a finite A-model is a structure $\mathbf{M}=\left\langle M,\left\{r_{P}\right\}_{P \in \mathbf{P}}\right\rangle$, where:

- M is a finite non-empty set.
- for each $P \in \mathbf{P}$ of arity ${ }^{1} n, r_{P}: M^{n} \rightarrow A$.
- For each evaluation over variables $v: \operatorname{Var} \rightarrow M$, the truth value of a formula φ $\left(\|\varphi\|_{\mathcal{M}, v}^{\mathcal{A}}\right)$ is defined inductively as follows:
- $\left\|P\left(x_{1}, \ldots, x_{n}\right)\right\|_{\mathcal{M}, v}^{\mathcal{A}}=r_{P}\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right)$.
- The truth value commutes with the connectives of $L \forall$, i.e.

$$
\begin{aligned}
\|\varphi \rightarrow \psi\|_{\mathrm{M}, v}^{\mathcal{A}} & =\|\varphi\|_{\mathrm{M}, v}^{\mathcal{A}} \Rightarrow\|\psi\|_{\mathrm{M}, v}^{\mathcal{A}} \\
\|\varphi \& \psi\|_{\mathrm{M}, v}^{\mathcal{A}} & =\|\varphi\|_{\mathrm{M}, v}^{\mathcal{A}} *\|\psi\|_{\mathrm{M}, v}^{\mathcal{A}} \\
\|\perp\|_{\mathrm{M}, v}^{\mathcal{A}} & =0 \\
\|\varphi \wedge \psi\|_{\mathrm{M}, v}^{\mathcal{A}} & =\|\varphi\|_{\mathrm{M}, v}^{\mathcal{A}} \sqcap\|\psi\|_{\mathrm{M}, v}^{\mathcal{A}}
\end{aligned}
$$

- $\|(\forall x) \varphi\|_{\mathcal{M}, v}^{\mathcal{A}}=\min \left\{\|\varphi\|_{\mathcal{M}, v^{\prime}}^{\mathcal{A}}: v^{\prime} \equiv_{x} v\right.$, i.e. $v^{\prime}(y)=v(y)$ for all variables except for $x\}$
- $\|(\exists x) \varphi\|_{\mathcal{M}, v}^{\mathcal{A}}=\max \left\{\|\varphi\|_{M, v^{\prime}}^{\mathcal{A}}: v^{\prime} \equiv_{x} v\right.$, i.e. $v^{\prime}(y)=v(y)$ for all variables except for $x\}$.

[^0]
Trakhtenbrot theorem, previous results

Theorem 1 ([Tra50, Vau60, BGG01])

Consider countable language containing only predicates, with at least a binary one, and without equality. Then the set $f T A \cup T_{\forall}^{2}$ is Π_{1}^{0}-complete.

June, 2015

Trakhtenbrot theorem, previous results

Theorem 1 ([Tra50, Vau60, BGG01])

Consider countable language containing only predicates, with at least a binary one, and without equality. Then the set $f T A U T_{\forall}^{2}$ is Π_{1}^{0}-complete.

Theorem 2 ([Háj99])

Consider countable language containing only predicates, with at least a binary one, and without equality. If $\mathcal{A} \in\left\{[0,1]_{G},[0,1]_{\Pi},[0,1]_{t}\right\}$ then $\operatorname{fTAUT}_{\forall}^{\mathcal{A}}$ is Π_{1}^{0}-complete.

June, 2015

First main result

Theorem 3

(i) For every non-trivial MTL-chain \mathcal{A}, fTAUT \mathcal{A} is Π_{1}^{0}-hard. More in general, for every class of non-trivial MTL-chains \mathbb{K}, $f T A U T_{\forall}^{\mathbb{K}}$ is Π_{1}^{0}-hard.
(ii) Let L be a consistent axiomatic extension of MTL. If \mathbb{K} is a class of L-chains and $T A U T_{L}=\operatorname{TAUT}(\mathbb{K})$, then $f T A U T_{\forall}^{\mathbb{K}}$ is Π_{1}^{0}-hard.
(iii) For every consistent axiomatic extension L of MTL, the set fTAUT(L甘) is Π_{1}^{0}-hard.

Ingredients of the proof

Definition 4

A first-order formula is said to be Boolean if its connectives are among \neg, \vee and \wedge. For each n-ary predicate P, let us define:

$$
\operatorname{PREDEF}(P) \stackrel{\text { def }}{=} \forall x_{1} \ldots \forall x_{n} \neg\left(\neg \neg P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \neg P\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Moreover for every formula $\phi, \operatorname{PREDEF}(\phi)$ will denote the lattice conjunction of all formulas $\operatorname{PREDEF}(P)$ such that P is a predicate occurring in ϕ.

Ingredients of the proof

Definition 4

A first-order formula is said to be Boolean if its connectives are among \neg, \vee and \wedge. For each n-ary predicate P, let us define:

$$
\operatorname{PREDEF}(P) \stackrel{\text { def }}{=} \forall x_{1} \ldots \forall x_{n} \neg\left(\neg \neg P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \neg P\left(x_{1}, \ldots, x_{n}\right)\right) .
$$

Moreover for every formula $\phi, \operatorname{PREDEF}(\phi)$ will denote the lattice conjunction of all formulas $\operatorname{PREDEF}(P)$ such that P is a predicate occurring in ϕ.

Lemma 5

Let \mathcal{A} be any non-trivial MTL-chain, \mathbb{K} be a class of non-trivial MTL-chains, and let ϕ be a Boolean first-order closed formula. The following are equivalent.
(1) $\phi \in f T A \cup T_{\forall}^{2}$.
(2) $\neg P R E D E F(\phi) \vee(\neg \phi\urcorner\urcorner \rightarrow \phi\urcorner\urcorner) \in \operatorname{ITAUT}_{\forall}^{\mathcal{A}}$.
(3) $\neg \operatorname{PREDEF}(\phi) \vee(\neg \phi\urcorner\urcorner \rightarrow \phi\urcorner\urcorner) \in \operatorname{ITAUT} T_{\forall}^{\mathbb{K}}$.

Trakhtenbrot theorem and first-order extensions of MTL: second main result

Theorem 6

(i) If \mathcal{A} is any non-trivial $M T L$-chain and $\operatorname{TAUT}(\mathcal{A})$ is decidable, then $f T A U T T_{\forall}^{\mathcal{A}}$ is in Π_{1}^{0}. More in general, if \mathbb{K} is any class of non-trivial MTL-chains and TAUT (\mathbb{K}) is decidable, then $\operatorname{fTAUT} T_{\forall}^{\mathbb{K}}$ is in Π_{1}^{0}.
(ii) Let L be a consistent axiomatic extension of MTL. If L is decidable and is sound and complete with respect to a class of L-chains \mathbb{K}, that is, if $\operatorname{TAUT}_{L}=\operatorname{TAUT}(\mathbb{K})$, then fTAUT $T_{\forall}^{\mathbb{K}}$ is in Π_{1}^{0}.
(iii) For every decidable axiomatic extension L of $M T L$, the set $\operatorname{fTAUT}(L \forall)$ is in Π_{1}^{0}.

A translation from first-order to propositional formulas

Let $\mathbb{N}^{+} \stackrel{\text { def }}{=} \mathbb{N} \backslash\{0\}$. For every $n \in \mathbb{N}^{+}$, with $\mathcal{L}^{n} \forall$ we denote the language of MTL \forall expanded with the constants c_{1}, \ldots, c_{n}. The set of $\mathcal{L}^{n} \forall$ formulas will be called FORM ${ }_{n}$.

Definition 7

Let $c_{n}: \operatorname{FOR}_{n} \rightarrow \mathbb{N}$ be a computable map that encodes a first-order formulas into natural numbers. Since we are working with a countable language, this can be done without any problem. For $n \in \mathbb{N}^{+}$, we define by induction an interpretation ${ }_{n}^{*}$ from the closed formulas of \mathcal{L}^{n} into propositional formulas of MTL as follows.

- If ϕ is atomic, say, $\phi=P\left(a_{1}, \ldots, a_{k}\right)$, with a_{1}, \ldots, a_{k} among c_{1}, \ldots, c_{n}, then $\phi_{n}^{*}=x_{c_{n}\left(P\left(a_{1}, \ldots, a_{n}\right)\right)}$. In other terms, every closed atomic formula is mapped into a propositional variable.
- ${ }_{n}^{*}$ commutes with all logical connectives.
- $(\forall x \phi(x))_{n}^{*}=\bigwedge_{i=1}^{n}\left(\phi\left(c_{i}\right)\right)_{n}^{*}$.
- $(\exists x \phi(x))_{n}^{*}=\bigvee_{i=1}^{n}\left(\phi\left(c_{i}\right)\right)_{n}^{*}$.

Axiomatization and Π_{1}^{0}-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L of MTL is a sufficient condition for the Π_{1}^{0}-completess of $\mathrm{fTAUT}(\mathrm{L} \forall)$. Is it also necessary?

Axiomatization and Π_{1}^{0}-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L of MTL is a sufficient condition for the Π_{1}^{0}-completess of $\mathrm{fTAUT}(\mathrm{L} \forall)$. Is it also necessary?

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.
(1) L is decidable.
(2) $\mathrm{fTAUT}(L \forall)$ is in Π_{1}^{0}.
(3) $\mathrm{fTAUT}(L \forall)$ is Π_{1}^{0}-complete.

Axiomatization and Π_{1}^{0}-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L of MTL is a sufficient condition for the Π_{1}^{0}-completess of $\mathrm{fTAUT}(\mathrm{L} \forall)$. Is it also necessary?

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.
(1) L is decidable.
(2) $\mathrm{fTAUT}(L \forall)$ is in Π_{1}^{0}.
(3) $\operatorname{fTAUT}(L \forall)$ is Π_{1}^{0}-complete.

Lemma 9

If a logic L (thought of as a set of formulas closed under deduction and under substitution) is not in Π_{1}^{0}, then $\operatorname{fTAUT}(L \forall)$ is not in Π_{1}^{0}.

Axiomatization and Π_{1}^{0}-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L of MTL is a sufficient condition for the Π_{1}^{0}-completess of $\mathrm{fTAUT}(\mathrm{L} \forall)$. Is it also necessary?

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.
(1) L is decidable.
(2) fTAUT $(\angle \forall)$ is in Π_{1}^{0}.
(3) $\operatorname{fTAUT}(L \forall)$ is Π_{1}^{0}-complete.

Lemma 9

If a logic L (thought of as a set of formulas closed under deduction and under substitution) is not in Π_{1}^{0}, then $\operatorname{fTAUT}(L \forall)$ is not in Π_{1}^{0}.

We have a negative answer to the question if we expand the language of L with constants, and L is not recursively axiomatizable.

Axiomatic extensions of MTL with Baaz operator \triangle

- The Baaz operator Δ was firstly introduced in [Baa96].
- For every axiomatic extension L of MTL, we denote with L_{Δ} its expansion with an operator Δ satisfying the following axioms:
$(\Delta 1)$
$(\Delta 2)$
$(\Delta 3)$
$(\Delta 4)$
$(\Delta 5)$
$\Delta(\varphi) \vee \neg \Delta(\varphi)$.

$$
\Delta(\varphi \vee \psi) \rightarrow((\Delta(\varphi) \vee \Delta(\psi)))
$$

$$
\Delta(\varphi) \rightarrow \varphi
$$

$$
\Delta(\varphi) \rightarrow \Delta(\Delta(\varphi))
$$

$$
\Delta(\varphi \rightarrow \psi) \rightarrow(\Delta(\varphi) \rightarrow \Delta(\psi))
$$

and the following additional inference rule: $\frac{\varphi}{\Delta \varphi}$.

- An MTL_{Δ}-chain is an MTL-chain expanded with an operation δ such that, for every element x,

$$
\delta(x)= \begin{cases}1 & \text { if } x=1 \\ 0 & \text { otherwise }\end{cases}
$$

Last result

Theorem 10

(i) If \mathcal{A} is any non-trivial $M T L_{\Delta}$-chain and $\operatorname{TAUT}(\mathcal{A})$ is decidable, then $f T A U T T_{\forall}^{\mathcal{A}}$ is Π_{1}^{0}-complete. More in general, if \mathbb{K} is any class of non-trival $M T L_{\Delta}$-chains and TAUT (\mathbb{K}) is decidable, then $f T A U T_{\forall}^{\mathbb{K}}$ is Π_{1}^{0}-complete.
(ii) Let L be a consistent axiomatic extension of $M T L_{\Delta}$. If L is decidable and is sound and complete with respect to a class of L-chains \mathbb{K}, that is, if $\operatorname{TAUT}_{L}=\operatorname{TAUT}(\mathbb{K})$, then fTAUT $T_{\forall}^{\mathbb{K}}$ is Π_{1}^{0}-complete.
(iii) For every consistent and decidable axiomatic extension L of $M T L_{\Delta}$, the set fTAUT $(L \forall)$ is Π_{1}^{0}-complete.

Proof

(i) Let \mathbb{K} be a class of non-trivial MTL_{Δ}-chains. For every Boolean formula ϕ, if ϕ^{Δ} denotes the formula obtained by replacing each atomic subformula γ by $\Delta(\gamma)$, then an easy check shows that $\phi \in f T A U T_{\forall}^{2}$ iff $\phi^{\Delta} \in f T A U T_{\forall}^{\mathbb{K}}$. Hence $f T A U T_{\forall}^{\mathbb{K}}$ is Π_{1}^{0}-hard.
Finally, imitating the proof of Theorem 6 , we can prove that $f T A U T_{\forall}^{\mathbb{K}}$ is in Π_{1}^{0}.
(ii) Immediate from (i).
(iii) Immediate from (ii).

Bibliography I

電
M．Baaz．Infinite－valued Gödel logics with 0－1－projections and relativizations．In Gödel＇96．Logical foundations of mathematics，computer science and physics－Kurt Gödel＇s legacy，pages 23－33．Berlin：Springer－Verlag， 1996.
D．Boixader，F．Esteva，and L．Godo．On the continuity of t－norms on bounded chains．In Proceedings of the 8th IFSA World Congress IFSA＇99，pages 476－479， Taipei，Taiwan，August 1999.
E．Börger，E．Grädel，and Y．Gurevich．The Classical Decision Problem．Universitext． Springer Berlin Heidelberg，reprint of 1997 edition， 2001.

M．Bianchi and F．Montagna．Trakhtenbrot theorem and first－order axiomatic extensions of MTL．Studia Logica，2015．doi：10．1007／s11225－015－9614－3．
W．Blok and D．Pigozzi．Algebraizable logics，volume 77 of Memoirs of The American Mathematical Society．American Mathematical Society，1989．Available on http：／／ow．ly／rV2GS．
戟
F．Esteva and L．Godo．Monoidal t－norm based logic：Towards a logic for left－continuous t－norms．Fuzzy sets Syst．，124（3）：271－288， 2001. doi：10．1016／S0165－0114（01）00098－7．

Bibliography II

P. Hájek. Trakhtenbrot Theorem and Fuzzy Logic. In Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors, Computer Science Logic, volume 1584 of Lecture Notes in Computer Science, pages 1-8. Springer Berlin Heidelberg, 1999. doi:10.1007/10703163_1.

R B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes. Doklady Akademii Nauk SSSR, 70:569-572, 1950. english translation in [Tra63].
B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes. American Mathematical Society Translations, 23:1-5, 1963. available on http://tinyurl.com/qen5qom.

差
R. L. Vaught. Sentences true in all constructive models. J. Symb. Log., 25(1):39-53, 1960. available on http://www.jstor.org/stable/2964336.

APPENDIX

MTL-algebras

An MTL algebra is an algebra $\langle A, *, \Rightarrow, \sqcap, \sqcup, 0,1\rangle$. such that:
(1) $\langle A, \sqcap, \sqcup, 0,1\rangle$ is a bounded lattice with minimum 0 and maximum 1 .
(2) $\langle A, *, 1\rangle$ is a commutative monoid.
(3) $\langle *, \Rightarrow\rangle$ forms a residuated pair: $z * x \leq y$ iff $z \leq x \Rightarrow y$ for all $x, y, z \in A$.
(9) The following axiom holds, for all $x, y \in A$:
(Prelinearity)

$$
(x \Rightarrow y) \sqcup(y \Rightarrow x)=1
$$

[^0]: ${ }^{1}$ If P has arity zero, then $r_{P} \in A$.

