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Università degli Studi di Milano

Department of Computer Science

matteo.bianchi@unimi.it

joint work with

Franco Montagna

( reset ) June, 2015 1 / 14

mailto:matteo.bianchi@unimi.it


Outline

In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated
to finite models is not recursively enumerable (Π0

1-complete).

In 1999, P. Hájek generalized this result to the first-order versions of  Lukasiewicz,
Gödel and Product logics.

In this talk we extend the analysis to the first-order axiomatic extensions of MTL.
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MTL and MTL-algebras

Syntax

Monoidal t-norm based logic (MTL) was introduced in [EG01]: it is based over
connectives &,∧,→,⊥ (the first three are binary, whilst the last one is 0-ary).

The notion of formula is defined inductively starting from the fact that all
propositional variables and ⊥ are formulas.

MTL can be axiomatized with a Hilbert style calculus, having MP as an inference
rule.

An axiomatic extension of MTL is a logic obtained by adding one or more axiom
schemata to it.

Semantics

An MTL algebra is a prelinear residuated lattice 〈A, ∗,⇒,u,t, 0, 1〉: MTL-algebras forms an
algebraic variety, and every axiomatic extension of MTL is algebraizable in the sense
of [BP89].

An L-algebra is an MTL-algebra satisfying all the axioms of L.

A totally ordered MTL-algebra is called MTL-chain.

An MTL-algebra is called standard when its lattice reduct is 〈[0, 1],min,max, 0, 1〉:
this happens (see [EG01, BEG99]) if and only if ∗ is a left-continuous t-norm.
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First-order case

A first-order language is a countable set P of predicate symbols, containing at least
a binary one (i.e. we do not work with monadic fragments).

We overlook constant, function symbols, and we work without equality.

We have the “classical” quantifiers ∀, ∃.

The notions of term (note that our terms coincide with variables), formula, closed
formula, term substitutable in a formula are defined like in the classical case; the
connectives are those of the propositional level.
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First-order case - semantics

As regards to semantics, we need to restrict to L-chains: given an L-chain A, a finite
A-model is a structure M = 〈M, {rP}P∈P〉, where:

M is a finite non-empty set.

for each P ∈ P of arity1 n, rP : Mn → A.

For each evaluation over variables v : Var → M, the truth value of a formula ϕ
(‖ϕ‖AM,v ) is defined inductively as follows:

‖P(x1, . . . , xn)‖AM,v = rP (v(x1), . . . , v(xn)).

The truth value commutes with the connectives of L∀, i.e.

‖ϕ→ ψ‖AM,v = ‖ϕ‖AM,v ⇒ ‖ψ‖AM,v

‖ϕ&ψ‖AM,v = ‖ϕ‖AM,v ∗ ‖ψ‖AM,v

‖⊥‖AM,v = 0

‖ϕ ∧ ψ‖AM,v = ‖ϕ‖AM,v u ‖ψ‖AM,v

‖(∀x)ϕ‖AM,v = min{‖ϕ‖AM,v′ : v ′ ≡x v , i.e. v ′(y) = v(y) for all variables except for
x}
‖(∃x)ϕ‖AM,v = max{‖ϕ‖AM,v′ : v ′ ≡x v , i.e. v ′(y) = v(y) for all variables except for
x}.

1If P has arity zero, then rP ∈ A.
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Trakhtenbrot theorem, previous results

Theorem 1 ([Tra50, Vau60, BGG01])

Consider countable language containing only predicates, with at least a binary one, and
without equality. Then the set fTAUT2

∀ is Π0
1-complete.

Theorem 2 ([Háj99])

Consider countable language containing only predicates, with at least a binary one, and
without equality. If A ∈ {[0, 1]G , [0, 1]Π, [0, 1] L} then fTAUTA∀ is Π0

1-complete.
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First main result

Theorem 3

(i) For every non-trivial MTL-chain A, fTAUTA∀ is Π0
1-hard. More in general, for every

class of non-trivial MTL-chains K, fTAUTK
∀ is Π0

1-hard.

(ii) Let L be a consistent axiomatic extension of MTL. If K is a class of L-chains and
TAUTL = TAUT (K), then fTAUTK

∀ is Π0
1-hard.

(iii) For every consistent axiomatic extension L of MTL, the set fTAUT (L∀) is Π0
1-hard.
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Ingredients of the proof

Definition 4

A first-order formula is said to be Boolean if its connectives are among ¬, ∨ and ∧.
For each n-ary predicate P, let us define:

PREDEF (P)
def
= ∀x1 . . .∀xn¬(¬¬P(x1, . . . , xn)↔ ¬P(x1, . . . , xn)).

Moreover for every formula φ, PREDEF (φ) will denote the lattice conjunction of all
formulas PREDEF (P) such that P is a predicate occurring in φ.

Lemma 5

Let A be any non-trivial MTL-chain, K be a class of non-trivial MTL-chains, and let φ
be a Boolean first-order closed formula. The following are equivalent.

(1) φ ∈ fTAUT 2
∀ .

(2) ¬PREDEF (φ) ∨ (¬φ¬¬ → φ¬¬) ∈ fTAUTA∀ .

(3) ¬PREDEF (φ) ∨ (¬φ¬¬ → φ¬¬) ∈ fTAUTK
∀ .
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Trakhtenbrot theorem and first-order extensions of MTL: second main result

Theorem 6

(i) If A is any non-trivial MTL-chain and TAUT (A) is decidable, then fTAUTA∀ is in
Π0

1. More in general, if K is any class of non-trivial MTL-chains and TAUT (K) is
decidable, then fTAUTK

∀ is in Π0
1.

(ii) Let L be a consistent axiomatic extension of MTL. If L is decidable and is sound and
complete with respect to a class of L-chains K, that is, if TAUTL = TAUT (K), then
fTAUTK

∀ is in Π0
1.

(iii) For every decidable axiomatic extension L of MTL, the set fTAUT (L∀) is in Π0
1.
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A translation from first-order to propositional formulas

Let N+ def
= N \ {0}. For every n ∈ N+, with Ln∀ we denote the language of MTL∀

expanded with the constants c1, . . . , cn. The set of Ln∀ formulas will be called FORMn.

Definition 7

Let cn : FORMn → N be a computable map that encodes a first-order formulas into
natural numbers. Since we are working with a countable language, this can be done
without any problem.
For n ∈ N+, we define by induction an interpretation ∗n from the closed formulas of Ln

∀
into propositional formulas of MTL as follows.

If φ is atomic, say, φ = P(a1, . . . , ak ), with a1, . . . , ak among c1, . . . , cn, then
φ∗n = xcn(P(a1,...,an)). In other terms, every closed atomic formula is mapped into a
propositional variable.
∗
n commutes with all logical connectives.

(∀xφ(x))∗n =
∧n

i=1(φ(ci ))∗n .

(∃xφ(x))∗n =
∨n

i=1(φ(ci ))∗n .
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Axiomatization and Π0
1-completeness

By the previous results we have that the decidability of a consistent axiomatic extension L
of MTL is a sufficient condition for the Π0

1-completess of fTAUT(L∀). Is it also necessary?

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The
following are equivalent.

(1) L is decidable.

(2) fTAUT (L∀) is in Π0
1.

(3) fTAUT (L∀) is Π0
1-complete.

Lemma 9

If a logic L (thought of as a set of formulas closed under deduction and under
substitution) is not in Π0

1, then fTAUT (L∀) is not in Π0
1.

We have a negative answer to the question if we expand the language of L with
constants, and L is not recursively axiomatizable.
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Axiomatic extensions of MTL with Baaz operator ∆

The Baaz operator ∆ was firstly introduced in [Baa96].

For every axiomatic extension L of MTL, we denote with L∆ its expansion with an
operator ∆ satisfying the following axioms:

∆(ϕ) ∨ ¬∆(ϕ).(∆1)

∆(ϕ ∨ ψ)→ ((∆(ϕ) ∨∆(ψ))).(∆2)

∆(ϕ)→ ϕ.(∆3)

∆(ϕ)→ ∆(∆(ϕ)).(∆4)

∆(ϕ→ ψ)→ (∆(ϕ)→ ∆(ψ)),(∆5)

and the following additional inference rule: ϕ
∆ϕ

.

An MTL∆-chain is an MTL-chain expanded with an operation δ such that, for every
element x ,

δ(x) =

{
1 if x = 1,

0 otherwise.
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Last result

Theorem 10

(i) If A is any non-trivial MTL∆-chain and TAUT (A) is decidable, then fTAUTA∀ is
Π0

1-complete. More in general, if K is any class of non-trival MTL∆-chains and
TAUT (K) is decidable, then fTAUTK

∀ is Π0
1-complete.

(ii) Let L be a consistent axiomatic extension of MTL∆. If L is decidable and is sound
and complete with respect to a class of L-chains K, that is, if TAUTL = TAUT (K),
then fTAUTK

∀ is Π0
1-complete.

(iii) For every consistent and decidable axiomatic extension L of MTL∆, the set
fTAUT (L∀) is Π0

1-complete.
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Proof

(i) Let K be a class of non-trivial MTL∆-chains. For every Boolean formula φ, if φ∆

denotes the formula obtained by replacing each atomic subformula γ by ∆(γ), then
an easy check shows that φ ∈ fTAUT 2

∀ iff φ∆ ∈ fTAUTK
∀ . Hence fTAUTK

∀ is
Π0

1-hard.
Finally, imitating the proof of Theorem 6, we can prove that fTAUTK

∀ is in Π0
1.

(ii) Immediate from (i).

(iii) Immediate from (ii).
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MTL-algebras

An MTL algebra is an algebra 〈A, ∗,⇒,u,t, 0, 1〉. such that:

1 〈A,u,t, 0, 1〉 is a bounded lattice with minimum 0 and maximum 1.

2 〈A, ∗, 1〉 is a commutative monoid.

3 〈∗,⇒〉 forms a residuated pair: z ∗ x ≤ y iff z ≤ x ⇒ y for all x , y , z ∈ A.

4 The following axiom holds, for all x , y ∈ A:

(Prelinearity) (x ⇒ y) t (y ⇒ x) = 1

back
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