◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Trakhtenbrot theorem and first-order axiomatic extensions of MTL

Matteo Bianchi

Università degli Studi di Milano Department of Computer Science

matteo.bianchi@unimi.it

joint work with

Franco Montagna

)

• • • • • • • • • • • •

 In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π⁰₁-complete).

*ロト *個ト *注ト *注

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π⁰₁-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.

イロト イヨト イヨト イヨ

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π⁰₁-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.
- In this talk we extend the analysis to the first-order axiomatic extensions of MTL.

<ロト </p>

- In 1950, B.A. Trakhtenbrot showed that the set of first-order tautologies associated to finite models is not recursively enumerable (Π⁰₁-complete).
- In 1999, P. Hájek generalized this result to the first-order versions of Łukasiewicz, Gödel and Product logics.
- In this talk we extend the analysis to the first-order axiomatic extensions of MTL.

M. Bianchi and F. Montagna. Trakhtenbrot theorem and first-order axiomatic extensions of MTL. *Studia Logica*, 2015. doi:10.1007/s11225-015-9614-3

イロト イ団ト イヨト イヨト

Syntax

- Monoidal t-norm based logic (MTL) was introduced in [EG01]: it is based over connectives &, ∧, →, ⊥ (the first three are binary, whilst the last one is 0-ary).
- The notion of formula is defined inductively starting from the fact that all propositional variables and \perp are formulas.
- MTL can be axiomatized with a Hilbert style calculus, having MP as an inference rule.
- An axiomatic extension of MTL is a logic obtained by adding one or more axiom schemata to it.

Semantics

- An MTL algebra is a prelinear residuated lattice (A, *, ⇒, ⊓, ⊔, 0, 1): MTL-algebras forms an algebraic variety, and every axiomatic extension of MTL is algebraizable in the sense of [BP89].
- An L-algebra is an MTL-algebra satisfying all the axioms of L.
- A totally ordered MTL-algebra is called MTL-chain.
- An MTL-algebra is called *standard* when its lattice reduct is $\langle [0,1], \min, \max, 0,1 \rangle$: this happens (see [EG01, BEG99]) if and only if * is a left-continuous t-norm.

<ロ> (日) (日) (日) (日) (日)

- A first-order language is a *countable* set **P** of predicate symbols, containing *at least* a binary one (i.e. we do not work with monadic fragments).
- We overlook constant, function symbols, and we work without equality.
- We have the "classical" quantifiers \forall, \exists .
- The notions of term (note that our terms coincide with variables), formula, closed formula, term substitutable in a formula are defined like in the classical case; the connectives are those of the propositional level.

< □ > < 同 > < 回 > < Ξ > < Ξ

First-order case - semantics

As regards to semantics, we need to restrict to L-chains: given an L-chain A, a finite **A**-model is a structure $\mathbf{M} = \langle M, \{r_P\}_{P \in \mathbf{P}} \rangle$, where:

- M is a *finite* non-empty set.
- for each $P \in \mathbf{P}$ of arity¹ $n, r_P : M^n \to A$.
- For each evaluation over variables $v : Var \to M$, the truth value of a formula φ $(\|\varphi\|_{M,v}^4)$ is defined inductively as follows:

•
$$\|P(x_1,\ldots,x_n)\|_{\mathbf{M},v}^{\mathcal{A}}=r_P(v(x_1),\ldots,v(x_n)).$$

• The truth value commutes with the connectives of L \forall , i.e.

$$\begin{split} \|\varphi \to \psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} &= \|\varphi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} \Rightarrow \|\psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} \\ \|\varphi \& \psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} &= \|\varphi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} * \|\psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} \\ \|\bot\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} &= 0 \\ \|\varphi \wedge \psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} &= \|\varphi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} \sqcap \|\psi\|_{\mathbf{M},\mathbf{v}}^{\mathcal{A}} \end{split}$$

- $\|(\forall x)\varphi\|_{\mathbf{M},v}^{\mathcal{A}} = \min\{\|\varphi\|_{\mathcal{M},v'}^{\mathcal{A}}: v' \equiv_{x} v, \text{ i.e. } v'(y) = v(y) \text{ for all variables except for } x\}$
- $\|(\exists x)\varphi\|_{M,\nu}^{\mathcal{A}} = \max\{\|\varphi\|_{M,\nu'}^{\mathcal{A}} : \nu' \equiv_{x} \nu, \text{ i.e. } \nu'(y) = \nu(y) \text{ for all variables except for } x\}.$

イロン 不良と 不良と 不良と

June, 2015

5 / 14

¹ If *P* has arity zero, then $r_P \in A$.

(reset)

Theorem 1 ([Tra50, Vau60, BGG01])

Consider countable language containing only predicates, with at least a binary one, and without equality. Then the set $fTAUT_{\forall}^2$ is Π_1^0 -complete.

イロト イヨト イヨト イヨ

Theorem 1 ([Tra50, Vau60, BGG01])

Consider countable language containing only predicates, with at least a binary one, and without equality. Then the set $fTAUT_{\forall}^2$ is Π_1^0 -complete.

Theorem 2 ([Háj99])

Consider countable language containing only predicates, with at least a binary one, and without equality. If $\mathcal{A} \in \{[0,1]_G, [0,1]_{\Pi}, [0,1]_t\}$ then fTAUT^{\mathcal{A}} is Π_1^0 -complete.

イロト イヨト イヨト イヨ

Theorem 3

- (i) For every non-trivial MTL-chain A, fTAUT^A_∀ is Π⁰₁-hard. More in general, for every class of non-trivial MTL-chains K, fTAUT^K_∀ is Π⁰₁-hard.
- (ii) Let L be a consistent axiomatic extension of MTL. If \mathbb{K} is a class of L-chains and $TAUT_L = TAUT(\mathbb{K})$, then $fTAUT_{\forall}^{\mathbb{K}}$ is Π_1^0 -hard.
- (iii) For every consistent axiomatic extension L of MTL, the set $fTAUT(L\forall)$ is Π_1^0 -hard.

< □ > < 同 > < 回 > < Ξ > < Ξ

Definition 4

A first-order formula is said to be *Boolean* if its connectives are among \neg , \lor and \land . For each *n*-ary predicate *P*, let us define:

$$\mathsf{PREDEF}(\mathsf{P}) \stackrel{\text{\tiny def}}{=} \forall x_1 \ldots \forall x_n \neg (\neg \neg \mathsf{P}(x_1, \ldots, x_n) \leftrightarrow \neg \mathsf{P}(x_1, \ldots, x_n)).$$

Moreover for every formula ϕ , $PREDEF(\phi)$ will denote the lattice conjunction of all formulas PREDEF(P) such that P is a predicate occurring in ϕ .

イロト イヨト イヨト イヨ

Definition 4

A first-order formula is said to be *Boolean* if its connectives are among \neg , \lor and \land . For each *n*-ary predicate *P*, let us define:

$$\mathsf{PREDEF}(\mathsf{P}) \stackrel{\text{\tiny def}}{=} \forall x_1 \ldots \forall x_n \neg (\neg \neg \mathsf{P}(x_1, \ldots, x_n) \leftrightarrow \neg \mathsf{P}(x_1, \ldots, x_n)).$$

Moreover for every formula ϕ , $PREDEF(\phi)$ will denote the lattice conjunction of all formulas PREDEF(P) such that P is a predicate occurring in ϕ .

Lemma 5

Let A be any non-trivial MTL-chain, \mathbb{K} be a class of non-trivial MTL-chains, and let ϕ be a Boolean first-order closed formula. The following are equivalent.

(1)
$$\phi \in fTAUT_{\forall}^2$$

(2)
$$\neg PREDEF(\phi) \lor (\neg \phi \neg \neg \rightarrow \phi \neg \neg) \in fTAUT_{\forall}^{\mathcal{A}}.$$

(3) $\neg PREDEF(\phi) \lor (\neg \phi \neg \neg \rightarrow \phi \neg \neg) \in fTAUT_{\forall}^{\mathbb{K}}.$

イロト イポト イヨト イヨト

Theorem 6

- (i) If \mathcal{A} is any non-trivial MTL-chain and TAUT(\mathcal{A}) is decidable, then $fTAUT_{\forall}^{\mathcal{A}}$ is in Π_{1}^{0} . More in general, if \mathbb{K} is any class of non-trivial MTL-chains and TAUT(\mathbb{K}) is decidable, then $fTAUT_{\forall}^{\mathbb{K}}$ is in Π_{1}^{0} .
- (ii) Let L be a consistent axiomatic extension of MTL. If L is decidable and is sound and complete with respect to a class of L-chains K, that is, if TAUT_L = TAUT(K), then fTAUT^K_∀ is in Π⁰₁.
- (iii) For every decidable axiomatic extension L of MTL, the set $fTAUT(L\forall)$ is in Π_1^0 .

(日) (同) (三) (三) (三)

Let $\mathbb{N}^+ \stackrel{\text{def}}{=} \mathbb{N} \setminus \{0\}$. For every $n \in \mathbb{N}^+$, with $\mathcal{L}^n \forall$ we denote the language of MTL \forall expanded with the constants c_1, \ldots, c_n . The set of $\mathcal{L}^n \forall$ formulas will be called FORM_n.

Definition 7

Let $c_n : FORM_n \to \mathbb{N}$ be a *computable* map that encodes a first-order formulas into natural numbers. Since we are working with a countable language, this can be done without any problem.

For $n \in \mathbb{N}^+$, we define by induction an interpretation $\frac{*}{n}$ from the closed formulas of \mathcal{L}^n_{\forall} into propositional formulas of MTL as follows.

- If φ is atomic, say, φ = P(a₁,..., a_k), with a₁,..., a_k among c₁,..., c_n, then φ^{*}_n = x_{c_n(P(a₁,...,a_n))}. In other terms, every closed atomic formula is mapped into a propositional variable.
- ^{*}_n commutes with all logical connectives.

•
$$(\forall x \phi(x))_n^* = \bigwedge_{i=1}^n (\phi(c_i))_n^*$$
.

•
$$(\exists x \phi(x))_n^* = \bigvee_{i=1}^n (\phi(c_i))_n^*$$

イロト イヨト イヨト イヨト

・ロト ・回ト ・ヨト ・

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.

- (1) L is decidable.
- (2) $fTAUT(L\forall)$ is in Π_1^0 .
- (3) $fTAUT(L\forall)$ is Π_1^0 -complete.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.

- (1) L is decidable.
- (2) $fTAUT(L\forall)$ is in Π_1^0 .
- (3) $fTAUT(L\forall)$ is Π_1^0 -complete.

Lemma 9

If a logic L (thought of as a set of formulas closed under deduction and under substitution) is not in Π_1^0 , then fTAUT(L \forall) is not in Π_1^0 .

< ロ > < 同 > < 三 > < 三

Theorem 8

Let L be a recursively axiomatizable consistent propositional logic extending MTL. The following are equivalent.

- (1) L is decidable.
- (2) $fTAUT(L\forall)$ is in Π_1^0 .
- (3) $fTAUT(L\forall)$ is Π_1^0 -complete.

Lemma 9

If a logic L (thought of as a set of formulas closed under deduction and under substitution) is not in Π_1^0 , then fTAUT(L \forall) is not in Π_1^0 .

We have a negative answer to the question if we expand the language of L with constants, and L is not recursively axiomatizable.

イロト イヨト イヨト イヨト

- The Baaz operator Δ was firstly introduced in [Baa96].
- For every axiomatic extension L of MTL, we denote with L_Δ its expansion with an operator Δ satisfying the following axioms:

 $(\Delta 1)$ $\Delta(\varphi) \lor \neg \Delta(\varphi).$ $(\Delta 2)$ $\Delta(\varphi \lor \psi) \rightarrow ((\Delta(\varphi) \lor \Delta(\psi))).$ $(\Delta 3)$ $\Delta(\varphi) \rightarrow \varphi.$

 $(\Delta 4)$ $\Delta(\varphi) \rightarrow \Delta(\Delta(\varphi)).$

$$(\Delta 5) \qquad \qquad \Delta(\varphi \to \psi) \to (\Delta(\varphi) \to \Delta(\psi)),$$

and the following additional inference rule: $\frac{\varphi}{\Delta \varphi}$.

• An MTL_{Δ}-chain is an MTL-chain expanded with an operation δ such that, for every element *x*,

$$\delta(x) = egin{cases} 1 & ext{if } x = 1, \ 0 & ext{otherwise.} \end{cases}$$

<ロ> (日) (日) (日) (日) (日)

Theorem 10

- (i) If A is any non-trivial MTL_Δ-chain and TAUT(A) is decidable, then fTAUT^A_∀ is Π⁰₁-complete. More in general, if K is any class of non-trival MTL_Δ-chains and TAUT(K) is decidable, then fTAUT^K_∀ is Π⁰₁-complete.
- (ii) Let L be a consistent axiomatic extension of MTL_Δ. If L is decidable and is sound and complete with respect to a class of L-chains K, that is, if TAUT_L = TAUT(K), then fTAUT^K_∀ is Π⁰₁-complete.
- (iii) For every consistent and decidable axiomatic extension L of MTL_{Δ} , the set $fTAUT(L\forall)$ is Π_1^0 -complete.

(日) (同) (日) (日)

- (i) Let K be a class of non-trivial MTL_Δ-chains. For every Boolean formula φ, if φ^Δ denotes the formula obtained by replacing each atomic subformula γ by Δ(γ), then an easy check shows that φ ∈ fTAUT²_∀ iff φ^Δ ∈ fTAUT^K_∀. Hence fTAUT^K_∀ is Π⁰₁-hard. Finally, imitating the proof of Theorem 6, we can prove that fTAUT^K_∀ is in Π⁰₁.
- (ii) Immediate from (i).
- (iii) Immediate from (ii).

イロト イヨト イヨト イヨ

Bibliography I

- M. Baaz. Infinite-valued Gödel logics with 0-1-projections and relativizations. In Gödel '96. Logical foundations of mathematics, computer science and physics – Kurt Gödel's legacy, pages 23–33. Berlin: Springer-Verlag, 1996.
- D. Boixader, F. Esteva, and L. Godo. On the continuity of t-norms on bounded chains. In Proceedings of the 8th IFSA World Congress IFSA'99, pages 476–479, Taipei, Taiwan, August 1999.
- **E**. Börger, E. Grädel, and Y. Gurevich. *The Classical Decision Problem*. Universitext. Springer Berlin Heidelberg, reprint of 1997 edition, 2001.
 - M. Bianchi and F. Montagna. Trakhtenbrot theorem and first-order axiomatic extensions of MTL. *Studia Logica*, 2015. doi:10.1007/s11225-015-9614-3.
- W. Blok and D. Pigozzi. Algebraizable logics, volume 77 of Memoirs of The American Mathematical Society. American Mathematical Society, 1989. Available on http://ow.ly/rV2GS.

F. Esteva and L. Godo. Monoidal t-norm based logic: Towards a logic for left-continuous t-norms. *Fuzzy sets Syst.*, 124(3):271–288, 2001. doi:10.1016/S0165-0114(01)00098-7.

イロト イヨト イヨト イヨト

P. Hájek. Trakhtenbrot Theorem and Fuzzy Logic. In Georg Gottlob, Etienne Grandjean, and Katrin Seyr, editors, *Computer Science Logic*, volume 1584 of *Lecture Notes in Computer Science*, pages 1–8. Springer Berlin Heidelberg, 1999. doi:10.1007/10703163_1.

- B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes. *Doklady Akademii Nauk SSSR*, 70:569–572, 1950. english translation in [Tra63].
- B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite classes. American Mathematical Society Translations, 23:1–5, 1963. available on http://tinyurl.com/qen5qom.
 - R. L. Vaught. Sentences true in all constructive models. J. Symb. Log., 25(1):39-53, 1960. available on http://www.jstor.org/stable/2964336.

(ロ) (回) (三) (三)

APPENDIX

・ロト ・回ト ・ヨト ・ヨ

An MTL algebra is an algebra $\langle A, *, \Rightarrow, \sqcap, \sqcup, 0, 1 \rangle$. such that:

- **(** $\langle A, \Box, \sqcup, 0, 1 \rangle$ is a bounded lattice with minimum 0 and maximum 1.
- **2** $\langle A, *, 1 \rangle$ is a commutative monoid.
- $(*, \Rightarrow) \text{ forms a residuated pair: } x * x \leq y \text{ iff } z \leq x \Rightarrow y \text{ for all } x, y, z \in A.$

• The following axiom holds, for all $x, y \in A$:

(Prelinearity)
$$(x \Rightarrow y) \sqcup (y \Rightarrow x) = 1$$

◀ back

<ロ> (日) (日) (日) (日) (日)